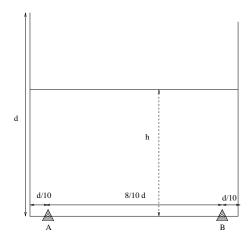
Corso di Laurea in Fisica - A.A. 2002-2003 Scritto di Onde Fluidi e Termodinamica - 24/07/2003

Esercizio 1


Due corde di uguale massa M e tese dalla stessa tensione T_0 e di lunghezza l_1 ed l_2 sono fissate ai propri estremi. La corda l_1 vibra sulla propria frequenza fondamentale mentre la corda l_2 sulla terza armonica. Nel caso in cui la frequenza di vibrazione sia la stessa, si determini

- a) quale è la corda piú lunga;
- b) la frequenza udita da un osservatore posto tra le due corde quando esse si allontanano con moto rettilineo uniforme in direzioni opposte e con velocità $v_1 = +17$ m/s e $v_2 = -34$ m/s e siano $T_0 = 40$ N, M=10 g, $l_1=10$ cm, e la velocità del suono in aria 340 m/s.

Esercizio 2

Un recipiente di sezione quadrata (lato d=0.5 m), è riempito di un mercurio ($\rho_0=13.6$ g/cm³) fino ad un'altezza h=0.3 m dal fondo. Sul fondo del recipiente sono posti due tappi A e B la cui massima tenuta è rispettivamente $p_A=0.45$ bar e $p_B=0.65$ bar. Calcolare la massima accelerazione orizzontale che si può imprimere al recipiente prima che il liquido fuoriesca dal recipiente nel caso in cui questo sia:

- a) accelerato verso destra;
- b) accelerato verso sinistra.

Esercizio 3

Un cilindro a pareti adiabatiche è chiuso da un pistone di massa trascurabile, pure adiabatico, mobile senza attrito e di sezione $S=1\ dm^2$. Il cilindro contiene 5 moli di gas perfetto monoatomico a una temperatura iniziale $T_0=500\ K$ e il sistema è in equilibrio per un valore della pressione atmosferica $p_0=1\ atm$. Si pone sul pistone una massa M; supponendo che dopo un certo numero di oscillazioni il sistema raggiunga uno stato di equilibrio per la temperatura finale del gas $T_f=700\ K$, determinare:

- a) la massa M
- b) la variazione di entropia del gas