Laurea Magistrale in Fisica Corso di Cosmologia

Esercizi integrativi degli argomenti illustrati a lezione

(1) Dimostrare la relazione

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\kappa} (\partial_{\mu} g_{\kappa\nu} + \partial_{\nu} g_{\kappa\mu} - \partial_{\kappa} g_{\mu\nu}) .$$

- (2) Dimostrare che il simbolo di Christoffel $\Gamma^{\lambda}_{\mu\nu}$ non è un tensore.
- (3) Dimostrare che le identità di Bianchi implicano $(R^{\mu\nu} \frac{1}{2}g^{\mu\nu}R)_{;\mu} = 0$.
- (4) Determinare le dimensioni di $R_{\mu\nu}$, R, $g_{\mu\nu}$, Λ , $T_{\mu\nu}$.
- (5) Derivare le equazioni di Friedmann dalle equazioni di Einstein.
- (6) Dimostrare che $\Gamma^{\mu}_{\mu\lambda} = g^{-1/2} \partial_{\lambda} g^{1/2}$.
- (7) Ricavare i parametri H, Ω e Ω_{Λ} in funzione del *redshift* z dalle corrispondenti funzioni dipendenti dal fattore di scala a.
- (8) Calcolare l'età dell'Universo in modelli di Friedmann con costante cosmologica nulla.
- (9) Ricavare la formula di Mattig nel caso $\Omega_{\Lambda 0} = 0$, $\Omega_0 < 1$.
- (10) Ricavare, in forma parametrica, l'equazione differenziale per il contrasto di densità $\delta(t)$, nella teoria lineare delle perturbazioni, nei casi $\Omega_0 < 1$ e $\Omega_0 > 1$, con $\Omega_{\Lambda 0} = 0$. Si scrivano le soluzioni dell'equazione in forma parametrica nei due casi.
- (11) Dimostrare che, in un universo dominato dalla radiazione, la lunghezza d'onda di Jeans è $\lambda_J = c_s (3\pi/8G\rho_b)^{1/2}$, con $c_s = c/\sqrt{3}$ la velocità del suono nel mezzo e ρ_b la densità media. Dimostrare che le due soluzioni per il contrasto di densità sono $\delta_+(t) \propto t$ e $\delta_-(t) \propto t^{-1}$.
- (12) Dimostrare che, in un universo di Einstein-de Sitter, le velocità peculiari proprie crescono nel tempo secondo la legge $\mathbf{v}_1(t) = -\nabla \phi \cdot t$.
- (13) Calcolare il raggio fisico dell'orizzonte, in funzione del tempo cosmico, per un universo con $\Omega_0 \neq 1$ e $\Omega_{\Lambda 0} = 0$.