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A B S T R A C T

In this thesis is presented the first measurement of the prompt
production cross section ratio of the χb2(1P) and χb1(1P) bot-
tomonium states performed by detecting their radiative decays
χb2,1 → Υ(1S) + γ in CMS. The photon is measured through
pair conversion in the tracker, which allows the two states to
be resolved with good separation. The measurement was per-
formed in the kinematical region |y(Υ)| < 1.25, |η(γ)| < 1.0,
7.0 GeV < pT (Υ) < 40.0 GeV . 20.7 fb−1 of data from proton-
proton collisions at

√
s=8 TeV collected in 2012 were analyzed.

S O M M A R I O

In questa tesi è presentata la prima misura del rapporto tra le
sezioni d’urto di produzione di χb2(1P) e χb1(1P). Il decadimen-
to radiativo χb2,1 → Υ(1S) + γ è stato analizzato e, per ottenere
una risoluzione sufficiente per distinguere i due stati, il fotone
è rivelato a partire dalle conversioni nel tracker. La misura è
stata eseguita nella regone cinematica |y(Υ)| < 1.25, |η(γ)| < 1.0,
7.0 GeV < pT (Υ) < 40.0 GeV . Sono stati analizzati 20.7 fb−1

di dati da collisini protone-protone a
√
s=8 TeV raccolti nel 2012

dall’esperimento CMS.
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I N T R O D U C T I O N

Quarkonium, a bound state formed by an heavy quark and
its antiquark, is an exceptional system to prove our understand-
ing of quantum chromodynamics. In its physics different energy
scales play an important role and both perturbative and non per-
turbative effects must be taken into account. Although most of
its features are well described by phenomenological models, as
the potential models, or by the more theoretical grounded tools
of effective field theories, as non relativistic quantum chromody-
namics, open questions still remain. Its production mechanism
in hadron colliders, for example, is described in various theo-
retical frameworks. Precision measurement are then needed to
discriminate between models and to constrain their free param-
eters.

In this thesis is presented the first world measurement of the
production cross section ratio:

σ(pp→ χb2(1P) +X)/σ(pp→ χb1(1P) +X).

in four bins of pT(Υ). Bottomonium states are reconstructed by
detecting their radiative decays χb2,1 → Υ(1S) + γ in the Com-
pact Muon Solenoid (CMS) experiment at the Large Hadron Col-
lider (LHC). The photon is measured through pair conversion in
the CMS tracker, which allows the two states to be resolved with
good separation.

The high luminosity delivered by LHC in 2012 and the good
resolution on the photon energy allowed by the tracker were
essential for performing this measurement.

The first chapter briefly summarizes the theoretical framework
used to describe the quarkonia states. Various theories to explain
its production in hadron colliders are presented along with their
prediction to the ratio which will be measured in this thesis. A
pedagogical description of relativistic quantum chromodynam-
ics is also given. Finally a brief summary of the properties of χb
state is presented.

The second chapter is devoted to the description of the Large
Hadron Collider and, in particular, of the Compact Muon Solenoid
experiment. Its sub-detectors are described highlighting the char-
acteristics that made this analysis possible. Some details are also
given about the software framework and the data storage model
used in CMS.
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The third chapter presents the measurement describing all the
details of the analysis. The datasets used are listed and the sim-
ulation strategy is depicted. The event selection is then defined
along with the strategy to discriminate between signal and back-
ground. Various sources of possible systematics uncertainties
are examined.



1 T H E O R Y O V E R V I E W

The present chapter gives a brief introduction to basic con-
cepts of quarkonium physics and the theoretical frameworks
used to describe its production. More attention is given to non
relativistic quantum chromodynamics, by now the theory most
successful phenomenologically successful and theoretically sound
we have to describe quarkonium states. Finally a brief overview
of the theoretical predictions of σ(χb2)/σ(χb1) is given.

In the following  h = c = 1.

1.1 quarkonium
Heavy quarkonium consists of a meson containing a heavy

quark and its antiquark.The charm, the beauty (or bottom) and
the top quark are considered heavy quarks because their mass is
bigger than ΛQCD (∼ 200MeV), the scale at which the perturba-
tive expansion in powers of αs would diverge so that prediction
based on pQCD (perturbative Quantum Chromodynamics) can
not be made. Actually only quarkonia formed by charm (char-
monium) or bottom (bottomonium) are observed as the top quark
has a very short life time and decays before bound states can be
formed.

The typical velocity of valence quarks in quarkonium is non
relativistic (v2 ∼ 1/3 for charmonium and v2 ∼ 1/9 for bottomo-
nium). Quarkonium can thus be considered to a first approxima-
tion as a non relativistic quantum system and thus be described
by the following quantum numbers:

n the radial quantum number,

L the eigenvalue of radial angular momentum,

S the eigenvalue of the spin,

J the eigenvalue of the total angular momentum.

A quarkonium state can thus be specified by its spectroscopic
notation

∣∣2S+1LJ〉. The spectrum of bottomonium is shown in
figure 1.1.

The first excited state above the ground state for cc̄ is the J/ψ
(mJ/ψ = 3.1 GeV, ΓJ/ψ = 91 keV), while for bb̄ mesons is the

1



1.1 quarkonium 2

Figure 1.1.: Bottomonium spectroscopy diagram

Υ (mΥ = 9.46 GeV, ΓΥ = 54 keV). The lower-mass states of
heavy quarkonium resonances are relatively stable particles: as
their mass is below the threshold for open heavy flavored me-
son production , their decay modes are either electromagnetic or
OZI-suppressed; their width ranges from a few dozens keV to a
few dozens MeV.

The spectroscopy of quarkonia is phenomenological described Potential model
by assuming that the QQ̄ pair is subjected to the Cornell potential:

V(r) = −
4

3

αs(R)

R
+ κ2R (1.1)

where 4/3 is a color factor, αs is the strong coupling constant,
R is the distance between the two quarks and κ ' 450 MeV.
This potential consists of a Coulomb-like term, accounting for
the gluon-exchange between the two quarks, and a confining
term parameterizing the non-perturbative effects. The results ob-
tained by solving the non relativistic Schrödinger equation with
the potential (1.1) with ad-hoc values of the parameters are in
good agreement with the observed spectra.
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Energy Scales
Quarkonium is a very challenging system to study as there are

a number of different energy scales that play a role in its physics.

• M, the mass of the quarkonium state, sets the total energy
scale for annihilation decays and the scale of the kinematic
threshold for quarkonium production.

• Mv is the typical momentum of the valence quarks, it is
also the inverse of the length scale for the size of the quarko-
nium states.

• Mv2 is the typical kinetic energy, it is the scale of the
splittings between radial excitations and between orbital-
angular-momentum excitations in the quarkonium spec-
trum.

An estimate of these scales [22] can be found in table 1.1.

Table 1.1.: Quarkonium energy scales.

cc̄ bb̄

M [ GeV ] 1.5 4.7
Mv [ GeV ] 0.9 1.5
Mv2 [ GeV ] 0.5 0.5

Another important energy scale in quarkonium physics isΛQCD, ΛQCD

the scale of nonperturbative effects involving gluons and light
quarks. To clarify its relation with the typical scales of quarko-
nium two limiting cases can be considered:

1. The heavy quark mass is large enough so that the Cornell
potential (1.1) is dominated by the Coulomb-like term. The
size of the bound state is then determined by a balance
between the kinetic energy and the potential energy:

Mv2 ∼
4

3

αs(r)

r
(1.2)

The size of the bound state (R) is comparable to the inverse
of the typical momentum R ∼ 1/(Mv), making this substi-
tution in 1.2:

v ∼ αs(Mv)

solving this equation, v can be expressed as a function of
M. For example if M was sufficiently large, the resulting
value of Mv2 would be much greater than ΛQCD.
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2. The heavy mass is small enough that the Cornell potential
(1.1) is dominated by the linear term. The balance between
kinetic and potential energy requires

Mv2 ∼ κ2R (1.3)

setting R ∼ 1/(Mv), it is clear that κ ∼Mv3/2. As the linear
term parameterize the non-perturbative effects, κ is inde-
pendent of M,it must be proportional to ΛQCD. Identifying
κ with ΛQCD:

Mv2 < ΛQCD < Mv.

the comparison of potential models with data has shown
that κ does not depend on the mass of the quarkonium
state

Considering an intermediate case where both the Coulomb-
like and the linear term are important, then (1.2) and (1.3) would
be satisfied simultaneously so that

Mv2 < ΛQCD < Mv�M.

In quarkonium physics thus both perturbative and non-perturbative
QCD play a role. This can be better understood from the val-
ues of αs at the various characteristic quarkonium energy scales
summarized in table 1.2

Table 1.2.: Value of the QCD coupling constant at the characteristic
momentum scales for heavy quarkonium.

cc̄ bb̄

αs (M) 0.35 0.22
αs (Mv) 0.52 0.35
αs (Mv2) � 1 � 1

Finally for quarkonium production in hadron colliders the in-
trinsic scale of the hard scattering must also be considered. The
hard-scattering scale p is usually set by a large momentum trans-
fer between the partons in the production process and it is taken
to be of the order of the quarkonium pT .

1.2 quarkonium production
The mechanism of quarkonium production at hadron colliders

is still an open research field.
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Partons involved
The hypothesis of electromagnetic production similar to the Electromagnetic

productionDrell Yan process has been ruled out in fixed target experiments:
the cross section would be proportional to the square of the
charge of the annihilating quark and, for example, the ratio of
cross sections

σ(π−N→ qq̄X)

σ(π+N→ qq̄X)
=
Q(ū)2

Q(d̄)2
=

(2/3)2

(1/3)2
= 4

which is not observed.
Likewise if qq̄ annihilation into a gluon (figure 1.2a) was the

main process this would lead to a suppression of a factor 5 −
10 in proton-proton collisions with respect to proton-antiproton
ones. The suppression observed in experiments is much smaller
so this cannot be the main process.

Quarkonia production must thus be dominated by gluon fu-
sion or gluon fragmentation (figures 1.2b and 1.2c).

Factorization
As already mentioned in section 1.1 quarkonium physics is

characterized by both perturbative and non-perturbative aspects.
For what concerns its production, intuitively it could be under-
stood in terms of two distinct steps:

1. the production of the QQ pair which occur at the scale
p (a large momentum transferred in the production pro-
cess) and can be described perturbatively in expansions of
αs(p),

2. the evolution of the QQ pair into the quarkonium which
involve smaller dynamical scales Mv and mv2 and thus a
non-perturbative physics.

The term short distance is often used to refer to the momentum
scale p while the term long distance refers to typical hadronic
momentum scales such as Mv, Mv2 or ΛQCD.

In order to show that short distance perturbative effects at the
scale p can be separated from the long distance non-perturbative
dynamics a factorization theorem must be provided. It must be
shown that an amplitude or a cross section can be expressed
as a sum of products of infrared safe short distance coefficients
with well defined operator matrix elements. Short distance coef-
ficients will be perturbatively calculable while the operator ma-
trix elements will contain all the long distance, non-perturbative
physics and will be determined phenomenologically or through
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(a)

(b)

(c)

Figure 1.2.: Main Feynman diagrams contributing to quarkonium pro-
duction.
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lattice simulations. If it could be demonstrated that the long dis-
tance elements are universal (i. e. process independent) the fac-
torization formula would yield much greater predictive power.

Various models have been proposed that achieve this factor-
ization, the most notable among these are the color evaporation
model (CEM), the color singlet model (CSM) and the nonrelativistic
QCD (NRQCD).

Colour Evaporation Model (CEM)
In this model it is assumed that each QQ pair, whose mass is

less than the threshold for producing a pair of open-flavor heavy
mesons, evolves into a quarkonium state. The probability of a
produced QQpair to evolve into a certain quarkonium state H is
given by a constant FH which is independent from the process
and the energy-momentum of the QQ pair. The QQ is assumed
to neutralize its color by interaction with the collision-induced
colour field by colour evaporation so that FH is also independent
from QQ quantum numbers. The production cross section of a
quarkonium H is thus the fraction FH of the production cross
section of the QQ pair:

σH = FH ·σ
QQ

.

TheQQproduction cross section can be calculated perturbatively
while FH is the only parameter to be fixed by comparison with
the measured total cross section for the production of the quarko-
nium state H. The CEM can than predict with no additional
free parameters, for example, the momentum distribution of the
quarkonium production rate.

The CEM predictions provide a rough description of CDF data
for J/ψ, ψ(2S) and χc production with a poorer agreement with
data with respect to NRQCD. Moreover its most basic prediction
is that the ratio of the cross sections of any two quarkonium
states should be independent from the process and the kinematic
region; variations of these ratios have however been observed.

Color Singlet Model (CSM)
The color-singlet model (CSM) was first proposed shortly after

the discovery of the J/ψ. The main concept of the CSM is that, in
order to produce a quarkonium state, theQQpair must be gener-
ated with the quarkonium quantum numbers; in particular the
pair has to be produced in a color-singlet state. The production
rate of a quarkonium state is related to the absolute value of the
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color-singlet QQ wave function and its derivative1 evaluated at
zero QQ separation. These quantities can be extracted from de-
cay rates leaving no free parameters in predicting the production
cross section.

The CSM was successful in predicting quarkonium production
rates at relatively low energies. At leading order (LO) however
it underestimated the J/ψ and ψ(2S) production cross section at
Tevatron by a factor 50 (see figure 1.3).

Figure 1.3.: Comparison between CSM prediction for the ψ(2S) cross
section at LO, NLO and NNLO∗ accuracy as a function of
pT (ψ(2S)) at Tevatron at

√
s = 1.96TeV

Considering next-to-leading order (NLO) and next-to-next-to-
leading order (NNLO) corrections in αs, very large terms appear
which improve the CSM agreement with data also at large pT . It
is however unclear if the perturbative expansion in αs converges.

Non Relativistic QCD (NRQCD)
The NRQCD factorization approach is the most theoretically

grounded and the most phenomenologically successful mecha-
nism to describe quarkonium production. NRQCD is an effective
field theory of QCD which reproduces full QCD results at mo-
mentum scales less than Mv. The physics involving higher mo-
mentum scales is parameterized in the short distance coefficients
of the operators that appear in the NRQCD Lagrangian. A short
introduction to this theory is given in the next section.

1 More precisely its L-th derivative.
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1.3 nrqcd
1.3.1 Effective field theories

In physical problems often different energy scales widely sep-
arated are involved. This allows, when studying a low energy
problem, to neglect the details of the hight energy physics pa-
rameterizing the global effects in a small number of parameters.

Let us consider, in general, a quantum field theory for the field
φ defined by the Feynman path integral∫

Dφ eiS where S =

∫
dDx L. (1.4)

Considering a energy scale Λ, it is possible to separate the
high energy (short distance) from the low energy (long distance)
components of the field φ:

φ = φL +φH

where, Fourier-transforming the field φ

φ(x) =

∫
dD−1p

2ω(2π)D−1

[
a(~p)ei(~p ·~x−ωt) + a†(~p)e−i(~p ·~x−ωt)

]
we have defined

φL : ω < Λ

φH : ω > Λ

so that (1.4) becomes∫
Dφ eiS(φ) =

∫
DφLDφH e

iS(φL,φH) =

∫
DφL e

iSΛ(φL)

where
eiSΛ(φL) =

∫
DφH e

iS(φL,φH).

Evaluating the path integral over energies greater than Λ we
obtain an effective action SΛ called Wilsonian effective action that
can be rewritten as

SΛ =

∫
dDx LΛ =

∫
dDx

∑
i

giOi. (1.5)

where the effective Lagrangian has been expanded in a sum, in
general infinite, over all the local operators compatibles with the
symmetries of the system.
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In practice the integral over the high energies needed to ob-
tain the effective Lagrangian is not performed explicitely. The
most general combination of operators Oi compatible with the
symmetries of the system must be written and the coupling con-
stants gi are free parameters to be determined from the experi-
mental data.

At this point no approximation has been made and the theory
LΛ is perfectly equivalent to L. However it has in general an
infinite number of free parameters to be determined from exper-
iment. By dimensional analysis however it is possible to identify
the leading terms in the expansion (1.5).

Defining [x] the dimension (in energy) of a given quantity x, Dimension
it is easy to see that [S] = 1, [dDx] = −D and [L] = D. As
a consequence each term in the expansion (1.5) has the same
dimension [giOi] = D. If di is the dimension of the operator
Oi ([Oi] = di) then the dimension of the coupling constant must
be [gi] = D− di. As the effective field theory is defined by the
scale Λ, and gi is an energy to the power D−di, it is possible to
rewrite gi as

gi = λiΛ
D−di =

λi
Λdi−D

where λi is dimensionless quantity expected to be O(1) as Λ is
the typical scale of the system.

Then
LΛ =

∑
i

λi
Λdi−D

Oi

and (1.5) becomes:

SΛ =

∫
dDx LΛ =

∫
dDx

∑
i

λi
Λdi−D

Oi.

Studying a process at the energy E it is possible to estimate
the magnitude of each term in the expansion∫

dDx Oi ∼ E
di−D

so that the i-th term will be approximately

λi

(
E

Λ

)di−D
.

If E � Λ, and di −D > 0 the magnitude of the i-th term will
be negligible; at the contrary if di −D < 0 it will be one of the
leading term of the expansion.

There are three cases:
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relevant coupling di < D, the magnitude of this term grows
if the energy E decreases.

marginal coupling di = D, the magnitude of this term is in-
dependent from the value of the energy E.

irrelevant coupling di > D, the magnitude of this term falls
if the energy E decreases.

To describe a system at an energy scale E� Λ, we can approx-
imate the expansion (1.5) keeping only the relevant and marginal
couplings. Irrelevant couplings will provide higher order correc-
tion needed in precision measurements.

There are two ways to determine the values of the coupling matching conditions
constants gi:

1. Compute them from the full theory constraining that the
effective theory and the full theory give the same results in
a certain number of processes.

2. Evaluate them from experiment.

1.3.2 Relativistic Effects
The general prescriptions described in the previous section

can be applied to the QCD Lagrangian to obtain the non relativis-
tic QCD. The original QCD Lagrangian with the heavy quark is

LQCD = Llight +Ψ(iγ
µDµ −mQ)Ψ (1.6)

where Llight is the Lagrangian that describes gluon and light
quarks and the mass parameter mQ can be identified with M.
Now we want to obtain an effective Lagrangian using a cutoff
Mv � Λ � M. In the resulting theory the effects at energy
scales higher than Λ will be reproduced by local interactions.
For example a virtual state that includes a gluon with relativistic
momentum of order M is off its mass-shell by an amount of
order M. Thus, by the uncertainty principle, has a lifetime of
order 1/M and can propagate only over distances of order 1/M
which is point-like compared to 1/(Mv).

Moreover in this theory the heavy quarks are not relativistic
and will therefore better described by two two-components Pauli
fields ψ and χ rather than by a Dirac field. In the Dirac repre-
sentation of gamma matrices:

Ψ =

(
ψ

χ

)
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To remove off diagonal terms that couples ψ from χ a unitary
transformation is needed that diagonalizes the Lagrangian at the
desired order. Such trasformation is known as Wouthuysen-Tani
transformation and at leading order is

Ψ→ exp−i~γ · ~D/2mQΨ

so that the heavy quark term in the Lagrangian (1.6) can be ap-
proximated by

(
ψ χ

)†(−mQ + iD0 + ~D2/2mQ 0

0 mQ + iD0 − ~D2/2mQ

)(
ψ

χ

)
where if ~D scales like Mv, the neglected terms scale at least like
Mv4. To apply a Λ cutoff to Llight is more difficult because it
would require to separate high energy modes from low energy
modes in gluon and light quarks fields. Luckily it is not required
as the effective field theory prescription is to write the more gen-
eral Lagrangian compatible with the symmetries of the studied
system.

1.3.3 Symmetries
The fields described by NRQCD are the heavy quark and an-

tiquark fields ψ and χ, the SU(3) gauge field Aµ and the Dirac
fields of the light quarks. The symmetries of NRQCD are:

SU(3) gauge symmetry the gluon field enters into the effective
Lagrangian only through the gauge-covariant derivatives
D0 and ~D and the QCD field strengths ~E and ~B.

rotational symmetry being a non relativistic description it
breaks the Lorentz symmetry keeping only its rotational
subgroup.

charge conjugation and parity the charge conjugation trans-
formations of the heavy quark and antiquark fields are:

ψ→ i(χ†σ2)
t, χ→ −i(ψ†σ2)

t

and their parity transformations are:

ψ(t,~r)→ ψ(t,−~r), χ(t,~r)→ −χ(t,−~r)

heavy-quark phase symmetry it guarantees the separate con-
servation of quarks and antiquarks. Its action on the fields
is:

ψ→ eiαψ, χ→ eiβχ
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1.3.4 Effective field theory
The most general Lagrangian consistent with the symmetries

outlined above is:

LNRQCD = Llight +ψ
†

(
iD0 +

~D2

2M

)
ψ+ χ†

(
iD0 −

~D2

2M

)
χ+ δL

(1.7)
The desired level of accuracy is specified by the order in v

with which the quarkonium energy levels must be reproduced.
By setting δL = 0, the Lagrangian (1.7) can be used to calculate
the energy levels up to errors of order Mv4. In this approxima-
tion radial and orbital-angular-momentum energy splittings are
reproduced (i. e. between Υ (1S) and Υ (2S) and between Υ (1S)
and χb(1P)), which are of order Mv2 but not spin splittings (i. e.
between ηb and Υ (1S)) which scale like Mv4.

To increase the precision leaving errors of orderMv6, δL must
be set to:

δL =
c1
8M3

ψ†(~D2)2ψ+
c2
8M2

ψ†(~D ·g~E− g~E · ~D)ψ+

+
c3
8M2

ψ†(i~D× g~E− g~E× i~D) ·~σψ+
c4
2M

ψ†(g~B ·~σ)ψ+

+ charge coniugate terms

which breaks the spin symmetry. A redefinition of the fields ψ
and χ has been used to eliminate all occurrences of D0 in δL
except in the combination [D0, ~D] = ig~E. Due to these redef-
initions of the fields, NRQCD will not agree with QCD at the
level of Green’s functions but only for predictions on on-shell
physical quantities.

1.3.5 Velocity scaling rules
The relative importance of the terms in NRQCD is not only

expressed in negative powers of Λ as in the general case but,
being a non-relativistic approximation, also the powers of vmust
be taken into account. In this case simple dimensional analysis
is not sufficient to deduce the scaling relations of the various
terms of the NRQCD Lagrangian but the knowledge of basic
qualitative features of quarkonium is also required.

The scaling of ψ can be derived knowing that the expectation Heavy quark fields
value of the number operator

∫
d3xψ†ψ in a quarkonium state

|H〉 is close to one: 〈
H

∣∣∣∣ ∫d3xψ†ψ ∣∣∣∣H〉 ≈ 1
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with the quarkonium state normalized to 1
(
〈H |H〉 = 1

)
. Know-

ing that the quarkonium state is localized within a region 1/(Mv)3,
it can be concluded that ψ scales like (Mv)3/2. The same stands
for χ.

The scaling rule of the gauge-covariant derivative can be de- Gauge-covariant
derivativeduced knowing that the expectation value of the kinetic energy

term of the NRQCD Hamiltonian scales like Mv2:〈
H

∣∣∣∣∣
∫
d3xψ†

(
~D2

2M

)
ψ

∣∣∣∣∣H
〉
≈Mv2

so that ~D must scale like Mv; from the field equations for ψ:(
iD0 −

~D2

2M

)
ψ = 0

follows then immediately that D0 scales like Mv2.
These and the other scaling rules derived in [22] are summa-

rized in table 1.3

Table 1.3.: Estimates of the magnitudes of NRQCD operators for ma-
trix elements between heavy-quarkonium states.

Operator Estimate

ψ (Mv)3/2

χ (Mv)3/2

D0 (acting on ψ or χ) Mv2

~D Mv

g~E M2v3

g~B M2v4

gA0 (in Coulomb gauge) Mv2

g~A (in Coulomb gauge) Mv3

1.3.6 Coulomb gauge
The Coulomb gauge is defined by ~∇ · ~A = 02. This is the nat-

ural gauge to describe the quarkonium as it is a physical gauge
(i. e. it does not contain negative norm states) and avoid delayed
effects present in the covariant gauges but not needed in a non

2 in this section the usual notation for electromagnetic fields will be used for
cromo-electric (~E) and cromo-magnetic (~B) fields and Aµ will indicate the
SU(3) color gauge fields
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relativistic theory. In this gauge A0 does not propagate and dy-
namical gluons are created and destroyed by the vector potential
~A. In this gauge the Lagrangian (1.7) can be reorganized in an
expansion in powers of v. Rescaling the space-time coordinates,
and all the fields by their scaling factors3 the powers of v can be
made explicit. The terms O(1) after that rescaling are:

L0 = Llight + ψ†

(
i∂0 − gA0 +

~∇2

2M

)
ψ + χ†

(
i∂0 − gA0 −

~∇2

2M

)
χ,

(1.8)
and finally the terms O(v):

L1 = −
1

M
ψ†(ig~A · ~∇)ψ +

c4
2M

ψ†(~∇× g~A) ·~σψ

+ charge conjugate terms,
(1.9)

the terms O(v2):

L2 = −
1

2M
ψ†(g~A)2ψ +

c1
8M3

ψ†(~∇2)2ψ

+
c2
8M2

ψ†(−~∇2gA0)ψ −
c3
4M2

ψ†(~∇gA0)× ~∇ ·~σψ

+
c4
2M

ψ†(ig~A× g~A) ·~σψ + charge conjugate terms.
(1.10)

1.3.7 Fock state expansion
Quarkonium state can represented, as a first approximation,

as a QQ bound state, a color singlet as represented in the CEM.
However in NRQCD the color singlet is only the main term of a
Fock structure. There is a non null probability that quarkonium
contains additional gluons or pairs of light quark-antiquark. To
estimate the probability of the quarkonium state to be in one of
these states the velocity scaling rules can be applied [24].

The terms in (1.8) do not couple the heavy quarks fields with
the gauge field. The first terms which do so are in (1.9).

The term ψ†(ig~A · ~∇)ψ produces an electric transition (E1) from∣∣∣QQ〉 to
∣∣∣QQγ〉with angular momentum quantum numbers which

3 The transformations are:

r→ r · (Mv) t→ t · (Mv2)

ψ→ ψ · (Mv)−3/2 χ→ χ · (Mv)−3/2

A0 → A0/(Mv
3/2) ~A→ ~A/(Mv3/2)
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satisfy the selection rules ∆L = ±1 and ∆S = 0. Its probability is
of order v2

The term ψ†(~∇× g~A) ·~σψ produces a magnetic transition (M1)
from

∣∣∣QQ〉 to
∣∣∣QQγ〉 with angular momentum quantum num-

bers which satisfy the selection rules ∆L = 0 and ∆S = ±1. Its
probability is of order v4

All the other states of the Fock space can be reached by a se-
quence of electric and magnetic transitions and their probability
can be computed accordingly. Both electric and magnetic transi-
tions change the color of a color singlet QQ pair to a color octet.

The quarkonium state can thus be expanded in the Fock space:∣∣2S+1LJ〉 = O(1)
∣∣∣2S+1L[1]J 〉 +

+ O(v)
∣∣∣2S+1(L± 1)[8]J ′ 〉 + (E1)

+ O(v2)
∣∣∣2(S±1)+1L[8]J ′ 〉 + (M1)

+ . . . .

(1.11)

1.3.8 Production factorization
In NRQCD the factorization between the short scale of the pro-

duction and the long scale of the transition from the QQ pair to
the quarkonium is achieved quite naturally. The details of QQ
production, having an energy scale of order M, are parameter-
ized in the coupling constants of the NRQCD operators, while
the transition to quarkonium is described by the NRQCD inter-
actions.

To describe the creation of a quarkonium state, local four-
fields operators must be added to the Lagrangian (1.7):

δL
4-fermions =

∑
i

dij

m2Q
(ψ†Kiχ)(χ

†Kjψ)

The factors Ki, Kj are products of a spin and a color matrix
and may also contain polynomials in the spatial gauge-covariant
derivate ~D. The operators in δL

4-fermions annihilate a QQ pair
in a color and angular momentum state specified by Kj and
create a QQ pair at the same space-time point in a state speci-
fied byKi. The probability of a QQ pair with quantum numbers
given by Kn to evolve into a certain quarkonium state with quan-
tum numbers given by KH is:〈

OH[n]
〉
=
〈
0
∣∣∣χ†KHψPHψ†Knχ ∣∣∣ 0〉
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where PH projects onto states that in the asymptotic future con-
tain the quarkonium state H plus soft partons S whose total en-
ergy is less than the ultraviolet cutoff Λ:

PH =
∑
S

|H+ S〉 〈H+ S| .

The production cross section of a quarkonium H can thus be
expressed as:

σ(H+X) =
∑
n

σ̂(QQ[n] +X)
〈
OH[n]

〉
. (1.12)

σ̂(QQ[n]+X) may be calculated perturbatively, while terms
〈
OH[n]

〉
are believed to be process independent and can be determined
from phenomenology or calculated in lattice simulations. More-
over the long distance matrix elements can be related by spin
symmetry (which is broken only with effects of order v2), for
example〈

OΥ(nS)[3P
[8]
J ]
〉
= (2J+ 1)

〈
OΥ(nS)[3P

[8]
0 ]
〉

〈
OχbJ [3S

[8]
1 ]
〉
= (2J+ 1)

〈
Oχb0 [3S

[8]
1 ]
〉

〈
OχbJ [3P

[1]
J ]
〉
= (2J+ 1)

〈
Oχb0 [3P

[1]
0 ]
〉

.

(1.13)

Besides the matrix elements of color singlet terms are related
to the radial part of the wave function of potential models calcu-
lated in the origin and its derivatives (|R(0)| and |R ′(0)|):〈

OΥ[3S
[1]
1 ]
〉
=
Nc

2π
|R(0)|2

(
1+O(v2)

)
〈
OχbJ [3P

[1]
J ]
〉
=
3Nc

2π
(2J+ 1)|R ′(0)|2

(
1+O(v2)

) (1.14)

where Nc is a color factor.
The expansion (1.12) is a double expansion:

• in αs, as σ(QQ[n] +X) is calculated perturbatively,

• in v, as from the velocity scaling rules of the fields of
NRQCD and of the Fock states allow to deduce the scal-
ing rule of

〈
OH[n]

〉
.

In practical calculations some uncertainties arise: in hadropro-
duction the short distance cross sections must be convoluted
with parton distribution functions. In addition the matrix el-
ements are often poorly determined from phenomenology or
lattice measurements and the large uncertainties on the heavy
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quark masses (∼ 8% for mc and ∼ 2.4% for mb) propagates to
uncertainties on quarkonium rates which are proportional to a
large power of the mass.

Despite NRQCD had many successes, for example it predicts
accurately the J/ψ production yield observed at CDF, there still
remain a number of discrepancies. For example according to this
framework Υ and J/ψ should be produced almost fully trans-
versely polarized (Jz = ±1) with respect to their own momen-
tum direction (helicity frame) at high pT as they are produced
mainly by gluon fragmentation they should conserve the gluon
transverse polarization. Such polarization however as not been
observed.

1.4 the χb states

Figure 1.4.: Invariant mass obtained in CMS experiment with con-
verted photons at

√
s = 8 TeV and L ≈ 20 fb−1. The

three radial excitations are clearly visible.

The observed P-waves of Bottomonium are the 1P, the 2P and,
the recently discovered 3P. 1P and 2P states were first observed
at Columbia University in 1983 and 1992 respectively, while the
3P state was first observed by ATLAS at LHC in December 2011

[30]. Tables 1.4 and 1.5 summarize the main properties of these
particles.

Each radial excitation is a triplet with total angular momen-
tum J = 0, 1, 2. The χb0 states has a very low branching ratio to
Υγ so, radiative decays are mainly used to observe χb1 and χb2.
mainly observed.
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Table 1.4.: χb states quantum numbers, n = 1, 2, 3.

Resonance IG JPC

Υ(1S) 0− 1−−

χb0(nP) 0+ 0++

χb1(nP) 0+ 1++

χb2(nP) 0+ 2++

Table 1.5.: Masses, branching ratios and Q-values of χb states from
PDG. Masses are evaluated from the photon energy in a
radiative decay so a double error is present: on the masses
of the parent particle and on the photon energy.

Particle Mass [MeV] BR(χb → Υ(1S) + γ) ∆m(χb,Υ) [MeV]

χb0(1P) 9859.44± 0.42± 0.31 (1.76± 0.35)% 399.1
χb1(1P) 9892.78± 0.26± 0.31 (33.9± 2.2)% 432.5
χb2(1P) 9912.21± 0.26± 0.31 (19.1± 1.2)% 451.9

χb0(2P) 10232.5± 0.4± 0.5 (9± 6) · 10−3% 772.5
χb1(2P) 10255.46± 0.22± 0.5 (9.2± 0.8)% 795.2
χb2(2P) 10268.65± 0.22± 0.5 (7.0± 0.7)% 808.4

χb(3P) 10539± 4± 8 Unknown 899

Studying χ production can give important insights to under-
stand QCD: production of 3PJ states gives substantial feed-down
contribution to the prompt production of 3S1 states through elec-
tromagnetic decay; taking into account this effect may help to
solve the disagreement between NRQCD and data concerning
J/ψ and Υ polarization at hadronic colliders at high pT. More-
over determining the cross section ratios between different χ
states is an invaluable tool to understand the production mech-
anism as CEM, CSM and NRQCD give different predictions for
these values and to constrain the relative magnitude of long dis-
tance matrix elements of NRQCD.

1.5 production cross section ratio of
χb2 over χb1

Ratios of cross sections are important observables as many un-
certainties cancel out, both theoretical (i. e. αs, mQ, |R(0)| and
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|R ′(0)|, . . . ) and experimental (i. e. total luminosity, many con-
tributions to efficiencies, . . . ). The ratio σ(χb2)/σ(χb1) has not
been previously measured while σ(χc2)/σ(χc1) has been mea-
sured by CDF [14], CMS [18] and LHCb [19]. The results of
these three measurements are summarized in figure 1.6

1.5.1 Theoretical predictions
The color evaporation model predicts the ratio to be always CEM and CSM

5/3 based on spin counting in all orders of αs [28]. The pre-
diction for the color singlet model can be deduced by the one
of NRQCD neglecting color-octet matrix elements. If color octet
terms will not be needed to explain experimental results, then
CSM will be corroborated.

With the short distance differential cross sections evaluated at NRQCD LO
leading order (LO) in αs, NRQCD predicts the χc production
cross sections to scale as 1/pT 6 in the color singlet channels and
scale as 1/pT 4 in the color octet channel. Thus the color octet
contribution would dominate at large pT predicting from (1.13)
the ratio σχc2/σχc1 to be 5/3, as one would obtain from spin
counting. All three measurements disagree with these predic-
tions.

The authors of [28] study how the pT dependence changes NRQCD NLO(αs)
LO(v)taking into account also next-to-leading order (NLO) in αs. Con-

sidering NLO in αs and LO in v only two matrix elements are
involved: the color singlet term

〈
OχJ [3P

[1]
J ]
〉

and the color octet〈
OχJ [3S

[8]
1 ]
〉

. They found out that the color singlet channel

scales like 1/pT 4 for high pT in contrast to 1/pT 6 at LO. In the
high pT region this term seems negligible at LO, but at NLO it
is comparable to the color octet channel. They found also that
the 3P[1]1 channel decreases slower than the 3P[1]2 and this can
justify why the production of χb1 exceeds the one of χb2 at high
pT which CEM does not predict.

To evaluate the importance of including also the color octet
term, and use NRQCD instead of simple CSM, they define

r =

〈
Oχ0 [3S

[8]
1 ]
〉

〈
Oχ0 [3P

[1]
J ]
〉
/m2c

∣∣∣
MS, µΛ =mc

so that

σ(χc2)/σ(χc1) =
5

3

rdσ̂(3S
[8]
1 ) + dσ̂(3P

[1]
2 )

rdσ̂(3S
[8]
1 ) + dσ̂(3P

[1]
1 )

.
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By fitting data from [14] they obtained r ≈ 0.27± 0.06. The color
octet contribution seems thus not negligible.

Authors of [27] instead search a solution to the disagreement NRQCD LO(αs)
NLO(v)between data and NRQCD at LO studying NLO in v but keep-

ing short distance cross sections at LO in αs. The Fock state
expansion (1.11) of the χc then reads

|χcJ〉 =
〈
OχcJ [3P

[1]
J ]
〉 ∣∣∣3P[1]J 〉 +

〈
OχcJ [3S

[8]
1 ]
〉 ∣∣∣3S[8]1 〉

+
〈
OχcJ [1P

[8]
1 ]
〉 ∣∣∣1P[8]1 〉 +

∑
J ′

〈
OχcJ [3P

[8]
J ′ ]
〉 ∣∣∣3P[8]J ′ 〉

+ . . . .
(1.15)

where the first two terms are O(v) and the next two are O(v2).
Using spin symmetry (1.13) and the relation with the radial part
of the wave function (1.14) they reduce the number of free pa-
rameters to be determined from data. Then they performed a
fit on CDF χc production data [13] and on the measurements of
σ(χc2)/σ(χc1) [14, 18, 19] to extract the missing long distance
matrix elements. The result of the fit along with the pT depen-
dence of the various short distance cross sections are reported in
figure 1.5.

Figure 1.5.: Contributions to the χc production from different states.
Dotted line is the color singlet contribution. Dashed line

is a contribution from the octet
∣∣∣3P[8]J 〉 and

∣∣∣1P[8]1 〉 states.

Dot-dashed line is color-octet
∣∣∣3S[8]1 〉 state contribution.

Solid line is a sum over all contributions. Experimental
points are taken from CDF results [13].
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Having constrained the χc matrix elements they argue that the
corresponding matrix elements for χb can be found assuming:

1. the relative contribution from different Fock states simi-
lar from bottomonium to charmonium mesons and not de-
pending on the radial excitation number:〈

Oχc [3P
[8]
J ]
〉

〈
Oχc [3P

[1]
J ]
〉 =

〈
Oχb(nP)[3P

[8]
J ]
〉

〈
Oχb(nP)[3P

[1]
J ]
〉

2. from the dimensional analysis
〈
OH[3P

[1]
J ]
〉
∼M2 ·

〈
OH[3S

[8]
1 ]
〉

so that 〈
Oχc [3S

[8]
1 ]
〉

〈
Oχc [3P

[1]
J ]
〉 =

M2
χb

M2
χc

〈
Oχb [3S

[8]
1 ]
〉

〈
Oχb [3P

[1]
J ]
〉 .

The picture of bottomonium production is then complete as
the short distance cross sections are the same of charmonium.
In figure 1.6 the three measurements of σ(χc2)/σ(χc1), the fit
and the prediction of σ(χb2)/σ(χb1) are summarized.

Figure 1.6.: Transverse momentum distributions of the σ(χ2)/σ(χ1).
Solid and dashed lines stand for charmonium and bot-
tomonium mesons. The dot-dashed line corresponds to
the rescaled bottomonium ratio: σb2/σb1(Mχc/MχbpT).
As it is seen, it almost matches the charmonium curve.
The experimental results for charmonium from LHCb [19]
are shown with dots, from CDF [14] with rectangles, and
from CMS [18] with triangles.
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2 T H E C M S E X P E R I M E N T AT L H C

The present chapter gives a short description of the Large
Hadron Collider (LHC) and focuses on the Compact Muon Solenoid
(CMS) experiment.

2.1 the large hadron collider
The Large Hadron Collider (LHC) [5, 7, 8] is the world’s largest

and highest energy particle accelerator ever built. Proposed and
realized by the European Organization for Nuclear Research
(CERN), it was design to collide protons, as well as lead ions,
at an unprecedented energy and rate, in order to address some
of the most fundamental questions of physics.

2.1.1 LHC design and performances
The LHC lies in the already existent 26.7 km long LEP tunnel,

situated at a depth of about 100 m underground at the boundary
between Switzerland and France. The main design characteris-
tics are listed in table 2.1

Table 2.1.: LHC design parameters for p-p and Pb-Pb collisions.

Parameter p - p Pb - Pb

Circumference [km] 26.659
Beam radius at interaction point 15

Dipole peak field [T] 8.3
Design center of mass energy [TeV] 14 1148

Design Luminosity [cm−2s−1] 1034 2 · 1027

Luminosity lifetime [h] 10 4.2
Number of particles per bunch 1.1 · 1011 ∼ 8 · 107

Number of bunches 2808 608

Bunch length [mm] 53 75

Time between collisions [ns] 24.95 124.75 · 103

Bunch crossing rate [MHz] 40.08 0.008

24
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Figure 2.1.: A schematic picture of the LHC layout

Since collisions occur between particles of the same charge,
the tunnel contains two adjacent and parallel beam pipes, where
proton (or ion) beams travel in opposite directions and intersect
in four points, where the main experimental halls are built and
detectors are placed (see figure 2.1).

Some 1232 dipole magnets keep the beams on their circular Magnets
path, while additional 392 quadrupole magnets are used to keep
the beams focused, in order to maximize the chances of interac-
tion in the four intersection points, where the two beams cross.
In total, over 1600 superconducting magnets are installed. Ap-
proximately 96 tonnes of liquid helium is needed to keep the su-
perconducting magnets at their operational temperature of 1.9
K. The field in the magnets increase from 0.53 T to 8.3 T while
the protons are accelerated from 450 GeV to 7 TeV.

Before being injected into the main accelerator, the protons are Accelerating steps
prepared by a series of systems that successively increase their
energy (see figure 2.2). The first system is the linear particle ac-
celerator (LINAC 2) generating 50 MeV protons, which feeds the
Proton Synchrotron Booster (PSB). There the protons are accel-
erated to 1.4 GeV and injected into the Proton Synchrotron (PS),
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Figure 2.2.: CERN’s accelerator complex

where they are accelerated to 26 GeV. Finally the Super Proton
Synchrotron (SPS) is used to further increase their energy up to
450 GeV before they are at last injected into the main ring. Here
the proton bunches are accumulated, accelerated (over a period
of 20 minutes) to their peak energy, and finally circulated while
collisions occur at the four intersection points (IP).

Two of the main experiments, ATLAS and CMS, are designed Luminosity
for a high luminosity regime, in order to catch the rare events
of their physics programs. For this reason the beam intensity,
together with the beam energy, is a crucial parameter for the
LHC. Assuming a Gaussian beam shape, the luminosity at LHC
can be written in terms of machine parameters as:

L =
Nb ·nb · frev ·γ
4π · εn ·β∗

F

where:

Nb is the number of particles per bunch,

nb is the number of bunches per beam,

frev is the revolution frequency,

γ is the Lorentz factor,

εn is the normalized transverse beam emittance,

β∗ is the optical Beta function at the collision points,

F is the geometric luminosity reduction factor due to crossing
angle at the intersection points.
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2.1.2 The LHC experiments
The Large Hadron Collider hosts six different experiments;

each experiment has a different composition and geometry of
the subdetectors so that it is more specialized in a particular
area of the research in particle physics.

(a) ALICE (b) ATLAS

(c) CMS (d) LHCb

Figure 2.3.: LHC’s four main experiments

ALICE (A Large Ion Collider Experiment) is a detector op- ALICE
timized for PbPb collisions, in particular for the study of the
properties of matter at high temperature and high energy den-
sity generated by such collisions (Quark Gluon Plasma).

ATLAS (A Toroidal Lhc ApparatuS) and CMS (Compact Muon ATLAS & CMS
Solenoid) are two general-purpose, high-luminosity detectors;
they are built with a cylindrical geometry around the beamline.
Even if theoretically "general-purpose" detectors these two have
been designed with the discovery of new physics in the TeV scale,
thus their subdetectors are optimized for the reconstruction of
high energy objects with great efficiency and accuracy. These
two detectors will be able to measure masses of new particles
produced by collisions up to 3-4 TeV. While similar in their pur-
poses, the design of the two detectors differs significantly, since
different solutions were chosen for the configuration of the mag-
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netic field. ATLAS uses a toroidal field produced by three sets
of air-core toroids complemented by a small solenoid in the in-
ner region, while CMS uses a solenoidal field generated by the
world’s largest superconducting solenoid.

LHCb is specialized in studies regarding the physics of heavy LHCb
quarks and heavy mesons with a particular attention to the b
quark and its mesons.

TOTEM (TOTal Elastic and diffractive cross section Measure- TOTEM & LHCf
ment) and LHCf (“f” stands for forward) are forward detectors
of CMS and ATLAS repectively, they are placed ∼ 100 m from
the interaction points of the main experiments to study diffrac-
tive physics happening in the very forward region of the colli-
sion. These detectors were to be put far from the interaction
point so that the products of such very forward (i.e. small angle
with respect to the beamline) inelastic or elastic collisions may
exit the beampipe.

2.2 cms
CMS [9] is one of the four main experiments at LHC. Its pri-

mary goals are the study of the electroweak symmetry break-
ing mechanism linked to the Higgs mechanism, the search for
physics Beyond the Standard Model (BSM) and the precision
measurements of already known physics processes. In order to
fulfill these goals, excellent lepton reconstruction and particle
identification are required. A particular magnetic field config-
uration is necessary to provide a large bending power and to
have thus good resolution in measuring charge particles of high
momentum.

2.2.1 General overview coordinate system and kinematic vari-
ables

The central feature of the Compact Muon Solenoid (CMS) ap- Overview
paratus is a superconducting solenoid of 6 m internal diameter,
providing a field of 3.8 T. Within the field volume are a sili-
con pixel and strip tracker, a crystal electromagnetic calorime-
ter (ECAL) and a brass/scintillator hadron calorimeter (HCAL).
Muons are measured in gas-ionization detectors embedded in
the steel return yoke. Extensive forward calorimetry comple-
ments the coverage provided by the barrel and endcap detectors.

The overall structure of CMS consists of several cylindrical
layers coaxial to the beam axis (the barrel layers), closed at both



2.2 cms 29

ends by detector disks orthogonal to the beam direction (the
endcaps), to ensure optimal hermeticity. The CMS apparatus
has an overall length of 22 m, a diameter of 15 m, and weighs
14 000 tonnes. A schematic view of the CMS detector is shown
in Figure 2.4.

Figure 2.4.: A tree dimensional view of the CMS detector

CMS uses a right-handed coordinate system, with the origin Coordinate system
at the nominal interaction point, the x axis pointing to the center
of the LHC, the y axis pointing up (perpendicular to the LHC
plane), and the z axis along the anticlockwise-beam direction.
The polar angle ϑ is measured from the positive z axis and the
azimuthal angle φ is measured in the x-y plane (transverse plain)
from the positive x axis.

For a particle carrying quadrimomentum (E,px,py,pz), the Kinematic variables
momentum vector ~p can be divided in two components: the
longitudinal momentum pz and the transverse momentum pT =√
p2x + p

2
y. This decomposition is sensible in hadron colliders

where the energy of the colliding partons is unknown. A good
fraction of the proton energy is carried by the proton remnants
which are scattered at small angles and, remaining in the beam
pipe, are not detected. The speed of the interaction point is thus
unknown, for this reason it is useful to use variables with good
transformation properties under Lorentz boosts as the pT , which
is invariable, and the rapidity defined by

y =
1

2
ln
E+ pz
E− pz
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which transforms with a simple additive law. For ultra-relativistic
particles (E ∼ |~p|) the rapidity can be approximated by the pseu-
dorapidity

η = − ln
(

tan
ϑ

2

)
which is often referred to at the place of ϑ.

Figure 2.5.: Section and side view of the CMS detector
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2.2.2 Sub-systems
Tracking system

The Tracker is the CMS innermost sub-detector and the clos-
est to the interaction point. Its purpose is to reconstruct high-pT
charged tracks with high efficiency and momentum resolution,
to measure their impact parameter and to reconstruct primary
and secondary vertices. It extends in the region of |η| < 2.5,
r < 120 cm, |z| < 270 cm and it is completely based on semi-
conductor detectors made of silicon, that cover a total surface of
210 m2.

Figure 2.6.: Schematic representation of the tracking system

The pixel detector [17] provides high-resolution three-dimensional Pixel Detector
measurement, that is used for charged track reconstruction. It
consists of three barrel layers at r = 4.4 cm, 7.3 cm, 10.2 cm
and 53 cm long in z and 2 endcap disks at |z| = 34.5 cm and
46.5 cm, with 6 cm < r < 15 cm. In order to get a good vertex
resolution high granularity is required: about 66 million pixels
100 µm× 150 µm wide allow a resolution of about 10 µm in the
transverse plane and 20 µm along z. This excellent resolution
allows the measurement of track impact parameters, the identi-
fication of b-jets and τ-jets and the reconstruction of vertices in
three dimensions.

The microstrip detector is divided in two main regions. The Microstrip Detector
inner part consists of four barrel layers and nine forward disks.
The full tracker consists of about 15 000microstrip detectors, cov-
ering a radial region between 20 and 120 cmand the pseudora-
pidity region |η| < 2.5. It provides a spatial resolution of about
50 µm in the transverse plane and 500 µm along z.
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Figure 2.7.: Schematic illustration of the pixel detector

Electromagnetic Calorimeter
The electromagnetic calorimeter [16] consists of 75 848 lead

tungstate (PbWO4) crystals which provide coverage in pseudo-
rapidity |η| < 1.479 in a barrel region (EB) and 1.479 < |η| < 3.0
in two endcap regions (EE). A preshower detector consisting of
two planes of silicon sensors interleaved with a total of 3X0 of
lead is located in front of the endcap.

Its goal is the identification and measurement of the energy of
electrons and photons. It has an energy resolution of better than
0.5% for unconverted photons with transverse energies above
100 GeV and 3% or better for electrons. Lead tungstate is a trans-
parent material characterized by a high density (8.28 g/cm3), a
short radiation length (X0 = 0.89 cm) and a small Molière radius
(2.2 cm). These features allow a very compact shape and a fine
granularity, necessary because of the high particle density pro-
duced at the LHC. Moreover, these crystals have a trapezoidal
shape and they are characterized by a very short scintillation de-
cay time, which permits to collect about 80% of the light within
25 ns, so that they can be used at the crossing rate of 40 MHz.

Hadron Calorimeter
The Hadron Calorimeter (HCAL) surrounds ECAL and its de-

sign is strongly influenced by the choice of the magnet parame-
ters and by the fact that most of it is placed inside the magnet
coil. This detector plays an essential role in the identification and
measurement of hadrons by estimating the energy and the direc-
tion of jets. It is also used for neutrino detection by measuring
the missing transverse energy of the event. For this reason, one
of the main design requirements is a high hermeticity. In partic-
ular, the HCAL angular coverage must include the very forward
region, since the identification of forward jets is very important
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Figure 2.8.: Schematic view of the electromagnetic calorimeter

for the rejection of many backgrounds and the evidence of BSM
signatures.

The HCAL is a sampling calorimeter, that meaning it finds par-
ticles position, energy and arrival time using alternating layers
of “absorber” and “scintillator” materials. In particular, brass
was chosen as absorber material, thanks to its non magnetic be-
havior and its quite short interaction length (λI ∼ 151 mm). To
maximize the amount of absorber before the magnet, the space
devoted to the active medium is minimized. The active part is
made of scintillator tiles coupled with wavelength shifting fibers
and clear fibers carrying the light to the readout system.

The Hadronic Calorimeter can be divided in four parts, that
permit a good segmentation, a moderate energy resolution and
a full angular coverage. The barrel hadronic calorimeter (HB)
surrounds the electromagnetic calorimeter and covers the cen-
tral pseudorapidity region up to |η| = 1.3. The endcap regions
are covered up to |η| = 3 by the two endcap hadron calorimeters
(HE). The HB and HE are located inside the solenoid magnet. To
satisfy the hermeticity requirements, forward calorimeters are
placed outside the magnet yoke, 11 mfar from the interaction
point, extending the pseudorapidity coverage up to |η| = 5. Fi-
nally, an array of scintillators located outside the magnet, which
is referred to as the outer hadronic calorimeter (HO), is used to
improve the central shower containment.

The superconducting magnet
The CMS magnet [3] is a 13 m long superconducting solenoid.

It is able to generate a uniform magnetic field of 4 T in the inner
region, storing about 2.5 GJ of energy. It operates at a temper-
ature of 4 K, ensured by a sophisticated helium cooling system.
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Figure 2.9.: Schematic view of the hadronic calorimeter

At such temperatures, the flat NiTb cable becomes superconduct-
ing, allowing a 20 kA current to flow without appreciable loss.

The whole magnet is contained in a enormous vacuum cylin-
der, which isolates it from the external environment. Outside,
an iron structure composed by five barrel layers and three disks
for each endcap constitutes the iron yoke, needed to guide the
return magnetic field, which would get lost otherwise, causing
interferences. The CMS magnet provides a huge bending power,
allowing a precise measurement of the transverse momentum
of charged particles inside the solenoid, operated by the inner
tracking system. A further and independent pT measurement
outside the solenoid is possible thanks to the iron yoke, which
surrounds the muon chambers.

Figure 2.10.: The CMS magnet and the generated magnetic field
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Muon system
Because muons can penetrate several meters of iron without

being stopped, they are detected by muon chambers, placed in
the outermost part of the experiment. The muon detection sys-
tem [15] is therefore set outside the magnetic coil and it has mul-
tiple tasks: triggering on muons, identifying them and assisting
the tracker in measuring their momentum. The minimum value
of the muon transverse momentum required to reach the sys-
tem is about five GeV. Matching muons to tracks measured in
the silicon tracker results in a transverse momentum resolution
between 1 and 5%, for pT values up to 1 TeV

Muons are measured in the pseudorapidity range |η| < 2.4,
with detection planes made using three technologies: drift tubes
(DT, |η| < 1.2), cathode strip chambers (CSC, 0.9 < |η| < 2.4) and
resistive plate chambers (RPC, |η| > 1.2). The detector can thus
be divided in three regions, referred to as barrel (|η| < 0.9), over-
lap (0.9 < |η| < 1.2) and endcap (|η| > 1.2). The reason for these
different technologies lies in the different particle rates and occu-
pancies, both higher in the endcaps, and in the intensity of the
stray magnetic field, which is lower in the barrel.

Figure 2.11.: Schematic view of the Muon system

In the barrel the track density and the residual magnetic field Drift tubes
are low, here are installed four layers of drift tubes. The chamber
segmentation follows that of the iron yoke, consisting of five
wheels along the z axis, each one divided into twelve azimuthal
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sectors. Each chamber has a resolution of about 100 µm in the
transverse plane and 1 mrad in φ.

In the endcaps where there is a hight particle rate and a large Cathode strip
chambersresidual magnetic field between the plates of the yoke, are placed

four disks (stations) of cathode strip chambers. The rings are
formed by 18 or 36 trapezoidal chambers, which are stacked
with a small overlap in φ. These chambers have a spatial reso-
lution of about 200 m (100 m for the chambers belonging to the
first station) and 10 mrad in r−φ.

Redundancy is obtained with a system of resistive plate cham- Resistive plate
chambersbers, that are installed in both the barrel and the endcaps. They

have limited spatial resolution, but fast response and excellent
time resolution of few ns, providing unambiguous bunch cross-
ing identification. these detectors operate in avalanche mode,
thus allowing them to sustain higher rates. This mode is ob-
tained with a lower electric field, thus the gas multiplication is
reduced and an improved electronic amplification is required.
In the barrel the RPC chambers follow the segmentation of DT
chambers. A total of six layers of RPCs are present. In the
endcaps the chambers are trapezoidal distributed on four disks.
They are also used to complement DTs and CSCs in the measure-
ment of pT .

The robustness of the spectrometer is also guaranteed by the
different sensitivity of DT, RPC and CSC to the background: the
request of correlation between consecutive layers is thus partic-
ularly effective against background hits affecting only a single
layer. Thanks to the fast response they provide, all the muon de-
tectors are also used within the first level of the trigger system.

2.2.3 Trigger
The huge amount of data produced due to the high interaction

rate produced at LHC cannot be sustained by any storage system
presently available. Given the typical size of a raw event (1 MB),
only a rate of ∼ 100 Hz can be stored for offline analysis, when
the collisions rate is in fact 40 MHz. A huge reduction factor is
thus necessary.

The event rate is mainly composed of protons interactions
with particles of low transverse momentum. A good triggering
system should have a large rejection of the less interesting events
and maintain at the same time a high efficiency on the (poten-
tial) interesting ones. This characteristic is achieved at CMS in
two steps: a Level 1 Trigger (L1) and a High Level Trigger (HLT).
The rate reduction capability is designed to be a factor of 107 for
the combined L1 and HLT.
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The Level 1 Trigger
The Level 1 Trigger consists of custom-designed, largely pro-

grammable electronics: it reduces the rate of selected events
down to 100 kHz for the high luminosity runs. The full data
are stored in pipelines of processing elements, while waiting for
the trigger decision. The maximum latency allowed is 3.2 µs: if
the L1 accepts the event, the data are moved to be processed
by the High Level Trigger. The high bunch crossing rate does
not permit the full readout of the detector, mainly because of
the slowness of the tracker algorithms: only the calorimetric and
muons information are employed. The Calorimeter Trigger iden-
tifies the best four candidates of each of the following classes:
electrons and photons, central jets, forward jets and so on iden-
tified from the shape of the deposited energy. The information
of these objects is passed to the Global Trigger, together with
the measured missing ET . The Muon trigger is performed sep-
arately for each muon detector. The information is then merged
and the best four muon candidates are transferred to the Global
Trigger. The Global Trigger takes the decision to reject an event
or to accept the event for further evaluation by the HLT. The de-
cision is based on algorithm calculations and on the readiness
of the sub-detectors and the DAQ. The L1 Trigger electronics is
housed partly on the detectors, partly in the underground con-
trol room located at a distance of approximately 20m from the
CMS detector site.

Figure 2.12.: Scheme of the L1 trigger
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The High Level Trigger (HLT)
HLT is a software system (implemented in a filter farm of

about one thousand commercial processors) which reduces the
output rate down to around 100 Hz. The idea of the HLT trig-
ger software is the regional reconstruction on demand: only ob-
jects in the useful regions are reconstructed and uninteresting
events are rejected as soon as possible. The HLT has access to
the high-resolution data in pipelined memories in the front-end
electronics as well as the information from the silicon tracker: it
can therefore perform complex calculations. The L1 and HLT
schema lead to the development of three "virtual trigger" levels:
at the first level only the full information of the muon system
and of the calorimeters is used, in the second level the informa-
tion of the tracker pixels is added and in the third and final level
the full event information is available.

The Data Acquisition (DAQ)
The CMS Data Acquisition (DAQ) has the task to transport

the data from about 650 data sources at the detector side, to the
filter units for processing of complete events. Each data source
provides event fragments of about 2 kB. The central DAQ runs
online software on about 3000 PC used for buffering and pro-
cessing of event data. The detector is read out through a builder
network with a bandwidth of 100 GB/s by the so called Front-
End Drivers (FED). The FEDs are located in the underground
counting room ∼ 70 m from the detector. Complete events are
fed to the event filter systems at a rate of maximal 100 kHz. The
large rate to the filter systems stems from the design choice of
CMS to build the full event already after the first level trigger
instead of building partial events as in traditional multi level
trigger systems. This requires the read-out, assembly and for-
warding of the full event data at the nominal level one trigger
rate. The total rate of data produced by the online trigger sys-
tem is ∼ 230 MB/s. These data need to be stored for further
processing and analysis.

2.2.4 Software framework
CMS computing and storage requirements is, with present

technology, impossible to fulfil in only one place, for both tech-
nical and funding reasons. Therefore, the CMS computing en-
vironment has been constructed as a distributed system of com-
puting services and resources that interact and cooperate with
each other, as Grid services. The set of services and computing
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resources are used for storage, connectivity resources, data pro-
cessing, data archiving, Monte Carlo event generation and all
kinds of computing-related activities.

Grid computing aims to provide reliable and secure access to
widely scattered resources for authorized users located virtually
anywhere in the world. When a user submits a job, the Grid
software controls where the job gets sent for processing.

A 3-level Tier structure of computing resources has been or-
ganized to handle the vast storage and computational require-
ments of the CMS experiment. A CMS physicist may use Grid
tools to submit a CMS analysis job to a "Workload Management
System" (WMS), and does not need to worry about the details
such as location of data and available computing power, which
are handled transparently.

The CMS Grid system is part of the larger Worldwide LHC
Computing Grid Project (WLCG). The mission of the WLHC
Computing Project (WLCG) is to build and maintain a data stor-
age and analysis infrastructure for the entire high energy physics
community that will use the LHC. The WLCG project aims to col-
laborate and interoperate with other major Grid development
projects and production environments around the world. As
such, WLCG has developed relationships with regional comput-
ing centres as T1 centres. These centres exist in a number of
different countries in Europe, North America and Asia.

As stated just above, the computing centres available to CMS
through the Grid system around the world are distributed and
configured in a "tier" architecture. Each of the three tier levels
provides different resources and services:

• Tier-0, the first tier in the CMS model, for which there is
only one site, CERN. Among its tasks there are: accept,
archive and distribute RAW data collected from the CMS
Online Data Acquisition and Trigger System (TriDAS), per-
form Prompt calibration in order to get the calibration con-
stants needed to run the reconstruction, perform prompt
first pass reconstruction which writes the RECO and Anal-
ysis Object Data (AOD) extraction, transfer Prompt recon-
structed RECO and AOD datasets to Tier-1.

• Tier-1: there is a set of seven Tier-1 (T1) sites, which are
large centers in CMS collaborating countries (large national
labs o research institutes, e.g. INFN, and FNAL) Among
its tasks there are: archive and redistribute to Tier-2 RAW,
RECO, AOD and MC samples,

• Tier-2: this is a more numerous set of smaller centres, but
with substantial CPU resources, providing capacity for user
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analysis, calibration studies, and Monte Carlo production.
Tier-2 provide limited disk space, and no tape archiving.
T2 centers rely upon T1s for access to large datasets and
for secure storage of the new data (i.e. Montecarlo simula-
tions) produced at the T2.

CMS Data is arranged into a hierarchy of data tiers. Each
physics event is written into each data tier, where the tiers each
contain different levels of information about the event. The three
main data tiers used in CMS are:

• RAW: full event information from the Tier-0 (i.e. from
CERN), containing ’raw’ detector information (detector el-
ement hits, detailed trigger information, various electronic
info). Not used directly for analysis.

• RECO ("RECOnstructed data"): the output from first-pass
processing by the Tier-0. This layer contains reconstructed
physics objects and part of RAW info, thus it’s still very
detailed and may slow down analysis when CMS has col-
lected a substantial data sample.

The event reconstruction step from RAW to RECO is struc-
tured in several hierarchical steps:

1. Detector-specific processing: Starting from detector
data unpacking and decoding, detector calibration con-
stants are applied and cluster or hit objects are recon-
structed.

2. Tracking: Hits in the silicon and muon detectors are
used to reconstruct global tracks. Pattern recognition
in the tracker is the most CPU-intensive task.

3. Vertexing: Reconstructs primary and secondary ver-
tex candidates.

4. Particle identification: Produces the objects most asso-
ciated with physics analyses. Using a wide variety of
sophisticated algorithms, standard physics object can-
didates are created (electrons, photons, muons, miss-
ing transverse energy and jets; heavy-quarks, tau de-
cay).

The normal completion of the reconstruction task will re-
sult in a full set of these reconstructed objects usable in
physics analyses. Reconstruction is expensive in terms of
CPU and is dominated by tracking.

• AOD ("Analysis Object Data"): this is a "distilled" version
of the RECO event information, and is expected to be used
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for most analyses. AOD provides a compromise between
event size and complexity of the available information to
optimize flexibility and speed for analyses, most of the raw
information of the detector are lost at this point.

The overall collection of software used in CMS is referred to as
CMSSW, it is built around a Framework, an Event Data Model
(EDM), and Services needed by the simulation, calibration and
alignment, and reconstruction modules that process event data
so that analysis can be performed. The primary goal of the
Framework and EDM is to facilitate the development and de-
ployment of reconstruction and analysis software.

The CMSSW event processing model consists of one executable,
called cmsRun, and many plug-in modules which are managed
by the Framework. All the code needed in the event process-
ing (calibration, reconstruction algorithms, etc.) is contained in
the modules. The same executable is used for both detector and
Monte Carlo data.

The CMSSW executable, cmsRun, is configured at run time by
the user’s job-specific configuration file. This file tells cmsRun

• which data to use

• which modules to execute

• which parameter settings to use for each module

• what is the order or the executions of modules, called path

• how the events are filtered within each path and how the
paths are connected to the output files

The CMS Event Data Model (EDM) is centered around the
concept of an Event. An Event is a C++ object container for
all RAW and reconstructed data related to a particular collision.
During processing, data are passed from one module to the next
via the Event, and are accessed only through the Event. All
objects in the Event may be individually or collectively stored in
ROOT files, and are thus directly browsable in ROOT.

Given the large data volumes involved and the large size of the
CMS collaboration, a fully distributed computing model is used
for data reconstruction and analysis. The system is based upon
Grid middleware, with the common Grid services at centres de-
fined and managed through the Worldwide LHC Computing
Grid (WLCG) project, a collaboration between LHC experiments,
computing centres, and middleware providers.
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Figure 2.13.: Schematic representation of the CMS Grid storage tier
structure and the associated data workflow



3 A N A LY S I S

3.1 introduction
Understanding quarkonium production in hadronic collisions

is a serious challenge to QCD. Specifically, because of their feed-
down contribution, understanding the production mechanism of
the p-wave states χc (χb) is important when studying the polar-
ization of promptly produced J/ψ (Υ). In that respect, measure-
ments of the ratios of the prompt production cross sections of
the quarkonium states are particularly interesting as they are
very little affected by theoretical and experimental uncertain-
ties. Nevertheless significant deviations from the value of the
χc2/χc1 production ratio expected from simple spin counting or
color-singlet models were reported in the past by the CDF Col-
laboration [2]. A measurement of χc2/χc1 production ratio was
performed by the CMS experiment in proton-proton collisions
on about 4.6 fb−1 of integrated luminosity collected at

√
s=7

TeV [10]. Within the uncertainties we observed a decrease of
the χc2/χc1 ratio at increasing values of pT (J/ψ) as reported by
CDF [2] and LHCb [1] Collaborations, and comparisons with
theoretical models are not conclusive.

The high luminosity delivered by the LHC in 2012 is a unique
opportunity to extend the measurement of this ratio to the cor-
responding bottomonium states. In this analysis we present our
measurement of the ratio

R = σ(pp→ χb2 +X)/σ(pp→ χb1 +X)

in four different bins of pT of the Υ(1S).
The strategy of the analysis is the following: The χb1 and χb2

states are reconstructed by searching for their radiative decay
into the Υ(1S) plus photon final state, with the Υ(1S) decaying
into two muons. The ratio of the production cross sections is
then obtained as

R =
Nχb2
Nχb1

·
ε1
ε2

·
B(χb1(1P)→ Υ(1S)γ)
B(χb2(1P)→ Υ(1S)γ)

(3.1)

where Nχb1,2 is the number of signal candidates of each type
obtained from the dimuon-photon spectrum, ε1/ε2 is the effi-
ciency correction obtained from a full detector simulation and
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the branching ratios for radiative decays B(χb1,2(1P)→ Υ(1S)γ)
are taken from the recent updates supplied by the PDG [6].

Because of the small difference between the masses of the χb1
and of the χb2, 19.4 MeV, a calorimetric measurement of the
photon energy would not provide sufficient resolution to disen-
tangle the two states. Since the ET of the detected photon in the
laboratory mostly lies between 500 MeV and 2 GeV, a measure-
ment of the momentum of the electron-positron pair, originating
from a conversion of the photon in the beam pipe or in the in-
ner layers of the tracker detector, results in a very accurate mea-
surement of the photon energy. The drawback is the reduced
yield due to the small probability for a conversion to occur in
the innermost part of the tracker and, more importantly, the low
reconstruction efficiency. To reduce the uncertainty due to the fi-
nite resolution of the reconstructed dimuon pair, event-by-event
constraints on the dimuon-photon system have been developed.
Background subtracted yields of χb1 and χb2 are then extracted
simultaneously from an unbinned maximum likelihood fit to the
invariant mass of the dimuon-photon system. Finally, a correc-
tion is applied to take into account the different acceptance of
the detector for the two states.

3.2 data and monte carlo samples
The whole amount of proton-proton collisions collected in the

2012 a
√
s= 8 TeV was used for this analysis. This sample corre-

sponds to an integrated luminosity of 20.7± 0.9fb−1.
The analysis relies on Stream A data, which in 2012 contained

HLT trigger paths specifically designed for Υ selection. The trig-
ger path we considered is HLT_Dimuon7_Upsilon_v*. This trigger
requires that the minimum pT of the Υ candidate is 7 GeV. Other
requirements imposed at HLT include the request that dimuon
candidates have an invariant mass between 8.5 GeV and 11.5
GeV, a distance of closest approach to the beam axis less than 5

mm and a χ2 probability from the kinematical fit to a common
vertex larger than 0.5%. Details about the datasets we used can
be found in Table 3.1.

In order to determine the efficiency corrections, a Monte Carlo
simulation sample of 40 millions of χb1 and 40 millions of χb2
was used. Similarly to the measurement of the χc2/χc1 ratio,
since the photon reconstruction efficiency is very low, of the or-
der of 0.1% for photons with ET= 1 GeV, the use of a full Monte
Carlo is not viable because of the excessive amount of CPU time
that would be required. The sample was instead produced with
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Data samples Run range

/MuOnia/Run2012A-13Jul2012-v1/AOD 190 456− 193 621
/MuOnia/Run2012A-recover-06Aug2012-v1/AOD 190 782− 190 949
/MuOnia/Run2012B-13Jul2012-v1/AOD 193 833− 196 531
/MuOnia/Run2012C-24Aug2012-v1/AOD 198 022− 198 913
/MuOnia/Run2012C-PromptReco-v2/AOD 198 934− 203 746
/MuOnia/Run2012D-PromptReco-v1/AOD 203 768− 208 686

Table 3.1.: CMS data samples used for the analysis.

a pythia particle gun configured in such a way that the χb1 and
χb2 particles are generated with the same pT spectrum, chosen
to be the one measured by the CMS experiment for the Υ(2S),
limited to the range between 5 GeV and 50 GeV. The χb1 and
χb2 were generated in the rapidity range |y| <2.0. Both χb’s were
forced to decay to Υ(1S) + γ. Only events in which a conversion
occurred were retained and processed through the full CMS de-
tector simulation, trigger selection and reconstruction. As ex-
plained in [4], in simulating the χb decay pythia does not take
into account the correct polarization of the Υ, which is made to
decay isotropically in its rest frame. We applied a reweighting
procedure to assign the correct angular distribution to Υ decays.
Further details on the particle gun simulation are given in Sec-
tion 3.4.

3.3 event reconstruction and selection
The candidate χb is the result of the muon selection, of the

Υ(1S) selection, of the photon selection and of the requirements
imposed on the relation between the photon candidate and the
Υ(1S) candidate. Table 3.2 presents a summary of the cuts. In
the following we describe the process in detail.

3.3.1 Υ(1S) reconstruction
The Υ(1S) selection starts with the standard CMS muon recon-

struction. Muons are selected using POG-recommended quality
criteria. Muon pairs are then considered and further cuts are
applied.

Muon reconstruction
The muon reconstruction chain starts with the local recon- Standalone muon
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struction: hits in the muon system (drift tubes, cathode strip
chambers, resistive plate chambers) are reconstructed from elec-
tronic signal, hits are then matched to form “segments”. In the
offline (i.e. after the data has been stored permanently) recon-
struction these segments are used to generate seeds consisting
of position and direction vectors which are fitted along with the
other hits using a Kalman filter technique. The result of this fit
is referred to as standalone muon as no information as been used
from the inner tracking system.

For each standalone muon track a matching with the tracks re- Global muon
constructed in inner tracking system (tracker tracks) is then per-
formed and the best-matching one is selected. A new fit based
on the Kalman filter technique is performed using the hits of
both the inner tracking and the muon system and its result is
referred to as global muon. These object are optimized for muons
with hight pT, as the one used in Higgs and SUSY analyses, how-
ever low-pT muons (with pT of the order of several GeV) may not
leave enough hits in the muon stations for a standalone muon to
be reconstructed.

For this reason a complementary approach as been developed: Tracker muon
each tracker track is considered a potential muon candidate this
hypothesis is checked by looking for a compatible signature in
the calorimeters and the muon system. Tracker tracks identified
as muons by this method are referred to as tracker muons. The cri-
teria for tagging a track as tracker muon are loose (p > 2.5GeV,
pT > 0.5GeV and a match with at least one segment in the muon
stations) so additional quality cuts are required. To avoid dou-
ble counting each track used to form a global muon cannot be
tagged as tracker muon.

For the present analysis both global and tracker muons are
used but in both cases the momentum is reconstruct from the
tracker track as for low momentum muons the multiple scatter-
ing and showers traversing the magnet and the iron yoke can
corrupt the measurement of the muon trajectory.

Muon selection
For this analysis we use Global or Tracker muons with the

PAG recommended Soft Muons selection. Muon identification is
achieved requiring the tracker track to be matched with at least
one muon segment, in any station, both in x and y coordinates
(TMOneStationTight). To ensure an accurate pT measurement
and suppress decays in flight, the number of tracker layers with
at least one hit must be greater than five, at least one hit being
in the pixel detector. The reduced χ2 of the track fit must be less
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than 1.8. Loose cuts are applied to the transverse and longitudi-
nal impact parameter, dxy < 3 cm and dz < 30 cm respectively,
to suppress decays in flight and cosmic muons.

Dimuon selection
Each pair of opposite sign muons is taken into account and is

considered a Υ candidate if:

• its invariant mass is between 8.5 GeV and 11 GeV,

• the absolute value of its rapidity is less than 1.25,

• the χ2 probability of a fit where the two muon tracks are
constrained to a common vertex is more than 1%.

To select muon pairs originating from the decay of the Υ(1S),
we ask the dimuon mass to be within 2.5 σ from the Υ(1S) pole
mass where, following reference [12], the resolution σ is param-
eterized as a function of yΥ, the rapidity of the Υ, as:

σ/GeV = 0.058+ 0.047 · (|yΥ|− 0.22).

3.3.2 Photon reconstruction
Photon conversions are characterized by an electron-positron

pair originating from the photon conversion vertex. Because of
the energy spectrum of the photon from the radiative decay, the
electron and positron tracks are low-pT tracks. In addition the
tracks can be very asymmetric, with one of the two leptons car-
rying most of the photon energy. For these reasons the majority
of the leptons are fully stopped before reaching the calorime-
ter or bent in spirals inside the tracking detector. An algorithm
which uses only tracker information is then needed to recon-
struct them.

To efficiently reconstruct low-pT and displaced tracks as those
coming from a typical photon conversion, the algorithm relies
on the capability of iterative tracking as described in [26].

For this analysis only standard high quality conversions recon- Selection
structed from general tracks are used. The high quality require-
ment consists of the follwing:

• the two tracks must have at least two and four hits in the
tracker,

• the reduced χ2 of their track fit must be less than 10,
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• the χ2 probability of the kinematic fit to a common vertex
must be more than 5 · 10−4,

• the two tracks should be almost parallel with a small an-
gular separation ∆φ < 0.2 and ∆(cot ϑ) < 0.1.

Because of the magnetic field generated by the solenoid, the two
tracks are expected to open in the transverse plane with two
possible orientations: seagull (electrons bent apart) and cowboys
(electrons bent together). Two additional cuts are then applied
to select seagull events: −0.25 cm < dm < 1 cm where dm =
dO1−O2 − (R1 − R2) is the distance of minimum approach and
d0 ·q > 0.

For the purpose of this analysis an additional selection is ap-
plied requiring the vertex of the conversion to be at least 1.5 cm
away from the beam direction in order to suppress Dalitz decays
of the π0.

3.3.3 χb reconstruction
For each event the selected Υ(1S) candidates and the con-

verted photons are paired to form χb candidates. The dz of the
photon with respect to the dimuon vertex, i.e. the distance in
the direction parallel to the z axis between the dimuon vertex
and the extrapolation of the photon direction to the beamline, is
required to be less than 1 mm and the per-event mass difference,
or Q-value Q = mµµγ −mµµ, must be less than 2 GeV.

To reduce the event-by-event fluctuations due to the finite res-
olution on the reconstructed mass of the dimuon, two strategies
have been developed and applied to build the spectra of the χb
candidates:

• a kinematic fit of the muons and electron-positron tracks,

• the use of the per-event mass difference Q.

As the first method provides a better signal over background
ratio, the reference results are computed from a fit to the spec-
trum of the µµγ invariant mass after the kinematic fit, referred
to as m(χb) in the following. Alternatively distributions of the
Q-value are used for consistency checks.

Kinematic fit
The kinematic fit is performed imposing the following con-

straints:
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• the masses of muons and electrons are bound to the phys-
ical masses;

• the mass of the dimuon is constrained to the nominal mass
of Υ(1S);

• the mass of the electron-positron pair is constrained to
zero;

• the two electrons are supposed to have a common vertex;

• the two muons and the photon are constrained to have a
common vertex.

χb candidates are retained if the χ2 probability of the kine-
matic fit is more than 0.02.

3.4 signal model
The reconstructedm(χb) shape is parameterized using the par-

ticle gun simulation described in Section 3.2. The intrinsic width
of the χb states is not measured, but we assume it to be negligible
in comparison to the resolution of the detector, which is of the
order of 5 MeV. This assumption is supported by the fact that,
as we will see in the following, the lineshape of the detector
response fits well the experimental distribution. The observed
signal shape is therefore dominated by the detector resolution.

The invariant mass resolution, dominated by the energy reso-
lution of the converted photon, is sufficient to separate the χb1
and χb2 peaks. The resolution function presents a low-energy
tail, typical of processes in which radiative losses play a role,
as in the case of electrons from converted photons loosing en-
ergy in the tracking detector. Since the tail of the χb2 falls under
the χb1 peak, it is important to obtain a reliable parameteriza-
tion of the resolution function in order to achieve an unbiased
estimation of the ratio Nχb2/Nχb1 . To empirically model pro-
cesses in which radiative losses are involved, the Crystal Ball
function [29] is frequently used. It is composed of a Gaussian
core, described by the two parameters m and σCB, and a power-
law low energy tail described by other two parameters, α, the
transition point between Gaussian and exponential, and n, the
index of the power-law tail. The Crystal Ball function allows to
describe the Gaussian component representing the detector reso-
lution, as well as the component corresponding to un-recovered
energy losses by means of the power-law tail. Simulations show
that, in the signal shape, a small high-energy tail is also present.
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Table 3.2.: Summary of the selection requirements used to select χb
candidates.

Muon and dimuon selection

track fit χ2/ndof <1.8
hits in Pixel > 1

hits in Tracker > 5

Fiducial cylinder 3 cm (r) × 30 cm (z)
µµ vertex fit probability >0.01

Muon id TMuonOneStationTight

mµµ 8.5 - 11 GeV
|η(µµ)| < 1.25

Photon conversion selection

Electron track hits > 4, 2

Electron track fit χ2/ndof < 10

Distance of approach -0.25cm < dm < 1cm
Signed impact parameter q ·d0 > 0

e+e− vertex fit probability > 5× 10−4
Radius of conversion Rconv > 1.5 cm
∆φ(e+e−) < 0.2
∆
(
cot ϑ(e+e−)

)
< 0.1

|η(γ)| < 1.0

χb selection

mµµγ −mµµ < 2 GeV
dz(Υγ) < 1 mm
|mµµ −mΥ| < 2.5 σ
Probability of kinematic fit > 0.02
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Therefore we choose to parametrize our resolution function with
a double-sided Crystal Ball function, which is composed of both
a high-energy and low-energy power-law tail, with independent
exponents and transition points, but with a common Gaussian
core. As the α and n parameters are strongly correlated, we
choose to fix n for both tails when fitting the Monte Carlo.

Previous studies [4] show that, in general, the resolution de-
grades with increasing transverse momentum of the Υ. This
effect has to be attributed to the fact that, for higher pT (Υ), the
photon also is expected to have a higher transverse momentum
and therefore is measured with less precision, because of the
constant behavior of ∆p/p for charged particles of small energy
measured in the Tracker. The present analysis, however, does
not seem to highlight this feature, within statistical errors, in the
pT (Υ) range under examination.

The results of the fits are shown in Figures 3.2 and 3.3 and the
parameters summarized in Table 3.3. The χb1 mass we extract is
about 4 MeV lower that the PDG value. This effect reproduces
well the data, and it is attributed to the incomplete recovery of
bremsstrahlung radiation emitted by the two electrons originat-
ing from the conversion candidate.

The variation of the fit parameters with Υ transverse momen-
tum is represented in Figure 3.1.

Table 3.3.: Summary of the parameters from the fit to the simulated invariant mass distribution of the
µµγ system after the kinematic refit in the four pT bins of the Υ(1S). Fit parameters are
described in the text. The errors are the statistical uncertainty due to the finite size of the
simulated samples.

pT (Υ) [GeV] m [GeV] σ [GeV] α1 α2 χ2/ndof

χb1

7 - 11 9.8892 ± 0.0003 0.0057 ± 0.0003 0.73 ± 0.04 1.54 ± 0.09 0.62

11 - 16 9.8885 ± 0.0003 0.0061 ± 0.0003 0.77 ± 0.04 1.8 ± 0.1 0.42

16 - 20 9.8885 ± 0.0005 0.0058 ± 0.0005 0.71 ± 0.06 1.9 ± 0.2 0.27

20 - 40 9.8875 ± 0.0003 0.0055 ± 0.0003 0.67 ± 0.04 1.9 ± 0.1 0.54

χb2

7 - 11 9.9094 ± 0.0004 0.0063 ± 0.0005 0.83 ± 0.06 1.5 ± 0.1 0.5
11 - 16 9.9093 ± 0.0004 0.0059 ± 0.0004 0.72 ± 0.05 1.56 ± 0.09 0.4
16 - 20 9.9075 ± 0.0005 0.0068 ± 0.0004 0.89 ± 0.07 2.2 ± 0.2 0.33

20 - 40 9.9087 ± 0.0004 0.0058 ± 0.0004 0.61 ± 0.04 1.9 ± 0.2 0.74
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Figure 3.2.: Invariant mass distribution of the µµγ system after the kinematic refit in the two
lowest pT bins of the Υ(1S) in simulated events. Signal is fitted the double-sided
Crystal Ball described in the text. Signal shapes for χb1 and χb2 are shown sepa-
rately.
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Figure 3.3.: Invariant mass distribution of the µµγ system after the kinematic refit in the two
highest pT bins of the Υ(1S) in simulated events. Signal is fitted with the double-
sided Crystal Ball described in the text. Signal shapes for χb1 and χb2 are shown
separately.
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3.5 signal extraction
We extract the ratio of χb2 and χb1 events, Nχb2/Nχb1 , from

the data by performing an unbinned maximum-likelihood fit to
the m(χb) spectrum in ranges of Υ transverse momentum.

The probability density function for the signal is derived from
the simulation as described above, and is modeled by the super-
position of two double-sided Crystal Ball functions for the χb1
and χb2. When fitting the data, we fix all the parameters of the
Crystal Ball function to the values that best fit the simulation
and use a maximum-likelihood approach to derive Nχb2/Nχb1

and the total number of χb candidates.
The background is modeled by a probability distribution func-

tion defined as

Fbkg(m) = (m−m0)
λ · eν(m−m0),

where m is the µµγ invariant mass obtained after the kine-
matical fit, m0, λ and ν are free parameters. The final likelihood
function reads:

P(m) = Nsig [f1 · F1(m) + (1− f1) · F2(m)] +Nbkg · Fbkg(m),

where Nsig is the total number of χb1 and χb2 candidates, f1
is the fraction of χb1, Nbkg is the total number of background
events, F1 and F2 are the double-sided Crystal-Ball functions that
describe the detector response for the two resonances. Invari-
ant mass distributions in the data together with the fitted signal
shapes are shown in Figure 3.4. Table 3.4 shows the results of
the fit, as well as the total number of χb1 and χb2.

Table 3.4.: Summary of the parameters from the fit to the data invariant mass distribution
of the µµγ system after the kinematic refit in the four pT bins of the Υ(1S). Fit
parameters are described in the text. The errors are the statistical uncertainty due
to the finite size of the samples.

pT (Υ) [GeV] 7 - 11 11 - 16 16 - 20 20 - 40

Nχb1 420 ± 40 660 ± 40 350 ± 30 460 ± 30

Nχb2 280 ± 40 360 ± 30 200 ± 20 320 ± 30

Nχb2/Nχb1 0.66 ± 0.11 0.549 ± 0.067 0.571 ± 0.082 0.701 ± 0.084

Nbkg 6630 ± 90 4130 ± 70 1370 ± 40 1440 ± 40

m0 [GeV] 9.52 ± 0.02 9.5 ± 0.2 9.5 ± 0.2 9.5 ± 0.2
λ 3.2 ± 0.4 1.9 ± 0.8 0.2 ± 0.6 0.4 ± 0.6

ν [GeV−1] -5.7 ± 0.8 -4 ± 1 -0.0 ± 0.5 -2 ± 2

χ2/ndof 0.93 0.91 0.71 0.78
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Figure 3.4.: Invariant mass distribution of the µµγ system after the kinematic refit in the four
pT bins of the Υ(1S) in data. The shapes of the χb1 and χb2 signals, green and red
dashed curves respectively, are parameterized with the double-sided Crystal Ball
determined using simulated events.
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Table 3.5.: Fractional systematic uncertainties on Nχb2/Nχb1 for differ-
ent ranges of Υ(1S) transverse momentum from different
sources and the total uncertainty.

pT (Υ) [GeV] 7 - 11 11 - 16 16 - 20 20 - 40

Source of uncertainty Systematic uncertainty (%)

Signal parameterization 2.8 3.5 4.7 4.1
Choice of χb pT spectrum 0.1 0.1 0.1 0.2
Statistical error on ε1/ε2 4.2 4.3 5.9 4.4

Total uncertainty 5.0 5.5 7.5 6.0

Statistical error 17.3 12.2 14.4 12.0

3.6 systematic errors
Several types of systematic uncertainties are addressed. In par-

ticular, we investigate possible effects that could influence the
measurement of the numbers of signal χb1 and χb2 from data,
the evaluation of ε1/ε2 from the simulation, and the extraction
of Nχb2/Nχb1 . In Table 3.5 the various sources of systematic un-
certainties and their contributions to the total uncertainty are
summarized. The following subsections describe how the vari-
ous contributions are evaluated.

3.6.1 Uncertainty from the mass fit and χb1 and χb2 counting
In counting the number of signal χb1 and χb2, we take into

account the fact that our signal model is extracted from a Monte
Carlo with finite statistics. Therefore the parameters of the model
are determined with a sizeable error. To estimate the impact
of this uncertainty on the measurement of Nχb2/Nχb1 , we per-
form several pseudo-experiments, in which a set of parameters is
drawn randomly using the error matrix supplied by RooFit [31].
These parameters are then used to fit the data and extract a value
of Nχb2/Nχb1 for each randomly-drawn set of parameters. The
result of the pseudo-experiments for each rapidity bin is shown
in Figure 3.5. The observed distribution of Nχb2/Nχb1 is fitted
with a Gaussian function, and the standard deviation of the
Gaussian taken as a systematic error for that rapidity bin.

The above procedure takes into account the uncertainty stem-
ming from the imperfect parameterization of the Monte Carlo
signal shape, where the Monte Carlo is assumed to perfectly re-
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Figure 3.5.: Distribution of Nχb2/Nχb1 when the parameterization of the signal is varied ran-
domly using the error matrix (see text). The distributions refer to the four pT (Υ)
bins.
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produce reality. As a further check, we use an alternative fitting
scheme with an increased number of free parameters, to take
into account:

1. possible discrepancies in the energy scale between data
and Monte Carlo;

2. possible discrepancies in the experimental resolution be-
tween data and Monte Carlo;

3. variations of the result with the choice of background model.

To address the first point, we allow the value of the mass of
the χb1 to fluctuate, while keeping the difference between the
masses of the χb1 and χb2 fixed. Similarly, to address the sec-
ond possibility, we allow the σ of the Crystal Ball function that
describes the χb1 to vary, while keeping the σ for the χb2 con-
nected to the σ of the χb1 by a scale factor. The dependency of
the result with respect to the choice of background parameteri-
zation is studied by using a third-order Chebyshev polynomial
as an alternative parameterization. Table 3.6 summarizes the re-
sults for each fitting strategy. The full set of fitted spectra can be
found in Appendix A.

Table 3.6.: Results of the fits for the alternative fitting strategies described in the text.

pT (Υ) [GeV] 7 - 11 11 - 16 16 - 20 20 - 40

Fitting strategy N2/N1

Default 0.67 ± 0.12 0.575 ± 0.071 0.570 ± 0.083 0.638 ± 0.075

Alternative signal 0.70 ± 0.12 0.489 ± 0.063 0.553 ± 0.082 0.636 ± 0.075

Alternative background 0.68 ± 0.12 0.574 ± 0.071 0.571 ± 0.083 0.636 ± 0.075

Alternative signal and
background

0.71 ± 0.12 0.491 ± 0.063 0.554 ± 0.081 0.634 ± 0.075

In no case the variation from the default fitting strategy is
statistically significant. We therefore choose not to assign a sys-
tematic uncertainty.

3.6.2 Uncertainty on the ratio of efficiencies
We investigated the sources of systematic uncertainties in the

evaluation of ε1/ε2. The statistical uncertainty on the measure-
ment of ε1/ε2 from the simulation, owing to the finite size of
the Monte Carlo sample, is taken as a systematic uncertainty, as
shown in Table 3.5.
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In the particle gun simulation, we assumed that the χb1 and
χb2 are produced with the pT spectrum of the Υ(2S). We justify
this choice in Section 3.8. In order to estimate the impact of this
choice on the estimation of ε1/ε2, we compare the value of ε1/ε2
measured from this choice of pT spectrum with a few different
hypotheses.

Possible dependencies on the determination of ε1/ε2 on the
description of the material budget in the Monte Carlo simulation
were addressed in [4] and found to be negligible.

3.6.3 Pile up
As already done in [4], we study the possible dependence of

the measurement from pile up. To do so, we divide our data in
bins with different number of primary vertices reconstructed in
the event. The results are shown in Figure 3.6. We do not observe
a statistically significant dependence of the result, therefore we
do not assign a systematic uncertainty.
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Figure 3.6.: Value of the fitted Nχb2/Nχb1 plotted as a function of the number of primary ver-
tices reconstructed in the event. The solid line represents the value from the fit on
the full sample on the full pT range.

3.6.4 Branching fractions
The measurement of the χb2 to χb1 production cross section

ratio is affected by the uncertainties on the branching fractions
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of the two states into Υ(1S) + γ. The quantity that is directly ac-
cessible in this analysis is

Nχb2
Nχb1

· ε1ε2 In order to extract R, we use
the value of B(χb1 → Υ(1S)γ)/B(χb2 → Υ(1S)γ) as derived from
the branching fractions and associated uncertainties reported in
Ref. [6].

3.7 polarization
In estimating the ratio of efficiencies ε1/ε2 we have assumed

that both the χb1 and χb2 are unpolarized. Polarization affects
the angular distribution and the transverse momentum distribu-
tion of the photon. Because the photon reconstruction efficiency
is varying rapidly as a function of photon transverse momentum,
especially in the softer region, the ratio of efficiencies can change
for different polarization scenarios. More details are explained
in [4].

In order to investigate this effect, we reweight the unpolarized
Monte Carlo distributions to reproduce the theoretical χb angu-
lar distributions [23] for different χb polarizations. We measure
the efficiency ε1/ε2 for the χb1 being unpolarized or with he-
licity mχb1 = 0,±1, in combination with the χb2 being unpolar-
ized or having helicity mχb2 = 0,±1,±2 in both the helicity and
Collins–Soper [20] frames. Tables 3.7 and 3.8 give the resulting
ε1/ε2 values for each polarization scenario in different Υ trans-
verse momentum bins for the two frames, relative to the value
of the ratio for the unpolarized case. These tables, therefore, pro-
vide the correction that should be applied to the default value of
ε1/ε2 in each polarization scenario and each range of transverse
momentum.

3.8 spectra of kinematic variables
To some extent, the ratio of efficiencies ε1/ε2 is affected by

the production pT spectra of the χb1 and of the χb2 which are
unknown. Therefore we chose to explore different models for
the χb spectra while using the data as a guide to make a reason-
able assumption, and treat residual discrepancies as systematic
uncertainties. Specifically we have studied the kinematical ob-
servables of the dimuon and of the photon for the selected χb
candidates to elucidate what are the factors that are to be taken
into account for understanding ε1/ε2 as a function of pT (Υ).
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Table 3.7.: The efficiency ratio ε1/ε2 for different polarization scenarios in which the χb1 is either un-
polarized or has helicity mχcb = 0,±1 and the χb2 is either unpolarized or has helicity
mχb2 = 0,±1,±2 in the helicity frame, relative to the unpolarized case.

pT (Υ) [GeV]
Polarization

scenario
(mχb1 , mχb2)

7 - 11 11 - 16 16 - 20 20 - 40 7 - 40

(Unpol., 0) 0.908 ± 0.010 0.901 ± 0.010 0.901 ± 0.013 0.915 ± 0.008 0.905 ± 0.005

(Unpol., ±1) 0.932 ± 0.003 0.942 ± 0.004 0.960 ± 0.006 0.954 ± 0.004 0.943 ± 0.002

(Unpol., ±2) 1.139 ± 0.009 1.130 ± 0.010 1.107 ± 0.013 1.105 ± 0.008 1.125 ± 0.005

(0, Unpol.) 0.867 ± 0.007 0.875 ± 0.007 0.903 ± 0.011 0.904 ± 0.009 0.879 ± 0.004

(0, 0) 0.787 ± 0.010 0.788 ± 0.011 0.814 ± 0.015 0.827 ± 0.011 0.795 ± 0.006

(0, ±1) 0.808 ± 0.007 0.824 ± 0.008 0.867 ± 0.011 0.863 ± 0.010 0.829 ± 0.004

(0, ±2) 0.987 ± 0.011 0.989 ± 0.012 1.000 ± 0.017 0.999 ± 0.013 0.988 ± 0.006

(±1, Unpol.) 1.068 ± 0.003 1.063 ± 0.004 1.048 ± 0.005 1.048 ± 0.005 1.061 ± 0.002

(±1, 0) 0.969 ± 0.011 0.958 ± 0.011 0.944 ± 0.015 0.958 ± 0.010 0.960 ± 0.006

(±1, ±1) 0.995 ± 0.005 1.001 ± 0.005 1.007 ± 0.008 1.000 ± 0.006 1.001 ± 0.003

(±1, ±2) 1.216 ± 0.010 1.202 ± 0.011 1.160 ± 0.015 1.158 ± 0.010 1.194 ± 0.006

Table 3.8.: The efficiency ratio ε1/ε2 for different polarization scenarios in which the χb1 is either un-
polarized or has helicity mχcb = 0,±1 and the χb2 is either unpolarized or has helicity
mχb2 = 0,±1,±2 in the Collins–Soper frame, relative to the unpolarized case.

pT (Υ) [GeV]
Polarization

scenario
(mχb1 , mχb2)

7 - 11 11 - 16 16 - 20 20 - 40 7 - 40

(Unpol., 0) 0.997 ± 0.011 1.018 ± 0.012 1.014 ± 0.017 1.035 ± 0.011 1.030 ± 0.007

(Unpol., ±1) 0.975 ± 0.005 0.997 ± 0.006 1.001 ± 0.009 1.010 ± 0.006 1.001 ± 0.003

(Unpol., ±2) 1.029 ± 0.009 0.993 ± 0.010 0.991 ± 0.014 0.974 ± 0.008 0.984 ± 0.005

(0, Unpol.) 0.980 ± 0.008 1.009 ± 0.009 1.020 ± 0.013 1.042 ± 0.012 1.020 ± 0.005

(0, 0) 0.977 ± 0.014 1.028 ± 0.015 1.035 ± 0.021 1.078 ± 0.017 1.051 ± 0.009

(0, ±1) 0.956 ± 0.009 1.007 ± 0.011 1.022 ± 0.016 1.052 ± 0.014 1.022 ± 0.006

(0, ±2) 1.009 ± 0.012 1.003 ± 0.013 1.011 ± 0.019 1.014 ± 0.015 1.004 ± 0.007

(±1, Unpol.) 1.009 ± 0.004 0.995 ± 0.004 0.990 ± 0.006 0.979 ± 0.006 0.990 ± 0.003

(±1, 0) 1.006 ± 0.012 1.013 ± 0.013 1.004 ± 0.018 1.013 ± 0.013 1.020 ± 0.007

(±1, ±1) 0.985 ± 0.006 0.993 ± 0.008 0.992 ± 0.011 0.989 ± 0.009 0.991 ± 0.004

(±1, ±2) 1.039 ± 0.010 0.989 ± 0.011 0.982 ± 0.015 0.954 ± 0.010 0.974 ± 0.006
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These studies take advantage of data and Monte Carlo com-
parisons performed with the help of a background subtraction
procedure. Three ranges of mµ+µ−γ are defined: a left side
band [9.70,9.87] GeV (LB), the signal region [9.87, 9.92] GeV
(SR) and a right side band [9.92,10.10] GeV (RB). The fraction of
background events in the signal region (fBG) is estimated from
the fit to the data. The histograms of the spectrum of the de-
sired kinematic variables in the three mass ranges are produced.
The distribution of background events (BG) is modeled by av-
eraging the distributions in the two side bands, taken with the
same weight. Background-subtracted distributions are finally
produced by subtracting, from the distributions in the signal re-
gion, the background distributions, normalized to the fraction of
background estimated in the signal region, as in the following :

SR∗i = SRi − fBG · (
∑
j

SRj) ·
BGi∑
j BGj

where SR∗i is the content of the ith bin of the background sub-
tracted distribution, and j runs over all the bins.

The particle gun Monte Carlo was produced using as χb pro-
duction pT spectrum a parameterization of the Υ(2S) production
spectrum measured by CMS [11]. The efficiency-corrected ob-
served pT spectrum of Υ(2S) has been parameterized as:

dN

dpT
∝ pT

[
1+

1

(β− 2)

p2T
< p2T >

]−β
, (3.2)

where β and < p2T > are free parameters that change for each
resonance. The values of these parameters used in this analysis
are reported in Table 3.9.

Table 3.9.: Parameters describing the pT spectra of the Υ(1S), Υ(2S)
and Υ(3S) resonances.

Resonance β < p2T > [GeV2]

Υ (1S) 3.24 ± 0.11 51.0 ± 1.2
Υ (2S) 2.84 ± 0.16 75.0 ± 4.3
Υ (3S) 3.31 ± 0.55 75.4 ± 6.2

Event reweighting was used to explore the Υ(1S) hypothesis.
The resulting distributions for the pT of the Υ(1S) and for the ET
of the photon are shown in Figures 3.7 and 3.8, for the case in
which the χb in the particle gun simulation are produced follow-
ing the measured Υ(2S) and Υ(1S) respectively. The data-Monte
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Carlo agreement for both variables is best when the Υ(2S) spec-
trum is used. This is in agreement with naive expectations, since
the Υ(2S) is the bottomonium state closest in mass to the χb (1P).
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Figure 3.7.: Comparison of Monte Carlo and data spectra when the input pT (χb) is set equal to
the parameterization of the observed Υ(2S) pT spectrum. Left: distribution of the
transverse momentum of the dimuon. Right: distribution of the transverse energy
of the photon.

We believe the event in which the χb1 and χb2 are produced
with different pT spectra is unlikely, because it would imply that
different production mechanisms are at play. To test this hypoth-
esis, we use the same procedure outlined above, but define two
signal regions, one around the peak of the χb1 and one around
the peak of the χb2. Figure 3.9 shows the comparisons of the
background-subtracted pT (χb), y(Υ), pT (Υ) and ET (γ) spectra
for the χb1 and the χb2. Since the data shows no evidence, within
statistical uncertainties, that the χb1 and χb2 are produced with
different spectra and the data and Monte Carlo agreement is
best when the two resonances are produced using the measured
Υ(2S) production spectra, we take this as our default scenario to
derive the ratio of efficiencies ε1/ε2.

3.9 results and discussion
The results of the measurement of the ratio Rp and of the ra-

tio of the χb2 to χb1 production cross sections for the kinematic
range |y(Υ)| < 1.25, |η(γ)| < 1.0 are reported in Tables 3.10 and
3.11, respectively, for different ranges of pT (Υ). The first uncer-
tainty is statistical, the second is systematic, and the third comes
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Figure 3.8.: Comparison of Monte Carlo and data spectra when the input pT (χb) is set equal to
the parameterization of the observed Υ(1S) pT spectrum. Left: distribution of the
transverse momentum of the dimuon. Right: distribution of the transverse energy
of the photon.

from the uncertainty on the branching fractions in the measure-
ment of the cross section ratio. Separate columns are dedicated
to the uncertainty derived from the extreme polarization scenar-
ios in the helicity and Collins-–Soper frames, by choosing from
Tables 3.8 and 3.7 the scenarios that give the largest variations
relative to the unpolarized case.
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Figure 3.9.: Comparison of background-subtracted pT (χb) (top left), y(Υ) (top right) pT (Υ)
(bottom left) and ET (γ) (bottom right) spectra for candidates in the χb1 and in the
χb2 signal regions.



3.9 results and discussion 67

Table 3.10.: Measurements of σ(χb2)/σ(χb1) for the given pT(Υ)
ranges derived using the branching fractions from Ref. [6],
assuming unpolarized χb production. The first uncer-
tainty is statistical, the second is systematic, and the third
from the branching fraction uncertainties. The last two
columns report the uncertainties derived from the extreme
polarization scenarios in the helicity (HX) and Collins–
Soper (CS) frames.

pT (Υ)
[GeV]

σ(χb2)/σ(χb1) HX CS

7 - 11 1.14 ± 0.20 (stat.) ± 0.06 (syst.) ± 0.10 (BR)
+0.25 +0.04

−0.24 −0.05

11 - 16 0.866 ± 0.106 (stat.) ± 0.048 (syst.) ± 0.078 (BR)
+0.175 +0.024

−0.184 −0.010

16 - 20 0.97 ± 0.14 (stat.) ± 0.07 (syst.) ± 0.09 (BR)
+0.16 +0.03

−0.18 −0.02

20 - 40 1.06 ± 0.13 (stat.) ± 0.06 (syst.) ± 0.10 (BR)
+0.17 +0.08

−0.18 −0.05

Table 3.11.: Measurements of σ(χb2)B(χb2)
σ(χb1)B(χb1)

for the given pT(Υ) ranges
derived assuming unpolarized χb production. The first
uncertainty is statistical, the second is systematic, and the
third from the branching fraction uncertainties. The last
two columns report the uncertainties derived from the
extreme polarization scenarios in the helicity (HX) and
Collins–Soper (CS) frames.

pT (Υ) [GeV] σ(χb2)B(χb2)
σ(χb1)B(χb1)

HX CS

7 - 11 0.64 ± 0.11 (stat.) ± 0.03 (syst.)
+0.14 +0.03

−0.14 −0.03

11 - 16 0.488 ± 0.060 (stat.) ± 0.027 (syst.)
+0.099 +0.013

−0.103 −0.005

16 - 20 0.55 ± 0.08 (stat.) ± 0.04 (syst.)
+0.09 +0.02

−0.10 −0.01

20 - 40 0.60 ± 0.07 (stat.) ± 0.04 (syst.)
+0.09 +0.05

−0.10 −0.03
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In this thesis is presented the measurement of the ratio

R ≡ σ(pp→ χb2 +X)B(χb2 → Υ(1S) + γ)
σ(pp→ χb1 +X)B(χb1 → Υ(1S) + γ)

as a function of the Υ transverse momentum up to pT(Υ) =
40GeV for the kinematic range |y(J/ψ)| < 1.0, |η(γ)| < 1.0 in pp
collisions at

√
s = 8TeV with a data sample corresponding to

an integrated luminosity of 20.7fb−1. The corresponding values
for the ratio of the χb2 to χb1 production cross sections have
been determined, the results are reported in tables 3.10 and 3.11

respectively and summarized in figure 3.10.
The effect of several different χb polarization scenarios on the

photon reconstruction efficiency has been investigated and cor-
rection factors provided to transport the result to any polariza-
tion scenario. This is the first measurement of the χb production
cross section ratio made in hadron collisions. These measure-
ments can provide important input to and constraints on future
theoretical calculations of quarkonium production. For example
this measure rules out the results obtained with spin counting
predicted by the Color Evaporation Model while it is in agree-
ment within the experimental errors with the prediction of [27].
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Figure A.1.: Fits to signal and background for several alternative fitting strategies 7 GeV <
pT(Υ) < 11 GeV
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Figure A.2.: Fits to signal and background for several alternative fitting strategies 11 GeV <
pT(Υ) < 16 GeV
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Figure A.3.: Fits to signal and background for several alternative fitting strategies 16 GeV <
pT(Υ) < 20 GeV
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Figure A.4.: Fits to signal and background for several alternative fitting strategies 20 GeV <
pT(Υ) < 40 GeV



B U N C E R TA I N T I E S I N E F F I C I E N C Y
C A LC U L AT I O N S W I T H W E I G H T S

For evaluating the efficiency of a selection, Monte Carlo sim-
ulations are often used. The distribution of the events in the
phase space must be assumed but, as this is crucial in determin-
ing the efficiency, if another distribution must be considered two
solutions arise: to produce another simulation starting from the
different distribution, or reweight each event of the simulation
with the ratio of the probabilities of that event to happen in that
specific a point of the phase space. In this appendix we derive
how to compute the statistical uncertainties associated to effi-
ciencies when these are evaluated from reweighted simulations.

b.1 assumptions and notation
We assume the phase space to be divided in Nbins bins. In a

simulation with N events the distribution of the generated events
in the bins (Ni) follows a multinomial distribution with probabil-
ities Ei so that, with a large sample, Ni ∼ N ·Ei . Also the
distribution of selected events in the bins (ni) follows the same
distribution but with probabilities εi so that, with a large sam-
ple, ni ∼ N · εi. As we will consider different sets of weights and
the uncertainties on the ratio of efficiencies obtained reweight-
ing the same simulation with different sets of weights, we will
denote a set of weights with a Greek letter; αi and βi will thus
be the weights associated to the i-th bin in two different sets of
weights. We will then define

Nα =

Nbins∑
i=1

Niαi and nα =

Nbins∑
i=1

niαi (B.1)

In the limit of an infinite number of bins, each bin contains at
most one generated event so that, summing only over the bins
which contain a generated event,

Nα =

N∑
i=1

αi and nα =

N∑
i=1

Aiαi (B.2)
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where Ai is the efficiency factor:

Ai =

{
1 if the event i is selected,
0 if the event i is not selected.

The efficiency without reweighting is denoted by ε = n/N and
the efficiency computed reweighting the simulation with the set
of weights α is denoted with εα = nα/Nα. Weights are assumed
to be perfectly known i.e. with zero uncertainty.

b.2 variances relevant to the problem
The covariance of a multinomial distribution is

V(Ni,Nj) = N(Eiδij − EiEj) (B.3)

similarly
V(ni,nj) = N(εiδij − εiεj) (B.4)

while, using the linearity of covariances,

V(ni,Nj) = V(ni,nj) + V(ni,Nj −nj)

as ni and Nj − nj corresponds to disjoint samples, from (B.4)
follows

V(ni,Nj −nj) = −Nεi(Ej − εj)

where Ej − εj, is the probability of the generated event to be in
the j-th bin but not be selected. Using (B.4) then follows

V(ni,Nj) = N(εiδij − εiEj). (B.5)

From the definition of Nα (B.1) follows that its variance is

V(Nα,Nα) =
Nbins∑
i=1

Nbins∑
j=1

V(Ni,Nj)αiαj

= N

Nbins∑
i=1

Nbins∑
j=1

(Eiδij − EiEj)αiαj

similarly the covariance between Nα and Nβ will be

V(Nα,Nβ) =
Nbins∑
i=1

Nbins∑
j=1

V(Ni,Nj)αiβj

= N

Nbins∑
i=1

Nbins∑
j=1

(Eiδij − EiEj)αiβj
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SubstitutingNEi byNi we can obtain an estimate of V(Nα,Nα)
and V(Nα,Nβ):

V(Nα,Nα) =
Nbins∑
i=1

Ni(αi)
2 −

1

N

(
Nbins∑
i=1

Niαi

)2

V(Nα,Nβ) =
Nbins∑
i=1

Niαiβi −
1

N

(
Nbins∑
i=1

Niαi

)(
Nbins∑
i=1

Niβi

)

and in the infinite bins limit:

V(Nα,Nα) =
N∑
i=1

(αi)
2 −

1

N

(
N∑
i=1

αi

)2

V(Nα,Nβ) =
N∑
i=1

αiβi −
1

N

(
N∑
i=1

αi

)(
N∑
i=1

βi

)
.

Similarly

V(nα,nα) =
Nbins∑
i=1

ni(αi)
2 −

1

N

(
Nbins∑
i=1

niαi

)2
=

N∑
i=1

Ai(αi)
2 −

1

N

(
N∑
i=1

Aiαi

)2

V(nα,nβ) =
Nbins∑
i=1

niαiβi −
1

N

(
Nbins∑
i=1

niαi

)(
Nbins∑
i=1

niβi

)
=

=

N∑
i=1

Aiαiβi −
1

N

(
N∑
i=1

Aiαi

)(
N∑
i=1

Aiβi

)
.

To compute V(nα,Nα) and V(nα,Nβ), starting from (B.5) we
obtain:

V(nα,Nα) =
Nbins∑
i=1

ni(αi)
2 −

1

N

(
Nbins∑
i=1

niαi

)(
Nbins∑
i=1

Niαi

)
=

=

N∑
i=1

Ai(αi)
2 −

1

N

(
N∑
i=1

Aiαi

)(
N∑
i=1

αi

)

V(nα,Nβ) =
Nbins∑
i=1

niαiβi −
1

N

(
Nbins∑
i=1

niαi

)(
Nbins∑
i=1

Niβi

)
=

=

N∑
i=1

Aiαiβi −
1

N

(
N∑
i=1

Aiαi

)(
N∑
i=1

βi

)
.
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b.3 error propagation
From error propagation it follows that the variance of a vari-

able having expression

f =

∏na
i=1 ai∏nb
k=1 bk

is

V(f, f)
f2

=

na∑
i=1

V(ai,ai)
a2i

+

nb∑
k=1

V(bk,bk)
b2k

− 2

na∑
i=1

nb∑
k=1

V(ai,bk)
aibk

+ 2

na∑
i=1

na∑
j=i+1

V(ai,aj)
aiaj

+ 2

nb∑
k=1

nb∑
l=k+1

V(bk,bl)
bkbl

. (B.6)

b.3.1 Uncertainty on efficiency
The efficiency computed reweighting the simulation is defined

as εα = nα/Nα, from (B.6) its associated error is

V(εα, εα)
ε2α

=
V(nα,nα)

n2α
+
V(Nα,Nα)

N2α
− 2

V(nα,Nα)
nαNα

Substituting the covariances with the ones obtained in section
B.2:

V(εα, εα) =
1

N2α

 N∑
i=1

Ai(αi)
2 −

1

N

(
N∑
i=1

Aiαi

)2+

+
n2α
N4α

 N∑
i=1

(αi)
2 −

1

N

(
N∑
i=1

αi

)2+ (B.7)

− 2
nα

N3α

[
N∑
i=1

Ai(αi)
2 −

1

N

(
N∑
i=1

Aiαi

)(
N∑
i=1

αi

)]
Note that in the no reweighting limit (αi = 1)

Nα → N∑N
i=1(αi)

2 =
∑N
i=1 αi → N∑N

i=1Ai(αi)
2 =
∑N
i=1Aiαi → n

the last two terms of (B.7) vanish and the first term becomes

ε(1− ε)

N

recovering the well known expression for the variance of the
binomial distribution.
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b.4 ratio of efficiencies
The ratio of two efficiencies computed reweighting the same

simulation but with different sets of weights is:

εα

εβ
=
nα

Nα
·
Nβ

nβ

its variance, from equation (B.6) is:

V
(
εα
εβ

, εαεβ

)
(
εα
εβ

)2 =
V(εα, εα)

ε2α
+
V(εβ, εβ)

ε2β
− 2

V(εα, εβ)
εαεβ

where

V(εα, εβ)
εαεβ

=
V(nα,nβ)
nαnβ

+
V(Nα,Nβ)
NαNβ

−
V(nα,Nβ)
nαNβ

−
V(nβ,Nα)
nβNα

b.5 uncertainty on ε1/ε2

In chapter 3 the ratio ε1/ε2 and its associated statistical un-
certainty are computed in different polarization scenarios with a
reweighting of the simulation. As for computing the two efficien-
cies different simulations have been used, it is assumed V(ε1, ε2)
to be zero so that

V
(
ε1
ε2

, ε1ε2

)
(
ε1
ε2

)2 =
V(ε1, ε1)
ε21

+
V(ε2, ε2)
ε22

Similarly when computing the ratio of the ratios between the
polarized and the unpolarized case: ε1,pol

ε2,pol
/
ε1,unpol
ε2,unpol

, the uncer-
tainty is computed:

V
(
ε1,pol
ε2,pol

/
ε1,unpol
ε2,unpol

, ε1,pol
ε2,pol

/
ε1,unpol
ε2,unpol

)
(
ε1,pol
ε2,pol

/
ε1,unpol
ε2,unpol

)2 =
V
(
ε1,pol
ε1,unpol

, ε1,pol
ε1,unpol

)
(
ε1,pol
ε1,unpol

)2 +
V
(
ε2,pol
ε2,unpol

, ε2,pol
ε2,unpol

)
(
ε2,pol
ε2,unpol

)2 .
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