

Search for a SM Higgs boson in the decay channel $H \rightarrow ZZ^{(*)} \rightarrow 4I$ with the CMS experiment

Cristina Botta

Universita' degli Studi di Torino Scuola di Dottorato in Scienza e Alta Tecnologia - Indirizzo in Fisica e Astrofisica XXIV ciclo

Coordinatore: Prof. G. Boffetta Tutore: Dr. N. Amapane Relatore: Dr. C. Mariotti Controrelatore: Dr. W. Murray

Ph.D. Thesis Defence - Torino, 20/12/2011

- 30 March 2010: first pp collisions at 7 TeV recorded by the LHC experiments.
- 2010 operations: 47 pb⁻¹ delivered
 - \bigcirc max $\int = 2 \, 10^{32} \, \text{cm}^{-2} \text{s}^{-1}$
 - max colliding bunches: 368
 - bunch separation: 150 ns

• 2011 operations: from March to October 5.73 fb⁻¹delivered

- max \mathcal{L} = 3.5 10³³ cm⁻²s⁻¹
- max colliding bunches: 1331
- bunch separation: 50 ns

Prelude [2]

• The Higgs boson mass: the only one yet unknown free parameter of the SM

Prove or exclude the Higgs boson existence:
a matter of the highest priority in the field of particle physics

Theoretical indications and experimental constraints, from direct and indirect searches, narrow the possible range:

Theory: m_H< ~ 800 GeV/c² to remain in the perturbative regime while considering V_LV_L scattering matrix
 Experiments:

Prelude [3]

high lepton reconstruction efficiency

excellent lepton/photon identification

excellent lepton/photon energy resolution

CMS LAYOUT:

• 3.8 T superconducting :

a robust and redundan

- a good electromagneti
- a high-quality tracker system

Higgs Physics at LHC

Higgs Production & Decay

pp collisions at LHC

• total inelastic non diffractive pp cross section at LHC @ 7 TeV = 60 mb => 6×10^9 times the Higgs production cross section

bb production cross section at LHC @ 7 TeV ~ 50 ub => 5 x 10⁶ times the Higgs production cross section

with 2011 LHC conditions, an average overlap of 10 interactions per bunch crossing [pile-up]

Higgs events: very rare events in an environment overwhelmingly dominated by QCD events:

final states with high p_T isolated leptons or photons are experimentally favored

Higgs search at CMS

m_H < 135 GeV/c² H->γγ exclusion - discovery [H->ZZ/WW/ττ/bb ~ sensitivity ZZ4l also for discovery] **140 < m_H < 180 GeV/c2 H->WW->2l2v** ZZ4l also for discovery

m_H > 180 GeV/c2 H->ZZ channels ZZ4I also for discovery

The search for the SM Higgs in the $ZZ^{(*)} \rightarrow 4I$ decay is the subject of this thesis

 $H \rightarrow ZZ^{(*)} \rightarrow 4I (I=e,\mu)$

QCD and **Z/W+light jets**. Events with electrons from jets faking leptons, and muons from decay-in-flight of light hadrons.

The Challenge

VERY CLEAN SIGNATURE: 4 isolated leptons arising from a common vertex

The analysis relies solely on the measurement of leptons:

- RECONSTRUCTION
- IDENTIFICATION
- ISOLATION
- PRIMARY VERTEX COMPATIBILITY

VERY LOW RATE:

high signal selection efficiency is MANDATORY

• For $m_H < 2m_Z$ one lepton pair at least couples to a $Z^{(*)}$

=> softest lepton: $p_t < 10 \text{ GeV/c}$ for $m_H < 140 \text{ GeV/c}^2$

High reconstruction efficiency and sufficient discrimination against hadronic jets faking leptons [mainly electrons] and against muons from decay in flight of light hadrons is expecially challenging at low p_T

The event selection is designed to preserve the highest possible signal efficiency while reducing to a negligible level the instrumental and reducible backgrounds. It is important to control with data-driven methods the contaminations from Zbb/tt/Z+lightJets. Difficulties arise from the rate of 4l backgrounds.

Physics Object : Muons

Muon Reconstruction & Identification

Global Muons Reconstruction

Stand Alone track fit of CSC/DT/RPC segments/hits Global track fit of stand alone + tracker track 1-2% up to 100 GeV/c > 6% at ~1TeV/c [better than only tracker if pt > 200 GeV/c] Efficiency: 98% plateau from 5 GeV/c

Loose Muon ID working point

Global Muon Reco + tracker track >=10 hits + SIP_{3D} < 100 (<1% prob to reconstruct a proton/kaon/pion as a muon,

no efficiency loss wrt Global Muon reco)

SIP_{3D} = **|IP_{3D}** /**σ**_{IP3D} significance of the tridimensional impact parameter **Evaluated wrt the PRIMARY VERTEX**

HIGH EFFICIENCY MANDATORY - Min $p_t = 5 \text{ GeV/c}$ NEGLIGIBLE QCD BACKGROUND with 4 muons in the final state Muons from b to be discarded at the end of the selection (to control with data-driven methods the Zbb/tt backgrounds) International Standard Stand Standard Stand Standard Stand Standar

Muon Isolation

The requirement that the energy flow in the vicinity of a muon is below a certain threshold helps discriminating muons from W/Z from muons produced as a result of QCD processes.

ECAL and HCAL contributions are affected by pile-up conditions To have a pile-up robust analysis R_{Iso} must be corrected by the average energy flow in the event [Fast-jet correction]

Muon Trigger

CMS adopts a multi-level trigger design Each step of the selection uses only part of the available data Higher trigger levels process fewer events and can use more refined algorithms

Reconstruct the position and provide a raw estimation of muon p_T Assign the bunch-crossing. DT/CSC and RPC electronics have their own trigger logic based on segment and hits comparators to find patterns.

The L1 muon is used to seed the online Stand-Alone reconstruction. L2 muons are tracks in the spectrometer. etromagnetic Calorimeter Hadron Calorimeter Hadron Suberconducting Suberconducting Suberconducting Suberconducting

The L2 muon parameters are used to indicate a ROI in the tracker where the track reconstruction is performed. If a match between a tracker track and the L2 muon is found a global fit is performed. **The L3 muons are global muon tracks.**

A trigger path is a list of reconstruction and filter modules that results in a final accept/reject

Bit Name	Lı	L2	L2 Iso	L3	L3 Iso
HLT_Mu5	$p_{\rm T} \ge_3$	$p_{\rm T} \ge 4$	N/A	$p_{\rm T} \ge 5$	N/A
	q > 3			$ d0 \leq$ 2	
HLT_IsoMu9	$p_{\rm T} \ge_7$	$p_{\rm T} \ge_7$	CaloIso≤4	$p_{\rm T} \ge 9$	PixelIso≤1
	q>3			$ d0 \leq$ 2	
HLT_DoubleMu7	$p_{\rm T} \ge 5$	$p_{\rm T} \ge 5$	N/A	$p_{\mathrm{T}} \geq_{7}$	N/A
	q > 3			$ d0 \leq 2$	

Muon Trigger [2]

Trigger efficiency wrt "offline" Global Muon (MC studies)

The HLT_Mu5 Trigger Path example:

Muon performance studies on data: **Tag And Probe Method** $\varepsilon_{\mu=} \varepsilon_{reco/(track)} * \varepsilon_{ID/reco} *$

EISO/ID * **E**trigger1leg/ISO

Fitting functions used for the Z (Jpsi) T&P are:

- Voigtian (Crystal Ball) for the resonance
- Exponential for the background

 Systematic uncertainties on the measured efficiencies are obtained comparing the results on MC with the MC Truth, and in data varying the functional forms used for the fit

 Efficiencies are measured in p_T/η/Nvtx bins for different data-taking periods [only few examples of the results will be presented]

2011 data

Lowest un-prescaled Single/Double Muon Triggers at the end of each periods

Period 1	HLT_Mu30/ HLT_	HLT_DoubleMu7	
Period 2/3/4	HLT_Mu40/ HLT_	HLT_Mu13Mu8	
Period 5	HLT_Mu40_eta2p1/HLT_	HLT_Mu17Mu8	
		Used for T&P	Used for H->4l analysis

Results with 2011 data: Reco & ID

Tag: Tight Muon matched with the trigger object Probe: tracker track

Data/mc efficiency ratios have been measured as a function of pt/eta/Nvtx for each data taking period and have been used in the H->4l analysis to correct the MC. Systematic uncertainties on the correction have been determined from the uncertainty on the efficiency measured with the T&P method.

Results with 2011 data: Trigger

Tag: Tight Muon matched with the trigger object / Probe: Global Muon Isolated [RIso< 0.15]</p>

2% data/MC discrepancies at plateau

In the H->4l analysis the inefficiency and data/MC discrepancies are suppressed since up to 4 leptons are available for the trigger. The remaining effect is covered with a systematic uncertainty

Event Selection

Preselection

- **1.** Z_1 , a good quality Z candidate [the one with mass closest to the Z nominal mass is chosen] m_{Z1}>50 GeV/c² + p_{T,1} > 20 GeV/c + p_{T,2} > 10 GeV/c + (Rel_{Iso,1} + Rel_{Iso,2}) < 0.35 + |SIP_{3D}|_{1,2} < 4
- **2.** Z_1 + at least 1 lepton
- **3.** Z_1 + at least 2 leptons of matching flavor and opposite sign
- **4.** Best 4l candidate / Z_1 , Z_2 assignments

 m_{Z_2} >12 GeV/c² + $m_{Z_1Z_2}$ >100 GeV/c² + 3/4 *l*⁺*l*⁻ combinations have m_{II} >12 GeV/c² (4e/4 μ only)

Background reduction cuts

Efficiencies

Trigger Requirements

Efficiency of trigger selection on top of the baseline selection

4μ Double Muon Trigger: HLT_Mu17_Mu8

4e Double Electron Trigger: HLT_Ele17_Ele8_CaloIdT_CaloIsoVL_TkI dVL_TrkIsoVL

 $2\mu 2e$ Or of the above triggers

Selection Performance

1. Z_1 , a good quality Z candidate [the one with mass closest to the Z nominal mass is chosen] $m_{Z_1}>50 \text{ GeV/c}^2 + p_{T,1} > 20 \text{ GeV/c} + p_{T,2} > 10 \text{ GeV/c} + (\text{Rel}_{Iso,1} + \text{Rel}_{Iso,2}) < 0.35 + |SIP_{3D}|_{1,2} < 4$

• At this stage of the selection the **single Z production dominates the event rate**

Electron energy scale corrections applied on data and mc. Residual uncertainty of 0.3/0.4 % for the electron scale in the barrel/endcap is estimated

The Z->μμ peak obtained without scale corrections. Dedicated studies estimated a scale uncertainties of 0.5%.

Selection Performance [2]

4. Best 4l candidate / Z_1 , Z_2 assignments

 $m_{Z_2}>12 \text{ GeV/c}^2 + m_{Z_1Z_2}>100 \text{ GeV/c}^2 + 3/4 l^+l^- \text{ combinations have } m_{II} > 12 \text{ GeV/c}^2 (4e/4\mu \text{ only})$

• The sample of 4l events after the preselection contains reducible background from tt and Zbb/cc and a possible contribution from the Z+lightJets instrumental background [in particular in the 4e channel]. A small contribution of WZ events with 1 fake lepton also survives.

4.71 fb⁻¹

Selection Performance [3]

Extended phase space selection

As a handful of events survives the preselection, the control of the 4l event rate can be performed completely relaxing the flavour and charge requirements on the additional pair of leptons: Z1+ 2l events "extended phase space selection"

 $\sqrt{s} = 7$ TeV L = 4.71 fb⁻¹

Data driven control of background with leptons from b provide data/mc scale factors: 1.16 +- 0.14 and 1.06 +- 0.22 for Zbb/ cc and tt backgrounds

4.71 fb⁻¹

Selection Performance [4]

Reducible Background estimation from data

Strategy

• At the end of the selection, according to the MC, the ZZ background dominates

Negligible tt/WZ contamination (<< 1%) remains</p>

It is not possible to conclude on the contamination of Zbb/cc and Z+lightJets - not enough MC events

In general the small number of events precludes a precise measurement from side-bands

Alternative typical procedure:

Zbb/TT Control

Control Region: Z1 + II [only ID min Pt] with SIP_{3D}(I) > 5

Evaluation of all instrumental and reducible background with a reconstructed Z1 and 2 "fake leptons": Z+X inclusive measurement

All leptons but those from W/Z decay [prompt and isolated]:
 from decay of heavy quarks/ from decay-in-flight of light
 hadrons / from jets faking leptons

Control Region: Z1 + II SS [ID and ISO relaxed] with SIP_{3D}(I) < 4, m4l >100, 3/4 mll > 12

Control regions defined separately for each final state: $4\mu/4e/2\mu 2e$

Z+X[2]

Fake rate measurement

On Z1 + 1 lepton sample (dominated by Z + "fake lepton") the probability that a muon/electron with relaxed ID and ISO passes the analysis requests is computed

4e		baseline	
4mu	$\mathbb{N}^{Z+X \to 4e}$	1.67 ± 0.05 (3.2%) (stat., 952 events) $\pm 0.50(30.2\%)$ (syst.)	
-	$\mathrm{N}^{\mathrm{Z}+\mathrm{X} ightarrow 4\mu}$	1.13 ± 0.09 (8.3%) (stat., 143 events) $\pm 0.46(40.6\%)$ (syst.)	
	$N^{Z+X \rightarrow 2e2\mu}$	2.71 ± 0.08 (2.9%) (stat., 1215 events) $\pm 0.88(32.6\%)$ (syst.))
		high-mass	
-	$N^{Z+X \rightarrow 4e}$	0.47 ± 0.04 (8.4%) (stat., 143 events) $\pm 0.11(22\%)$ (syst.)	_
	$N^{Z+X \rightarrow 4\mu}$	0.22 ± 0.03 (20.8%)(stat., 23 events) $\pm 0.06(35.7\%)$ (syst.)	
	$N^{Z+X \rightarrow 2e2\mu}$	0.65 ± 0.05 (7.6%) (stat., 175 events) $\pm 0.16(23.5\%)$ (syst.)	
500 550 600 M(4I) [GeV/c^2]	3		31

Signal and ZZ background expectations

20th December 2011, Ph.D. Thesis Defence, Cristina Botta

ZZ background

The normalization and shape of the ZZ irreducible background are taken directly from MC. A fit with an empirical function is performed.

20th December 2011, Ph.D. Thesis Defence, Cristina Botta

Signal

The signal shape is determined using 17 simulated samples covering the full mass range. The shape for each simulated sample are fit using a convolution of a Breit-Wigner-like probability density function to describe the theoretical resonance line shape, convoluted with a Crystal-Ball.

						Systematics
Source of uncertainties	uncer	tainties	for diff	erent pr	ocesses	JYSLEIIIALIUS
Source of uncertainties	ggH	VBF	WH	ZH	ttH	
gg partonic luminosity	8				8-10	
<i>qq/qq̄</i> partonic luminosity		2-7	3-4	3-5		
QCD scale uncert. for $gg \rightarrow H$	I 5-2					Signal
QCD scale uncert. for VBF qq.	H	0-3				
QCD scale uncert. for VH			0-1	1-2		
QCD scale uncert. for ttH					3-1	
4 ℓ -acceptance for $gg \rightarrow H$	negl.	negl.	negl.	negl.	negl.	
Wide Higgs uncertainties		1+1.5	(m _H /1 [']	FeV/c^2)		Theoretical Uncertainties
Uncertainty on $BR(H \rightarrow 4\ell)$	2	2	2	2	2	
				1		
Source of uncertainties	uncertai	$\frac{1}{1}$	or anne	rent pro	cesses	
	$q\overline{q} \rightarrow ZZ^{(}$	$^{*)} \rightarrow 4$	<u>l gg</u> .	\rightarrow ZZ ^(*)	$\rightarrow 4\ell$	7711.
gg partonic luminosity	-			10		
$qq/q\bar{q}$ partonic luminosity	5	;		-		
QCD scale uncert.	2-	6		20-45	5	

Instrumental Uncertainties

Source of uncertainties	Uncerta	ainties fo	r different channels	qqZZ/	′ggZZ	$Z \rightarrow 4\ell$
	<u>4</u> <i>e</i>	4μ	2µ2e	4 <i>e</i>	4μ	2µ2e
Luminosity	4.5	4.5	4.5	4.5	4.5	4.5
Trigger	1.5	1.5	1.5	1.5	1.5	1.5
electron reco/ID	3.8-1	-	2-0.5	1.8	-	1.1
muon reco/ID	-	2-0.8	1 .2- 0.4	-	1.0	0.5
electron isolation	2	-	1	2	-	1
muon isolation	-	1	1	-	1	1
electron E_T scale (error on E_T scale)	0.3-0.4	-	0.3-0.4	0.3-0.4	-	0.3-0.4
muon p_T scale (error on p_T scale)	-	0.5	0.5	-	0.5	0.5

Signal

ZZ bkg

Results

20th December 2011, Ph.D. Thesis Defence, Cristina Botta

SM expectation [MCFM] = 27.9 +- 1.9

for m_H<180 searches

🗕 DATA

• DATA

 $\sqrt{s} = 7 \text{ TeV } \text{L} = 4.71 \text{ fb}^{-1}$

45

Low mass region

Mass Uncertainties

• The precision on the estimation of the of the m_H can vary significantly on an event-byevent basis [lepton p_T , η]

 \blacksquare To take into account this information the uncertainties evaluated on individual lepton legs can be propagated to $m_{\rm H}$

It can allow to improve on the significance on a possible discovery depending on the clustering in mass of a handful of events.

Upper limit

INPUTS: Signal normalization and shape, Bkg normalizations and shapes, systematic uncertainties both on normalizations and shapes.

Upper limits on the Higgs cross section are computed with the CL_s method with the prescriptions of the LHC Higgs Combination Group

Upper limit

INPUTS: Signal normalization and shape, Bkg normalizations and shapes, systematic uncertainties both on normalizations and shapes.

Opper limits on the Higgs cross section are computed with the CL_s method with the prescriptions of the LHC Higgs Combination Group

p-value

P-value: probability that the background fluctuate as observed in data

=> Significance of the local fluctuations with respect to the SM expectation as a function of the Higss boson mass

The results are obtained with or without taking into account the event-by-event mass error uncertainties

p-value

P-value: probability that the background fluctuate as observed in data

=> Significance of the local fluctuations with respect to the SM expectation as a function of the Higgs boson mass

The results are obtained with or without taking into account the event-by-event mass error uncertainties

Conclusions

A search for the Standard Model Higgs boson produced in the decay channel H->ZZ^(*)->4I at the CMS experiment has been presented.

The preparatory work to characterize in detail the muon trigger, reconstruction and identification performances has been discussed and its impact on the obtained physics results has been highlighted.

The choice of the event selection has been motivated in detail.

 The studies to control with data the instrumental and reducible backgrounds have been presented. The results prove that their contamination is negligible over most of the mass range, with a small contamination remaining at low mass.

The ZZ cross section has been measured and found in agreement with the SM expectations.

• The Higgs boson existence is excluded at 95% C.L. over a major fraction of the mass range 110< $m_H < 600 \text{ GeV/c}^2$ and only the region 114.4 < $m_H < 133 \text{ GeV/c}^2$ and 173 < $m_H < 178 \text{ GeV/c}^2$ remain possibly consistent with the expectations of the SM.

Backup

20th December 2011, Ph.D. Thesis Defence, Cristina Botta

Montecarlo Samples

Process	MC	$\sigma_{(N)NLO}$	Comments and samples
	generator		
Higgs boson $\mathrm{H} \to \mathrm{ZZ}$ -	$ ightarrow 4\ell$		
gg ightarrow H	POWHEG	[1-20] fb	$m_{\rm H} = 110-600 {\rm GeV}/c^2$
$VV \rightarrow H$	POWHEG	[0.2-2] fb	$m_{\rm H} = 110\text{-}600{ m GeV}/c^2$
WH; ZH; $t\bar{t}$ H	PYTHIA	[0.01-0.05] fb	$m_{\rm H} = 110-180 {\rm GeV}/c^2$
ZZ continuum			
$q\bar{q} \rightarrow \mathrm{ZZ} \rightarrow 4e(4\mu, 4\tau)$	POWHEG	15.34 fb	ZZTo4e(4mu,4tau)_7TeV-powheg-pythia6
$qar{q} ightarrow { m ZZ} ightarrow 2e2\mu$	POWHEG	30.68 fb	ZZTo2e2mu_7TeV-powheg-pythia6
$q\bar{q} ightarrow \mathrm{ZZ} ightarrow 2e(2\mu)2 au$	POWHEG	30.68 fb	ZZTo2e(2mu)2tau_7TeV-powheg-pythia6
$gg ightarrow ZZ ightarrow 2\ell 2\ell'$	gg2ZZ	3.48 fb	GluGluToZZTo2L2L_7TeV-gg2zz-pythia6
$gg \rightarrow ZZ \rightarrow 4\ell$	gg2ZZ	1.74 fb	GluGluToZZTo4L_7TeV-gg2zz-pythia6
Other di-bosons			
$WW \to 2\ell 2\nu$	PYTHIA	4.88 pb	WWTo2L2Nu_TuneZ2_7TeV_pythia6_tauola
$WZ \rightarrow 3\ell \nu$	PYTHIA	0.595 pb	WZTo3LNu_TuneZ2_7TeV_pythia6_tauola
$t\bar{t}$ and single t			
$t\bar{t} ightarrow \ell^+ \ell^- u \bar{ u} b \bar{b}$	POWHEG	17.32 pb	TTTo2L2Nu2B_7TeV-powheg-pythia6
t (s-channel)	POWHEG	3.19 pb	T_TuneZ2_s-channel_7TeV-powheg-tauola
\bar{t} (s-channel)	POWHEG	1.44 pb	Tbar_TuneZ2_s-channel_7TeV-powheg-tauola
t (t-channel)	POWHEG	41.92 pb	T_TuneZ2_t-channel_7TeV-powheg-tauola
\bar{t} (<i>t</i> -channel)	POWHEG	22.65 pb	Tbar_TuneZ2_t-channel_7TeV-powheg-tauola
t (tW-channel)	POWHEG	7.87 pb	T_TuneZ2_tW-channel-DR_7TeV-powheg-tauola
\bar{t} (tW-channel)	POWHEG	7.87 pb	Tbar_TuneZ2_tW-channel-DR_7TeV-powheg-tauola
$\mathbf{Z/W} + \mathbf{jets} \ (q = d, u, s)$, c, b)		
W + jets	MadGraph	31314 pb	WJetsToLNu_TuneZ2_7TeV-madgraph-tauola
Z + jets	MadGraph	3048 pb	DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola
QCD inclusive multi-je	ets, binned $\hat{p}_T^{ m r}$	nin	
$b, c \rightarrow e + X$	PYTHIA		QCD_Pt-XXtoYY_BCtoE_TuneZ2_7TeV-pythia6
EM-enriched	PYTHIA		QCD_Pt-XXtoYY_EMEnriched_TuneZ2_7TeV-pythia6
MU-enriched	PYTHIA		QCD_Pt-XXtoYY_MuPt5Enriched_TuneZ2_7TeV-pythia6

Event list

2011B: L = 2.5 fb⁻¹

2010/2011A: L = 2.2 fb⁻¹

Event	Run #	Event #	Channel	m_{Z_1}	m_{Z_2}	$m_{4\ell}$	$\Delta m_{4\ell}$	$p_{T,4\ell}$	$y_{4\ell}$	Event	Run #	Event #	Channel	m_{Z_1}	m_{Z_2}	$m_{4\ell}$	$\Delta m_{4\ell}$	$p_{T,4\ell}$	$y_{4\ell}$
					(GeV/c^2)			(GeV/c)							(GeV/c^2)			(GeV/c)	
А	146511	504867308	4μ	91.365	92.599	201.178	2.1482	2.856	0.183	AD	175906	227517585	2e2µ	92.400	94.236	308.127	2.795	20.414	0.002
B	147926	368148849	4μ	101.535	40.041	167.987	2.4012	43.738	1.452	AE	175921	297753357	2e2µ	94.963	85.251	231.653	8.9622	10.091	1.272
С	163334	286336207	2e2µ	94.513	66.048	163.842	2.2399	10.535	-0.535	AF	175921	495614354	2e2µ	92.916	98.722	206.865	4.225	42.325	-1.242
D	163659	344708580	4e	92.495	28.869	138.576	1.6269	23.976	0.387	AG	175974	7526662	2e2µ	92.230	98.011	210.752	1.9461	12.519	-0.046
E	163795	30998576	2e2µ	92.402	82.345	207.854	8.1536	5.020	1.832	R-E	176201	261184429	2e2µ	91.034	17.000	183.255	2.2529	71.992	-0.487
F	163817	155679852	4μ	91.303	34.827	144.912	1.7089	24.125	-0.359	AH	176207	256888239	2e2µ	89.924	94.223	275.799	19.8991	12.336	-1.645
G	165633	394010457	2e2µ	91.219	93.190	244.582	2.5038	11.973	-0.475	AI	176304	417897294	4e	82.419	39.501	158.218	2.30115	15.049	-0.055
R-A	165970	275108397	2e2µ	91.641	14.915	142.622	1.703	11.506	0.902	AJ	176304	418052877	2e2µ	91.749	101.763	206.419	2.561	44.274	-0.465
Н	166408	917379387	2e2µ	88.094	105.275	256.486	3.7908	29.329	-1.214	AK	176309	257489763	4μ	89.766	86.302	193.860	2.03205	3.351	-1.145
Ι	166438	78213037	4 <i>e</i>	87.530	80.658	213.618	6.33505	25.080	0.062	R-F	176309	1340034258	2e2µ	75.586	12.928	130.079	2.7027	22.434	-1.662
R-B	166438	862270386	4µ	92.106	15.092	211.644	4.8024	9.088	0.080	AL	176468	215855118	2e2µ	94.576	102.730	325.094	5.4457	13.280	-0.773
J	166512	337493970	4μ	90.972	93.179	238.532	2.8681	21.996	0.261	AM	176548	403771114	4e	92.887	97.467	327.470	8.04025	81.207	0.266
K	166950	1491724484	2e2µ	92.389	92.799	193.510	3.0095	13.949	0.823	AN	176799	35688265	4μ	90.583	92.772	193.420	2.68065	27.804	1.614
L	167281	480301165	4 <i>u</i>	90.420	54.817	222.302	2.2586	42.304	-0.645	AO	176886	1057019814	2e2µ	90.133	92.654	257.813	4.0456	12.061	0.021
R-C	167282	44166176	4 <i>u</i>	90.315	14.724	118.830	0.81305	16.410	0.127	AP	177074	588602439	4μ	93.013	87.697	240.346	3.059	11.206	-0.064
М	167284	1038911933	4 <i>u</i>	77.796	29.675	119.026	1.08445	43,934	0.581	AQ	177139	290826062	2e2µ	86.489	96.327	193.718	2.301	5.179	-0.655
N	167675	876658967	46	92.314	27.221	125.661	1.5515	16.093	0.067	AR	177222	339499459	2e2µ	90.148	86.388	309.595	4.8542	8.347	1.023
0	167807	966824024	2e2u	90.192	94,768	325.558	3.1356	40.907	-0.428	AS	177782	72158025	2e2µ	67.942	48.502	126.245	1.6536	41.762	1.270
P	171106	141954801	4e	91.703	92,205	191.587	3.17695	7.497	-0.335	AT	177790	222240677	4μ	91.625	93.231	280.363	3.36145	21.879	0.370
0	171369	160966858	411	90 197	88 933	218 870	2 5162	9 831	0 785	AU	177790	657843813	4μ	90.963	91.745	237.879	3.8111	56.688	-0.908
R	172163	191231387	411	92 151	87 695	198 821	3.381	8 668	1 231	AV	177875	148667118	4e	91.721	94.193	368.731	8.7261	21.105	0.900
S	172208	66033190	<u> </u>	87 695	97.017	308 561	3 96865	71 109	0 341	AW	178100	326364918	2e2µ	92.348	86.556	278.948	3.8948	4.259	-0.051
R-D	172620	218903169	-τμ 20211	93 544	16 963	131 608	4 2458	7 299	1 168	AX	178116	709511403	2e2µ	94.437	95.421	339.845	2.8886	162.160	-0.929
Т	172020	10347106	Λο	91 290	82.978	365 339	5.0692	6.650	0.519	AY	178421	87514902	4μ	83.352	25.995	114.835	0.88205	58.814	-0.503
I	172802	107360878	нс Л 11	01 00 2	85.036	457 923	10 6630	10.050	0.517	AZ	178421	1450980155	2e2µ	89.649	81.374	177.016	3.3319	13.543	1.518
V	172002	2554202022	4μ	91.902 00.210	25 250	110 027	0.8522	19.019	-0.525	BA	178479	298608854	4μ	89.790	85.759	259.929	2.4334	6.565	-0.955
V VAZ	172022	022807102	+μ 2021	90.219	20.009	216 705	2 601	22 021	0.505	BB	178479	589085976	2e2µ	89.472	85.948	273.200	7.0993	94.783	-1.094
vv	172000	955607102	2e2µ	92.219	09.700 80.401	105 220	5.001 1.7052	22.021	-0.395	BC	178703	191352626	2e2µ	87.138	85.023	197.382	3.1096	8.769	0.837
	172949	FE0820422	2e2µ	91.021 01.1EE	09.421	195.229	1.7955	39.271 21.741	-0.314	BD	178731	248562036	2e2µ	92.027	89.372	316.958	9.9489	33.715	-1.605
	172952	16706200	4µ	91.155	37.151	231.938	2.2195	31.741	-0.395	BE	178866	140063742	2e2µ	85.191	47.707	150.691	3.5113	37.484	0.803
	173243	16706390	40	90.767	92.951	284.831	4.89085	29.472	1.496	BF	178970	57399691	4μ	88.046	74.837	199.211	5.85005	40.907	1.457
AA	173657	65557571	2e2µ	91.518	87.826	391.348	7.2423	19.635	1.096	BG	178970	122998167	2e2µ	91.742	90.469	245.415	3.1837	9.547	-0.701
AB	173659	389185367	4 <i>e</i>	90.968	85.244	229.234	4.7879	12.349	-1.394	BH	179434	86225612	2e2µ	93.705	94.549	209.845	2.9588	59.862	0.084
AC	173692	2722114329	2e2µ	90.436	93.784	189.628	3.1421	16.184	0.807	BI	179452	1459855927	2e2µ	93.427	42.163	162.155	2.4895	13.510	-0.959
										BJ	179476	30532070	4μ	92.292	92.304	226.829	2.72435	17.203	-0.752
										BK	179563	287281642	2e2µ	95.692	68.620	169.812	3.0342	46.986	-1.321
										BL	179563	1409064222	2e2µ	90.274	88.464	214.834	1.9383	16.802	0.537
		Only	Baseli	ne (?	0 evts					BM	180076	79350642	4e	90.545	89.614	194.296	4.19775	42.111	-1.294
	Only Daschille (20 Eves.)									BN	180250	591651181	4e	91.568	93.102	284.113	5.8696	43.878	-0.954

50 $< m_{Z1} < 120$ **12** $< m_{Z2} < 120$

Event list

2011B: L = 2.5 fb⁻¹

2010/2011A: L = 2.2 fb⁻¹

										_									
Event	Run #	Event #	Channel	m_{Z_1}	m_{Z_2} (GeV/ c^2)	$m_{4\ell}$	$\Delta m_{4\ell}$	$p_{T,4\ell}$ (GeV/c)	$y_{4\ell}$	Event	Run #	Event #	Channel	m_{Z_1}	m_{Z_2} (GeV/ c^2)	$m_{4\ell}$	$\Delta m_{4\ell}$	$p_{T,4\ell}$ (GeV/c)	$y_{4\ell}$
А	146511	504867308	4μ	91.365	92.599	201.178	2.1482	2.856	0.183	AD	175906	227517585	2e2µ	92.400	94.236	308.127	2.795	20.414	0.002
В	147926	368148849	4μ	101.535	40.041	167.987	2.4012	43.738	1.452	AE	175921	297753357	2e2µ	94.963	85.251	231.653	8.9622	10.091	1.272
С	163334	286336207	2e2µ	94.513	66.048	163.842	2.2399	10.535	-0.535	AF	175921	495614354	2e2µ	92.916	98.722	206.865	4.225	42.325	-1.242
D	163659	344708580	4 <i>e</i>	92.495	28.869	138.576	1.6269	23.976	0.387	AG	175974	7526662	2e2µ	92.230	98.011	210.752	1.9461	12.519	-0.046
E	163795	30998576	2e2µ	92.402	82.345	207.854	8.1536	5.020	1.832	R-E	176201	261184429	2e2µ	91.034	17.000	183.255	2.2529	71.992	-0.487
F	163817	155679852	4μ	91.303	34.827	144.912	1.7089	24.125	-0.359	AH	176207	256888239	2e2µ	89.924	94.223	275.799	19.8991	12.336	-1.645
G	165633	394010457	2e2µ	91.219	93.190	244.582	2.5038	11.973	-0.475	AI	176304	417897294	4 <i>e</i>	82.419	39.501	158.218	2.30115	15.049	-0.055
R-A	165970	275108397	2e2µ	91.641	14.915	142.622	1.703	11.506	0.902	AJ	176304	418052877	2e2µ	91.749	101.763	206.419	2.561	44.274	-0.465
Η	166408	917379387	2e2µ	88.094	105.275	256.486	3.7908	29.329	-1.214	AK	176309	257489763	4μ	89.766	86.302	193.860	2.03205	3.351	-1.145
I	166438	78213037	4 <i>e</i>	87.530	80.658	213.618	6.33505	25.080	0.062	R-F	176309	1340034258	2e2µ	75.586	12.928	130.079	2.7027	22.434	-1.662
R-B	166438	862270386	4μ	92.106	15.092	211.644	4.8024	9.088	0.080	AL	176468	215855118	2e2µ	94.576	102.730	325.094	5.4457	13.280	-0.773
J	166512	337493970	4μ	90.972	93.179	238.532	2.8681	21.996	0.261	AM	176548	403771114	4 <i>e</i>	92.887	97.467	327.470	8.04025	81.207	0.266
Κ	166950	1491724484	2e2µ	92.389	92.799	193.510	3.0095	13.949	0.823	AN	176799	35688265	4μ	90.583	92.772	193.420	2.68065	27.804	1.614
L	167281	480301165	4μ	90.420	54.817	222.302	2.2586	42.304	-0.645	AO	176886	1057019814	2e2µ	90.133	92.654	257.813	4.0456	12.061	0.021
R-C	167282	44166176	4μ	90.315	14.724	118.830	0.81305	16.410	0.127	AP	177074	588602439	4μ	93.013	87.697	240.346	3.059	11.206	-0.064
M	167284	1038911933	4µ	77.796	29.675	119.026	1.08445	43.934	0.581	AQ	177139	290826062	2e2µ	86.489	96.327	193.718	2.301	5.179	-0.655
Ν	167675	876658967	4 <i>e</i>	92.314	27.221	125.661	1.5515	16.093	0.067	AR	177222	339499459	2e2µ	90.148	86.388	309.595	4.8542	8.347	1.023
0	167807	966824024	2e2µ	90.192	94.768	325.558	3.1356	40.907	-0.428	AS	177782	72158025	2e2µ	67.942	48.502	126.245	1.6536	41.762	1.270
Р	171106	141954801	4 <i>e</i>	91.703	92.205	191.587	3.17695	7.497	-0.335	AT	177790	222240677	4μ	91.625	93.231	280.363	3.36145	21.879	0.370
Q	171369	160966858	4μ	90.197	88.933	218.870	2.5162	9.831	0.785	AU	177790	657843813	4μ	90.963	91.745	237.879	3.8111	56.688	-0.908
R	172163	191231387	4µ	92.151	87.695	198.821	3.381	8.668	1.231	AV	177875	148667118	4 <i>e</i>	91.721	94.193	368.731	8.7261	21.105	0.900
S	172208	66033190	4µ	87.695	97.017	308.561	3.96865	71.109	0.341	AW	178100	326364918	2e2µ	92.348	86.556	278.948	3.8948	4.259	-0.051
R-D	172620	218903169	2e2µ	93.544	16.963	131.608	4.2458	7.299	1.168	AX	178116	709511403	2e2µ	94.437	95.421	339.845	2.8886	162.160	-0.929
Т	172799	10347106	4 <i>e</i>	91.290	82.978	365.339	5.0692	6.650	0.519	AY	178421	87514902	4μ	83.352	25.995	114.835	0.88205	58.814	-0.503
U	172802	107360878	4μ	91.902	85.036	457.923	10.6639	19.019	-0.523	AZ	178421	1450980155	2e2µ	89.649	81.374	177.016	3.3319	13.543	1.518
V	172822	2554393033	4µ	90.219	25.359	118.937	0.8533	18.145	-0.340	BA	178479	298608854	4μ	89.790	85.759	259.929	2.4334	6.565	-0.955
W	172868	933807102	2e2µ	92.219	89.756	316.705	3.601	22.021	-0.595	DD	1/84/9	589085976	2e2µ	89.472	85.948	2/3.200	7.0993	94.783	-1.094
X	172949	1188043146	2e2µ	91.821	89.421	195.229	1.7953	39.271	-0.314	BC	178703	191352626	2e2µ	87.138	85.023	197.382	3.1096	8.769	0.837
Y	172952	559839432	4µ	91.155	37.151	231.938	2.2195	31.741	-0.395		178/31	248562036	2e2µ	92.027	89.372	316.938	9.9489	33./15	-1.605
Z	173243	16706390	4e	90.767	92.951	284.831	4.89085	29.472	1.496	DE	178866	140063742 E7200(01	2e2µ	85.191	4/./0/	100.091	3.5113	37.484	0.803
AA	173657	65557571	2e2u	91.518	87.826	391.348	7.2423	19.635	1.096	DF	178970	5/399691	4μ	88.046	74.837	199.211	2.1027	40.907	1.45/
AB	173659	389185367	4e	90.968	85.244	229.234	4.7879	12.349	-1.394		178970	122998167	2e2µ 2e2µ	91.742	90.469	245.415	3.1837	9.547	-0.701
AC	173692	2722114329	2e2u	90.436	93.784	189.628	3.1421	16.184	0.807		179434	86225612	2e2µ	93.705	94.549	209.845	2.9388	59.862 12.510	0.084
			,							BI	179452	30522070	2eZµ 11	93.427	42.103	226.820	2.4090	17 202	-0.959
										BK	179470	287281642	+μ 2021	95.692	68 620	169 812	3 0342	46 986	-0.732
										BL	179563	1409064222	2024	90 274	88 464	214 834	1 9383	16.802	0.537
											1,7000	1 10/00 1222	2020	20.27 T	00.101	OOT	1.7000	10.002	0.001

BM

BN

180076

180250

79350642

591651181

90.545

91.568

89.614

93.102

4e

4e

194.296 4.19775

284.113 5.8696

-1.294

-0.954

42.111

43.878

Prelude [2]

The Higgs boson mass: the only one yet unknown free parameter of the SM

Prove or exclude, the Higgs boson existence:
 a matter of highest priority in the field of particle physics

Theoretical indication exists and experimental constraints, from direct and indirect searches, narrow the possible range:

● Theory: m_H< ~ 800 GeV/c² to remain in the perturbative regime while considering V_L scattering matrix

Direct searches at LEP: m_H > 114.4 GeV/c² at 95% C.L.

2

Direct searches at Tevatron [July 2011]: 156-177 GeV/c² range excluded at 95% C.L.

Indirect experimental indication [EWK fit - July 2011]: favorable value 92 GeV/c², 161 GeV/c² upper limit at 95% C.L.

The Signal: $H \rightarrow ZZ^{(*)} \rightarrow 4I$ (I=e, μ)

• Final state considered: 4μ , 4e, $2\mu 2e$

All Higgs boson production mechanisms are considered as part of the signal

 MC Generated events were processed through the full detector simulation and event reconstruction and have been reweighted according to the total cross section (gg contributions up to NNLO and NNLL and the VV fusion up to NNLO corrections - LHC Cross Section WG)

• The 4µ and 4e channel cross section are enhanced in the case of off-shell Z due to an interference of amplitudes with permutation of identical leptons from different Z [Profecy4f]

Process	MC generator	$\sigma_{(N)NLO}$
Higgs boson $H \rightarrow ZZ -$	→ 4 ℓ	
$gg \rightarrow H$	POWHEG	[1-20] fb
$VV \rightarrow H$	POWHEG	[0.2-2] fb
WH; ZH; $t\bar{t}$ H	PYTHIA	[0.01-0.05] fb

M_H [GeV]

Muon Reconstruction

Muon Identification

QUALITY SELECTION:

Tight Muons: prompt muons from W/Z decay

Global Muon + norm $\chi^2 < 10 + at$ least matching with 2 muon segments (tracker muon with 2 matches) + tracker track >=10 hits + $|d_{xy}| <= 0.2 \text{ cm} + |d_z| <= 0.1 \text{ cm}$ (0.1% prob to reconstruct a proton/kaon/pion as a muon / - 2% efficiency wrt Global Muon reco)

Soft Muons: low pt muons for B physics

Tracker Muon + tight requirement on the pulls in local x and y position between the segment and the track (1% prob to reconstruct a proton/kaon/pion as a muon)

Global Muons: H->4l analysis muon object

Global Muon + tracker track >=10 hits + SIP_{3D} < 100 (<1% prob to reconstruct a proton/kaon/pion as a muon, no efficiency loss wrt Global Muon reco)

```
HIGH EFFICIENCY MANDATORY - Min p_t = 5 GeV/c OK for low Higgs masses
NEGLIGIBLE QCD BACKGROUND REQUIRING 4 muon in the final state
Muons from b to be discarded just at the end of the selection
(to control with data-driven methods the Zbb/tt backgrounds)
```

 $|\mathbf{d}_{xy}|$ transverse impact parameter $|\mathbf{d}_z|$ longitudinal impact parameter $SIP_{3D} = |\mathbf{IP}_{3D}| / \sigma_{\mathbf{IP}_{3D}}$ significance of the tridimensional impact parameter **Evaluated wrt the PRIMARY VERTEX**

(GeV)

Correction using event-by-event measurement

Lepton Isolation

PileUp corrections

of PU energy density (rho), instead of using geometrical areas the effective area is used Tracker Barrel Ecal Barrel $R_{lso} < 0.15$ Hcal Barrel Tracker Endcap Ecal Endcap -Hcal Endcap -FastJet p 1 Efficiency 66.0 < 2 0 Rho (NYX) 6.0 R_{lso} cut l 0.85 10 12 14 16 0.8 N_{VTX} Effective area (A_{eff}) is defined for each isolation 0.75 variable as the ratio of the slopes from linearly fitting the mean isolation vs. #PV and 0.7 the energy density vs #PV

20th December 2011,

[Muon] Trigger

TRIGGER : real time selection of events to be recorded

With the current (nominal) luminosity: bunch crossing rate of 20 MHz (40 MHz) Data size per event ~ 1 MB.

Technical difficulties in handling, storing, processing this amount of data: in 25 ns it is impossible to read out all raw data from the detector

Interesting events have cross section << of the total one: a selection must be performed on line on the basis of the physics content of the event

CMS adopts a multi-level trigger design Each step of the selection uses only part of the available data Higher trigger levels process fewer events and can use more refined algorithms

L1 Trigger:						
based on custom-made hardware and uses only						
calorimeters and muon system, while the high-r						
pipeline memories in the front-end electronics. It has to reduce the event rate to ~ 100 KHz.	High Level Trigger: HLT					
20 th December 2011, Ph.D. Thesis Defence, Cristina Botta	logical levels of increasing con - 1/4 of the bandwidth is alloca	nplexity. It has to reduce the rate to ~ 100 l ated for muon triggers	-Iz 13			

Preselection

- **1.** Z_1 , a good quality Z candidate [the one with mass closest to the Z nominal mass is chosen] m_{Z1}>50 GeV/c² + p_{T,1} > 20 GeV/c + p_{T,2} > 10 GeV/c + (Rel_{Iso,1} + Rel_{Iso,2}) < 0.35 + $|SIP_{3D}|_{1,2} < 4$
- **2.** Z_1 + at least 1 lepton
- **3.** Z_1 + at least 2 leptons of matching flavor and opposite sign
- **4.** Best 4l candidate / Z_1 , Z_2 assignments

 m_{Z_2} >12 GeV/c² + $m_{Z_1Z_2}$ >100 GeV/c² + 3/4 *l*⁺*l*⁻ combinations have m_{II} >12 GeV/c² (4e/4 μ only)

Early choice of the Z1 and Z2

- The signal efficiency is preserved
- Early rejection of backgrounds: Z+ converted γ / Low mass resonances
- up to 3% efficiency loss at the end of the selection due to wrong leptons pairing

Strategy

At the end of the selection, according to the MC event yields, the ZZ background dominates

Negligible tt/WZ contamination (<< 1%) remains</p>

It is not possible to conclude on the contamination of Zbb/cc and Z+lightJets - not enough MC events

In general the small number of events precludes a precise measurement from side-bands

Alternative typical procedure:

- select a wide background control region relaxing/inverting the event selection
- verify that the event rate change according to the expectation from simulation
- extrapolate back to the signal phase space with ratio of acceptance factors extracted from MC

Results with 2011 data: ISO

Tag: Tight Muon matched with the trigger object / **Probe: Global Muon**

Good data/mc agreement:

RIso < 0.15

--- DATA All

-2

Simulation

 $5 \text{ GeV/c} < p_{\tau} < 100 \text{ GeV/c} - \text{Nvtx}(6-11)$

0.5

2

Probe η

no correction factors are propagated to the MC expected yields but only a systematic is computed

20th Dec€

Higgs Decay

• Fermion decay modes dominate the BR in the low mass region ($m_H < 150 \text{ GeV/c}^2$) with the bb decay

When the decay channels into vector bosons open up, they quickly dominate

Peak in the WW decay at ~160 GeV/c²

From masses ~ 200 GeV/c² the ZZ/WW BR ~ 1/3

• Γ_H rapidly increase with $m_{H,}$ but remains < 1 GeV/c² up to $m_H \sim 200$ GeV/c²

the experimental resolution is ~ 1-4 GeV/c²

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

6

The Compact Muon Solenoid detector

20th December 2011, Ph.D. Thesis Defence, Cristina Botta

Layout

- high lepton reconstruction efficiency
- excellent lepton/photon identification
- excellent lepton/photon energy resolution

Main Features:

3.8 T superconducting solenoid
 a robust and redundant muon system
 a good electromagnetic calorimeter
 a high-quality tracker system

The Muon System

Barrel: η < 0.9 Overlap: 0.9 < η < 1.2 Endcap: 1.2 < η < 2.4 • Outside the magnet coil, the iron return yoke hosts the MUON SPECTROMETER $[|\eta| < 2.4]$

- triggering on muons
- identifying muons

■ assisting the tracker in measuring momentum and charge of high-p_T muons.

3 types of gaseous particle detectors
$$\eta = -\ln \tan \frac{1}{2}$$

• Drift Tube (DT) chambers $[|\eta| < 2.1]$

• Cathode Strip Chambers (CSC) [0.9 < $|\eta|$ < 2.4]

Resistive Plate Chambers (RPC) [|η| < 1.6]</p>
$$\begin{array}{l} \text{High Mass Selection} \\ \text{for ZZ cross section measurement} \\ \text{O} \times BR(ZZ \rightarrow 4l) = \underbrace{N_{obs}(i_{ch}) - N_{back}(i_{ch})}_{A(i_{ch}) \times \mathcal{B}(ZZ \rightarrow 4l)} = \underbrace{\sum_{i_{ch}}(N_{obs}(i_{ch}) - N_{back}(i_{ch}))}_{A \times \epsilon_{(ZZ \rightarrow 4l) \times \mathcal{L}}} \end{array}$$

 $A = \frac{N_{MC}(60 < M_{Z_1} < 120, 60 < M_{Z_2} < 120, |\eta| < 2.4(2.5), p_T > 5(7))}{N_{MC}(60 < M_{Z_1} < 120, 60 < M_{Z_2} < 120)} \qquad \varepsilon = \frac{N_{MC} - high - mass - selection}{N_{MC}(60 < M_{Z_1} < 120, 60 < M_{Z_2} < 120, |\eta| < 2.4(2.5), p_T > 5(7))}$

c —		NFimal state	$h_{N_{obs}}m$	as _{N-} selection	$N_{\text{back}}(ZZ_{\tau})$	$N_{exp}ZZ \rightarrow 4\ell$
ι –	$N_{MC}(60 < M_{7})$	<12 0 460 <	< <i>M</i> 4	< 1200,147 122.4	$(2.53)^{1}, p_{T} \gg 53(7)$) 14.7 \pm 1.3
	$MC \land Z_1$	4e	8^{2}	0.22 ± 0.07	$0.026^{+1} \pm 0.002^{-1}$	10.3 ± 1.0
		2e2µ	30	0.65 ± 0.20	0.057 ± 0.005	24.8 \pm 2.3
		Total	52	1.34 \pm 0.53	0.115 ± 0.010	49.78 ± 4.6

€

 $\sigma(pp \rightarrow ZZ \rightarrow X) \times \mathcal{B}(ZZ \rightarrow 4\ell) = 28.1^{+4.5}_{-3.9}(\text{stat.}) \pm 1.0(\text{syst.}) \pm 1.3(\text{lumi.}) \text{ fb}$

SM experimentation [MS25M] = 527.9 + 1996								
0.0016	0.589	0.538	- SYSTEMATIC UNCERTAINTIES:					
0.25	0.577	0.676	 If the content of the province structure of the content of the content of the content of the structure of the st					

Evaluation of all instrumental and reducible background with a reconstructed Z1 and 2 "fake leptons": Z+X inclusive measurement

All leptons but those from W/Z decay [prompt and isolated]:
 from decay of heavy quarks/ from decay-in-flight of light
 hadrons / from jets faking leptons

Control Region: Z1 + II SS [ID and ISO relaxed] with SIP_{3D}(I) < 4, m4l >100, 3/4 mll > 12

