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Abstract

Graph theory offers the ideal framework to model biological sys-
temic properties. Recently these methods were succesfully applied in
proteomics and in the study of metabolic networks. In this paper
we want to show that these same tools are equally powerful also to
address genomic problems, like alignement networks or the networks
obtained by looking at suitable correlators of chromosomic features.
We shall in particular address two examples. In the first example
we shall study human common fragile sites (CFS), a class of “hyper-
sensitive” segments of DNA. The interest to CFS is motivated by their
largely debated role in cancerogenesis. In order to functionally char-
acterize them we developed a novel genome-wide approach based on
graph theory and Gene Ontology vocabulary. We obtain a few non
trivial results fitting with largely accepted knowledges and a more re-
cently advanced proposal about the role of CFS in tumor cell biol-
ogy. The second application is a preliminary work on a potential new
type of transcriptional regulatory mechanism. It involves pseudogenes
which are non-functional copies of genes. This mechanism should imply
similarity between the upstream sequences of genes and pseudogenes.
We constructed the upstream similarity network in the budding yeast
S.Cerevisiae. Network properties suggest that pseudogenes-mediated
regulation could be a common feature in eukariotic organisms.

Keyword: fragile site, pseudogene, functional annotation, gene regulation,
graph theory



1 Introduction

In the past few years we have seen an increasing interest for the so called
“systemic” approach to biological problems. At the basis of the systemic
approach is the idea that it is only by looking at the network of interactions
of a living system as a whole that one may hope to understand the functional
role of its various components.

One of the main mathematical tools to perform this type of analysis
is graph theory, and indeed we saw in these last few years an impressive
progress also in this direction, with a lot of new results in graph theory and,
as a consequence, in our theoretical understanding of complex networks.

In this contribution we want to discuss two distinct examples of applica-
tions of graph theory to complex biological problems which are exactly along
this line. Our networks refer to two very different biological problems in two
different organisms but both can be modelled in terms of complex networks
based on similarity measures. In both cases a careful theoretical analysis
(and in particular the identification of the underlying community structure
of the network) allows to obtain a few non trivial result and to guess which
are the biological mechanisms which shape the networks in which we are
interested.

The first application focuses on human common fragile sites. They are
“hyper-sensitive” segments of DNA, they are said to be “expressed” when
they appear as gaps or breaks on chromosomes. Despite long efforts, the
understanding of the mechanisms of their instability and their functional
characterization are still largely incomplete [1, 2]. Here we ask if the “simi-
larity” (as defined below) observed among fragile sites patterns of expression
implies functional interactions among the genes that are contained in fragile
sites. We find that such genes tend to be specialized in function and we spec-
ulate that their co-regulation could contribute to the correlated expression
patterns of fragile sites.

The second application studies a potential new class of regulatory mech-
anisms at the level of the transcription process in the budding yeast S. Cere-
visiae. According to this hypothesis, pseudogenes would act as regulators of
their corresponding coding mRNAs. A few experimental evidences of such
a mechanism do exist [3, 4]. Here we carry on a large-scale sequence anal-
ysis to quantify the statistical significance of suitable features that should
underlie the action of this mechanism. Positive results of our study provide
actual support for a new model of transcriptional fine tuning guided by psu-
dogenes. We suggest that it could explain observed pseudogenes’ deviations
from the neutral evolution model.
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This paper is organized as follows. After a short introduction on graph
theory (section 2) we shall discuss the application of these methods to the
study of common fragile sites (section 3) and of a possible regulatory role of
pseudogenes (section 4).

2 Graph theoretical background

The aim of this section is to give a short account on a few simple tools which
turns out to be of great importance in the analysis of biological problems.
It is important to stress that we shall discuss only a very small portion of
the impressive amount of results which have been obtained in this sector
in these last few years. For a more complete and detailed account of these
results and for updated reviews on graph theory we refer the reader to [5,6].

We shall discuss here two main classes of observables: those related to
the properties of vertices and those related to the community analysis of the
graph.

2.1 Vertex properties

All along the paper we shall use the well know Erdos-Renyi random graph
model as “reference model”, i.e. as the “null hypothesis” with which we
shall compare our findings. The idea underlying our whole analysis is that
departure from the predictions of the Erdos-Renyi random graph model
should indicate a potential biological relevance of the observable under study.
For this reason we shall close this section with a brief summary of known
properties of random graphs.

2.1.1 Degree

If one is interested to discuss the properties of the vertices of a graph the first
observable one must address is the degree of a vertex which is the number
of links connected to such vertex in a network. The degree distribution of
a graph is a powerful tool to organize graphs into families with different
properties: (power-like graphs versus exponential graphs). We shall denote
in the following as zi the degree of the vertex i and as z the mean degree.
As we shall see below the probability of finding a vertex of degree k in an
Erdos-Renyi random graph is given by a Poisson distribution.
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2.1.2 Betweenness

A more sophisticated indicator of the properties of a vertex is betweenness.
Betweenness is a measure of the extent to which a node lies on the paths
between others. Following the standard definition, we define the betweenness
of a node i as the fraction of shortest paths between pairs of nodes in the
network that pass through i. This quantity is interesting also because it
allows to estimate the so called “centrality” of the vertex. Vertices with
high centrality are expected to play a more important role with respect to
the remaining vertices in the life of the network.

2.1.3 Clustering coefficient

The property of clustering (which is also sometimes called network transi-

tivity) is one of the most powerful tools to identify non random features
in biological networks. It can be measured using the clustering coefficient
C. It is essentially the mean probability that two vertices that are network
neighbours of the same other vertex are also neighbours. In an Erdos-Renyi
random graph C can be easily evaluated (for more details see next section).
High values of the ratio between the clustering coefficient that we find and
the Erdos-Renyi one would mean strong tendency of vertex to cluster among
them.

2.2 Comparison with the random graph hypothesis

The Erdos-Renyi random graph is the simplest possible model for a net-
work. It depends on two only parameters: the number of vertices n and the
probability p of connecting two vertices with an edge. Actually this model
describes not a single graph but an ensemble (in the sense of statistical me-
chanics) of graphs in which a graph with exactly n vertices and m edges

appears with probability pm(1−p)M−m where M = n(n−1)
2 is the number of

pairs of vertices of the graph (and hence the maximum possible number of
edges). The most important feature of the model is the presence at a par-
ticular value of p of a phase transition called percolation transition in which
suddenly a giant connected component appears in the graph. This transi-
tion occurs exactly at z = 1 (where z is the mean degree of the graph and
is given by z = p(n − 1). The appearance of a giant connected component
at z far below the percolation threshold is a highly non trivial result.

Another important feature of random graphs is that, due to their sim-
plicity, is rather easy to evaluate a number of important graph theoretical
quantities. In our analysis we use the aforementioned probability of a vertex
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having a degree k, pk =
(

n
k

)

pk(1 − p)n−k ∼= zke−z

k! and the mean clustering

coefficient which (for an undirected graph) is defined as 〈C〉 =
Pn

i=1
Ci

n
where

Ci =
2|{ejk}|

Ki(Ki−1) where eij denotes an edge between vertices vk and vj which

are among the nearest neighbours of the vertex vi (degree Ki)

2.3 Community structure analysis

2.3.1 Connected components

The very first step of any graph theoretical analysis of a network is the
reconstruction of its connected components. We extracted such connected
components by using the standard Hoshen-Kopelman algorithm [7]. How-
ever it is by know well understood that inside a large enough connected
component of a graph there may be a highly non trivial organization in so
called “communities”. Roughly speaking a community is a subgraph of the
network with a large number of interconnections among its vertices and a
rather small amount of links joining it with the remaining part of the graph.

2.3.2 The Newman Algorithm

To reconstruct the community structures of the networks that we shall study
we applied the agglomerative hierarchical clustering algorithm proposed by
Newman [8]. The starting step of the algorithm is the extreme structure in
which each vertex is isolated. Then the algorithms proceeds by joining com-
munities together in pairs if as a result of this fusion there is an increase in
the modularity coefficient Q (see next section for the exact definition). The
best partition of the network in communities corresponds to the maximal
value of Q

2.3.3 Validation of the community structure

A powerful tool to test if a particular partition in communities is meaningful
or not is the so called “modularity coefficient” Q =

∑

i (eij − a2
i ) where eij is

the fraction of edges in the network that connect vertices of the community
i with those of the community j and ai =

∑

j eij. Roughly speaking Q

measures the fraction of edges which lie within the community minus the
expected value for the same quantity in a random graph, thus for a random
graph Q = 0 while larger values of Q indicate a significant departure from
a random distribution of the edges. In practice already values of Q ≥ 3
indicate a well defined community structure in the network.
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3 Common fragile sites in a systemic perspective

Common fragile sites (CFS) are peculiar regions of DNA showing a high rate
of breakage and/or recombination events. Such events imply both intracel-
lular DNA exchange and external DNA viral integration. CFS are said to
be “expressed” when they show one of the above mentioned events. These
regions are termed “common” since they exist in almost all the individuals,
hence they do not denote by themselves a pathological status of the cell.
They have been studied mainly in human and mouse [9], but are expected
to exist in all higher eukariotes. There are evidences that these CFS are
conserved by evolution (at least as far as human-mouse comparison is con-
cerned) and thus it is likely that they have some important functional role
which however has yet to be understood.

Recently a lot of interest has been attracted by these CFS in view of
a possible non trivial relationship between their expression and tumour de-
velopment [10]. The main open issue is if CFS have a positive or negative
role in tumour development: one would like to understand if tumour bene-
fits from fragile site instability or if instead fragile sites act as “sensors” to
elicit, by altered expression of their genes, cellular response against hazards
at preliminary stages.

To address the intriguing issue a deeper understanding of the cellular
function of CFSs is needed. Motivated by a few recent discoveries [11] about
the correlation between two frequently expressed fragile sites, we decided to
extend such a correlation analysis to a genome wide scale. To understand
the relevant patterns of correlations on such a large scale a graph theoretical
analysis of the network of correlated CFS turned out to be mandatory. We
performed our analysis in three steps:

• we constructed the network of co-expressed CFS,

• we isolated the relevant communities inside this network,

• we looked for possible functional correlations among the genes insides
the communities using Gene Ontology [12].

Let us discuss in more detail these three points:

3.1 The network of co-expressed CFS

For each pair of fragile sites we studied the linear correlation coefficient of
their expression patterns and selected only those pairs with a correlation
higher than a given threshold. We set three thresholds; they correspond to
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α Q

0.1% 0.573
1% 0,461
5% 0.359

Table 1: Modularity coefficient Q at the significance level for fragile site
correlation set to α = 0.1%, α = 1% and α = 5%.

correlators which respectively have a (Bonferroni corrected) probability of
0.1%, 1% and 5% to appear by chance.

The data which we used for our analysis are the expression patterns of
137 fragile sites on a sample of 60 subjects reported in [11]. Raw data and
experimental procedures to gather them are described in detail in [13] to
which we refer the interested reader.

Co-expression data were represented as a network where nodes stand for
fragile sites and links between couples of nodes are added if such fragile sites
exhibit a significant correlation coefficient. Networks at different thresholds
are reported in Fig 1.

3.2 Community analysis

We then measured the three vertex observables discussed in 2: degree, be-
tweenness and clustering coefficient. The most remarkable result of this
analysis was that in all our graphs (i.e. at all the thresholds) the values for
the clustering coefficient values were much higher (about 30 times) than the
Erdos-Renyi ones.

This result prompted us to analyse the community organization of the
giant connected component in all three networks. High Q values quantify
the tendency of the three networks to be divided into two communities. Q
values are listed in Tab 1.

These findings strongly suggest that the co-expression networks should
hint to some kind of functional interactions among the genes located at
correlated fragile sites.

3.3 Functional analysis using Gene Ontology

Functional analysis was performed using the Gene Ontology database. Gene
Ontology (GO) [12] provides a dynamic and controlled annotation frame-
work for describing gene products. GO (http://www.geneontology.org/,
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(a) α = 0.1%

(b) α = 1%

(c) α = 1%

Figure 1: Visualization of the network based on correlated expression pat-
terns for fragile sites.
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version 3.1191) includes three extensive subontologies describing molecular
function (the biochemical activity of a gene product), biological process (the
biological goal a gene product contributes to) and cellular component (the
cellular place where the biological activity of a gene product is exerted). In-
dividual terms are organized as a directed acyclic graph, in which the terms
form the nodes in the ontology and the arcs the relationships. Descendent
terms are related to their parent terms by “is-a” relationships or “part-of”
relationships. In contrast to simpler hierarchical structures, one node in a
directed acyclic graph may have multiple parents. This allows for a more
flexible and detailed description of biological functions.

We used GO to give a functional meaning to our communities. More
precisely we collected the sets of genes mapped to fragile sites belonging
to the connected components and their communities (at all thresholds) and
looked for categories of biological process and molecular function defined in
GO which were significantly enriched in these sets. We performed an exact
Fisher’s test to check whether the term appeared in the set significantly
more often than expected by chance. The full list of genes associated to the
few reliable GO terms at the highest threshold is provided in Tab 1.

3.4 Results

The most comprehensive GO function including 34 genes located at 10 out
of 27 connected fragile sites turned out to be “cytokine activity”. Cytokines
act as mediators of innate and adaptive immune responses by controlling cell
growth and division. As a result of our analysis we suggest that correlated
expression at fragile sites may derive from a co-regulated expression of their
genes. The alterations constantly observed at or near these genes would be
produced by cellular processes connected with their co-regulation [14, 15].
In this respect it is interesting to notice that immune gene expression has
been recently shown to be epigenetically regulated [16].

A second interesting result is that a surprising high proportion of genes at
correlated fragile sites are implicated in cancer. According to a challenging
viewpoint, fragile site expression may protect against cancer at early stages
[17–19]. Genomic integrity would be ensured by the aberrations occurring
at fragile genes that would act as sensors to elicit cell-cycle arrest or death.
We believe that fragile sites are not located by chance within or near our
highlighted genes, but take part with these genes to the mechanism that
regulate the cellular response to DNA damage [20]. This proposal was based
on some known genes located in proximity of highly expressed fragile sites
such as STS at FRAXB and Wwox at FRA16D.Remarkably enough we
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found that these genes were connected together in one of our communities
thus further supporting the idea of a common interaction among them.

4 Upstream similarity network in yeast

Pseudogenes are defined as DNA sequences of former functional genes made
nonfunctional by severe mutations. Operationally, pseudogenes are usu-
ally identified by their disrupted open reading frames (ORFs), which are
homologous to functional genes. Since some pseudogenes exhibit features
suggesting a non-neutral molecular evolution, it is plausible that, at least
some of the pseudogene, have some still unknown functional role [21]; more-
over a specific molecular function for a pseudogene has been found in some
cases. S.A. Korneev et al. have shown that neuronal expression of neural
nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA
transcribed from a NOS pseudogene in Lymnaea stagnalis [3]. Hirotsune et
al. [4] have found that the expression of the Makorin1 gene in Mus Muscu-
lus is controlled by one of its pseudogene copies, Makorin1-p1. Even though
it is not completely clear how this regulative interaction is exploited, the
authors experimentally demonstrated that in this process the first 700 base
pairs of mRNA of the pseudogene, which are very similar to those of the
gene, play a fundamental role. Fig 2 shows two ways in which this might
happen.

The upstream similarity network could be a powerful tool to perform
a genome wide analysis of regulative interactions like that described for
Makorin1 and Makorin1-p1. There are two possible reasons for this:

• the sequences that we study are upstream of the translation starting
site, thus they include the 5’UTR region of the gene and if the mech-
anisms discussed in Fig 2 are correct they require a high degree of
similarity between the 5’UTR regions in competition;

• if a gene and a pseudogene share some kind of regulatory interaction
they should also be themselves coregulated, in order to be simultane-
ously expressed. Thus it is likely that they share a common regula-
tory pattern in their promoter regions (which is also included in the
upstream sequences which we select).

We chose the well known and relatively simple genome of Saccharomyces
Cerevisiae for our preliminary work. The subject of our study is a network
whose edges consist of all the pairs of genes which present an upstream simi-
larity above a given significance cut-off. Each entry annotated in the Saccha-
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Figure 2: Plausible mechanism of gene-pseudogene interaction. A) A RNA-
mediated mechanism: here, messenger RNA copies of the pseudogene and
gene compete for a destabilizing protein that binds a crucial 700-nucleotide
region near the beginning of the mRNAs. This destabilizing protein might
be an RNA-digesting enzyme (RNAse). B) A DNA-mediated mechanism:
here, regulatory elements of the pseudogene and gene, located in the same
region as above, compete for transcriptional repressors.
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Figure 3: Connectivity distribution at different similarity cutoff wc.

romyces Genome Database (SGD) [22] as open reading frame or pseudogene
is as vertex of the network. For all of the 6612 vertices we selected 500 bases
upstream of translation starting site (we call this sequence “upstream”). In
case of superpositions with other ORF’s, we cut the sequence so that only
the non-coding nucleotides between the two ORF were included. We aligned
every pair of sequences obtained in this way using NCBI-BLAST [23] and
defined the similarity between two sequences as the opposite of the base 10
logarithm of the e-value supplied by the program for their best local align-
ment. For partially overlapping upstreams we included the alignment in the
graph only if the overlapping portion did not contribute significantly to the
alignment score.

We put an edge ew between each couple of vertex (v1, v2); the weight w

of this edge is the upstream similarity of the two vertex v1 and v2. Therefore
we consider a set of unweighted graphs, each characterized by a given cutoff
wc, in which each edge ew survives only if its weight w is greater of wc.

As one can easily expect the number of vertices n is a decreasing function
of wc. For instance we have: n = 501 for wc = 5, n = 287 for wc = 10 and
n = 133 for wc = 90; the medium connectivity z varies in the same way
from z = 12, 8 for wc = 5 to z = 5.7 for wc = 10 and z = 2.8 for wc = 90.
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comunity
label

community
size

go term P-value

ERR 3 phosphopyruvate hydrase
activity

6.26E-04

COS 8 storage vacuole 1.07E-02
litic vacuole 1.07E-02

ASP 4 asparagine activity 9.29E-07
cellular response to nitro-
gen starvation

9.29E-07

THI 3 thiamin biosyntesis 1.88E-07

Table 2: Overrepresented GO terms in graph comunity.

As shown in Fig 3, the connectivity distribution does not correspond to
that predicted by standard random graph theory or by scale-free models [24].
This is mainly due to the presence of peaks in the distribution with high
connectivity given by the presence of subgroups of highly interconnected ver-
tices. Because of the small size of the network, further considerations about
this fact cannot be made, but we hope to obtain statistical evidences for
this observation by analysing the same type of upstream similarity network
for the mammalians genomes.

The graph with cutoff wc = 10 presents 54 connected components, one
of these is very populated (77 vertices) and 15 have size bigger than 4; the
giant component is made by 3 groups of vertices which may be immediately
identified as distinct “communities” since they present a large number of
inside connections while are weakly connected with the remaining vertices
[8]. These communities are splitted in distinct connected components in the
graph with cutoff wc = 20, in this case however their size is smaller.

Analyzing the Gene Ontology annotations of genes belonging to the same
community or component we observed a significant enrichment of similar
functional annotations (some example in Table 2). This is not strange since
most of the communities of the graph roughly coincide with known families
of genes.

The genes related to the 30% of the communities with size bigger than
4 are placed at the extremity of the chromosomes (some example in Fig
4) suggesting that genes with highly similar upstreams can be produced by
events of duplication in telomerics zones.

The set of vertices of the network with cutoff 10 includes 8% of consid-
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(b) Subtelomeric community

Figure 4: Chromosome localization of ORF (red hyphen) with highly similar
upstream sequences.

ered sequences, still in the same set appears the 40% of the pseudogenes
(6 pseudogenes annotated as so in SGD out of 14 present in the set of the
upstream sequences at the beginning). In the same way the set of selected
genes is enriched of dubious ORF’s and spurious sequences (that have codon
compositions not characteristic of genuine genes and did not yield detectable
protein products [25]); some of these genes could indeed be yet unrecognized
expressed pseudogenes.

As a negative test we also constructed, following the same procedure
outlined above, the similarity graph of the coding portions of genes. In this
second case we found a definitely smaller fraction of pseudogenes and spu-
rious or dubious ORF’s in the graph. This fact could indicate the presence
of an evolutive pressure which favours the similarity between the upstream
sequence of the pseudogene and that of its relative gene. This signature is
compatible with the regulative mechanism of the Makorin1 and Makorin1-
p1 pair discussed above and could suggest a wider presence of this type of
regulation even in organisms as simple as yeast. We are presently extending
this analysis to other eukaryotes and in particular to vertebrates in order to
give a more reliable statistical basis to the above observation.
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