1 Domande

Si dica se ciascuna delle seguenti affermazioni è vera o falsa, fornendo una breve giustificazione della propria scelta. Nel caso di affermazioni false, si corregga l'errore.

- Il gruppo delle permutazioni S_4 ammette 5 rappresentazioni irriducibili inequivalenti.
- Il rango del gruppo diedro D_n , è pari a n.
- Il gruppo derivato del gruppo S_3 è il gruppo banale $\{e\}$.
- Il primo gruppo di omotopia (gruppo fondamentale) di SO(3) è Π_1 (SO(3)) = \mathbb{Z}_2 .
- Il centro del gruppo U(N) è il gruppo U(1).
- Il gruppo diedro D_n ammette, $\forall n$, una rappresentazione irriducibile di dimensione d = n 1.
- Il gruppo $GL(n, \mathbf{R})$ è semplicemente connesso.
- Le algebre su(2) e $sl(2, \mathbf{R})$ sono sezioni reali di $sl(2, \mathbf{C})$.
- Le radici dell'algebra so(4) sono rappresentabili come vettori nel piano euclideo. In particolare vi sono p=6 radici non nulle e q=2 radici nulle.
- Il gruppo SO(4) è semisemplice.

2 Problemi

2.1 Problema N. 1

Si considerino i gruppi ciclici \mathbf{Z}_n e le loro rappresentazioni irriducibili. In particolare

- Qual è la dimensionalità delle rappresentazioni irriducibili di \mathbf{Z}_n ? Quante sono quindi le rappresentazioni irriducibili inequivalenti?
- Si definisca la rappresentazione regolare per \mathbf{Z}_n , se ne indichi la dimensionalità, e la si costruisca esplicitamente fornendo una rappresentazione matriciale del generatore.

- \bullet Si determini la forma esplicita delle rappresentazioni irriducibili di \mathbf{Z}_n diagonalizzando la rappresentazione regolare.
- Si scrivano le relazioni di ortonormalità e completezza per i caratteri delle rappresentazioni irriducibili di \mathbf{Z}_n .
- Si deduca la forma delle rappresentazioni irriducibili del gruppo U(1) effettuando un limite formale per $n \to \infty$.

2.2 Problema N. 2

Si considerino le matrici della forma

$$M(\theta, c) = \begin{pmatrix} e^{i\theta} & c \\ 0 & 1 \end{pmatrix} ,$$

con θ reale e definito mod 2π , e c complesso.

- Si mostri che esse formano un gruppo. In particolare si determinino i parametri che caratterizzano M^{-1} in funzione dei parametri di M.
- Qual è la dimensionalità reale del gruppo? Si tratta di un gruppo compatto? Semplicemente connesso?
- Si costruisca l'algebra di Lie del gruppo (come algebra su **R**). Si tratta di un'algebra semplice, o semisemplice? Si verifichi la risposta calcolando la metrica di Cartan-Killing.