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Introduction

On 23 November 2009, the Large Hadron Collider (LHC) produced the first
proton-proton collisions and finally entered the “physics era”, after over
twenty years of construction and commissioning. At the beginning of 2010,
the beams were ramped up to 3.5 TeV and, on 30 March 2010, the first
collisions at a centre-of-mass energy of 7 TeV were recorded, reaching the
highest energy ever touched at a particle collider. At this energy, LHC deliv-
ered proton-proton collisions for an integrated luminosity of about 47 pb−1,
with a maximum instantaneous luminosity of 2 · 1032 cm−2s−1. In the next
years, LHC is expected to reach the design centre-of-mass energy of 14 TeV
and an instantaneous luminosity of 2 · 1034 cm−2s−1.

Such a huge effort is motivated by an ambitious physics program. The
first and most pressing question to which the LHC will give a final answer
is certainly the existence of the Higgs boson, the only still unconfirmed
element of the Standard Model (SM) of particle interactions, regarded as
the responsible for the masses of all the known elementary particles. More
generally, it will be possible to investigate the mechanism of the electroweak
symmetry breaking, of which the Higgs mechanism is the simplest realization
in the SM. The LHC will also test a number of theories and physics models
which aim to describe the particle interactions beyond the limits of the SM,
the most notable of which is probably supersymmetry (SUSY). Besides all
existing models, however, the LHC is open to any new and unexpected
phenomenon or particle that may show up at this unexplored energy scale.
Two of the main LHC experiments, CMS (Compact Muon Solendoid) and
ATLAS (A ToroidaL ApparatuS), are designed to address these fundamental
questions.

The search for extremely rare processes is made possible by the very
high LHC design luminosity, with an event rate of the order of 1 GHz,
which the detectors can sustain thanks to innovative hardware and software
technologies. The background rate exceeds the interesting physics signals
by a factor of 109. In such a challenging environment, one of the cleanest
signature is offered by muons. The most relevant example is probably the
decay of the Higgs boson into four muons, which is regarded as the “golden
channel” for the Higgs discovery at the LHC.

This thesis describes my Ph.D. work, carried out in the last three years

1



2 Introduction

within the CMS collaboration. Throughout this time, the main goal of my
work has been the study of the SM Higgs boson in its “golden” decay mode.
For this purpose, I started from the development of the tools needed for this
analysis: the algorithms for the identification and tracking of muons and
for the precise measurement of their properties. This work is documented
in Chapters 3 and 4 of this thesis, after a general introduction on LHC, its
physics program and the CMS detector (Chapters 1 and 2). In particular,
Chapter 3 is entirely devoted to the reconstruction of muons. Particular
emphasis is put on the reconstruction inside the muon spectrometer, which
I developed and for which I am currently responsible in CMS. This chapter
describes the main reconstruction algorithms and their performance on colli-
sion data, comparing it with the expectations from Monte Carlo simulation.

The momentum of tracks, though very accurate, is still affected by sys-
tematic biases, due the imperfect knowledge of the detector geometry, of its
material and of the magnetic field. In Chapter 4, a strategy for the precise
calibration of the track momentum scale is presented. This method uses
muons coming from the decay of well-known resonances, in particular the
J/ψ meson and the Z boson, to define corrections for track momenta, based
on the knowledge of the resonance mass. The same algorithm can also pro-
vide a measurement of the track momentum resolution. Using large samples
of J/ψ and Z candidates collected by CMS during the 2010 collision runs,
I measured the resolution of the tracks reconstructed by the silicon tracker
alone or in combination with the muon spectrometer, and I calibrated the
track momentum scale in different pseudorapidity regions and momentum
ranges. These corrections are currently used in several CMS physics analy-
ses, such as the measurement of the J/ψ, Υ and Z production cross sections.

Finally, the discovery potential of the H → ZZ → 4ℓ process is discussed
in Chapter 5. My work focused, in particular, on the 4µ final state, whose
analysis strategy mostly relies on the muon reconstruction techniques pre-
sented in the previous chapters. The analysis strategy, based on a sequential
set of cuts, has been developed using Monte Carlo simulations of the Higgs
signal and of the backgrounds with realistic detector conditions, for an in-
tegrated luminosity of 1 fb−1 and a centre-of-mass energy of 7 TeV. The
CMS sensitivity for the observation of a Higgs boson has been studied in the
mass range from 115 GeV/c2 to 250 GeV/c2, combining the three leptonic
final states. Finally, I applied the selection strategy to the first year’s data
and compared the results with the expectations from simulation.



Chapter 1

Physics at the Large Hadron

Collider

The fundamental components of matter and their interactions are nowadays
best described by the Standard Model of Particle Physics (SM), which is
based upon two separate quantum field theories, describing the electroweak
interaction (Glashow-Weinberg-Salam model or GWS) and the strong in-
teraction (Quantum Chromo-Dynamics or QCD). In this chapter, a short
overview of the SM (Section 1.1) and of the electroweak theory (Section 1.2)
is given, focusing the attention on the ElectroWeak Symmetry Breaking
(EWSB), the Higgs mechanism and the Higgs boson (Section 1.3). Finally,
in Section 1.4, the bases of the Higgs boson search are introduced.

1.1 The Standard Model of Elementary Particles

The SM [1] describes the matter as composed by twelve elementary particles,
the fermions, all having half-integer spin. Fermions can be divided into two
main groups, leptons and quarks, whose classification is given in Table 1.1.
Quarks are subject to both strong and electroweak interactions and do not
exist as free states, but only as constituents of a wide class of particles,
the hadrons, such as protons and neutrons. Leptons, instead, only interact
through electromagnetic and weak forces.

Fermions 1st fam. 2nd fam. 3rd fam. Charge Interactions

Quarks
u
d

c
s

t
b

+2/3
−1/3

All

Leptons
e
νe

µ
νµ

τ
ντ

−1
0

Weak, E.M.
Weak

Table 1.1: Classification of the three families of fundamental fermions.

3



4 Physics at the Large Hadron Collider

In the SM, the interactions between particles are described in terms of
the exchange of bosons, integer-spin particles which are carriers of the funda-
mental interactions. The main characteristics of bosons and corresponding
interactions are summarised in Table 1.2. The gravitational interaction is
not taken into account, as it is not relevant at the typical mass and distance
scales of particle physics.

Electromagnetic Weak Strong
Quantum Photon (γ) W±, Z Gluons

Mass [GeV/c2] 0 80, 90 0

Coupling
constant

α(Q2 = 0) ≈ 1
137

GF

(h̄c)3 ≈ 1.2 · 10−5 GeV−2 αs(mZ) ≈ 0.1

Range [cm] ∞ 10−16 10−13

Table 1.2: Fundamental interactions relevant in particle physics and correspond-
ing carriers.

As previously mentioned, the SM describes these interactions by means
of two gauge theories: the Quantum Chromo-Dynamics and the theory of
the electroweak interaction (GWS model), which unifies the electromagnetic
and weak interactions. In the next sections, the electroweak theory will be
described in some detail.

1.2 The Electroweak Theory

From a historical point of view, the starting point for the study of elec-
troweak interactions is Fermi’s theory of muon decay [2], which is based on
an effective four-fermion Lagrangian:

L = −4GF√
2
ν̄µγ

α 1− γ5
2

µēγα
1− γ5

2
νe , (1.1)

where GF is the Fermi coupling constant reported in Table 1.2. Equation 1.1
represents a “point-like” interaction, with only one vertex and without any
intermediate boson exchanged. It is usually referred to as V −A interaction,
being formed by a vectorial and an axial component. The term 1

2 (1−γ5) that
appears in it is the negative helicity projector. Only the negative helicity
(left-handed) component of fermions takes part to this interaction.

Fermi’s Lagrangian is not renormalisable and it results in a non-unitary
S matrix. Both problems of renormalisability and unitarity are overcome de-
scribing the weak interaction by a gauge theory, i.e. requiring its Lagrangian
to be invariant under local transformations generated by the elements of
some Lie group (gauge transformations). The specific group of local invari-
ance (gauge group) is to be determined by the phenomenological properties
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of the interaction and of the particles involved. In particular, the resulting
Lagrangian must reduce to Equation 1.1 in the low energy limit. A detailed
derivation of this Lagrangian is not provided in this work, but the results are
summarised in the following. For details about the GWS model, see [3][4][5].

A gauge theory for weak interactions is conceived as an extension of
the theory of electromagnetic interaction, the Quantum Electro-Dynamics
or QED, which is based on the gauge group U(1)EM , associated to the
conserved quantum numberQ (electric charge). In this case, the condition of
local invariance under the U(1)EM group leads to the existence of a massless
vector, the photon.

A theory reproducing both the electromagnetic and weak interaction
phenomenology is achieved by extending the gauge symmetry to the group
SU(2)I ⊗ U(1)Y . In this sense, the weak and electromagnetic interactions
are said to be unified. The generators of SU(2)I are the three components of
the weak isospin operator, ta = 1

2 τ
a, where τa are the Pauli matrices. The

generator of U(1)Y is the weak hypercharge Y operator. The corresponding
quantum numbers satisfy the following relation

Q = I3 +
Y

2
,

where I3 is the third component of the weak isospin (eigenvalue of t3).
Fermions can be divided in doublets of negative-helicity (left-handed)

particles and singlets of positive-helicity (right-handed) particles, as follows:

LL =

(

νℓ,L
ℓL

)

, ℓR , QL =

(

uL
dL

)

, uR , dR , (1.2)

where ℓ = e, µ, τ , u = u, c, t and d = d, s, b. Neutrinos have no right
component, as their mass is taken as null. In Table 1.3, I3, Y and Q quantum
numbers of all fermions are reported.

I3 Y Q
(

uL
dL

) (

1/2
−1/2

) (

1/3
1/3

) (

2/3
−1/3

)

uR, dR 0, 0 4/3, −2/3
2/3, −1/3

(

νℓ,L
ℓL

) (

1
2

−1
2

) (

−1
−1

) (

0
−1

)

ℓR 0 −2 −1

Table 1.3: Isospin (I3), hypercharge (Y ) and electric charge (Q) of all fermions.

As well as for QED, the requirement of local gauge invariance with re-
spect to the SU(2)I ⊗ U(1)Y group introduces now four massless vector
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fields (gauge fields), W 1,2,3
µ and Bµ, which couple to fermions with two dif-

ferent coupling constants, g and g′. Note that Bµ does not represent the
photon field, because it arises from the U(1)Y group of hypercharge, instead
of U(1)EM group of electric charge. The gauge-invariant Lagrangian for
fermion fields can be written as follows:

L = ΨLγ
µ
(

i∂µ + gtaW
a
µ − 1

2g
′Y Bµ

)

ΨL + ψRγ
µ
(

i∂µ − 1
2g

′YBµ

)

ψR (1.3)

where

ΨL =

(

ψ1
L

ψ2
L

)

and where ΨL and ψR are summed over all the possibilities in Equation 1.2.
As already stated, W 1,2,3

µ and Bµ do not represent physical fields, which
are given instead by linear combinations of the four mentioned fields: the
charged bosons W+ and W− correspond to1

W±
µ =

√

1

2
(W1

µ ∓ iW2
µ), (1.4)

while the neutral bosons γ and Z correspond to

Aµ = Bµ cos θW +W3
µ sin θW (1.5)

Zµ = −Bµ sin θW +W3
µ cos θW , (1.6)

obtained by mixing the neutral fields W3
µ and Bµ with a rotation defined

by the Weinberg angle θW . In terms of the fields in Equations 1.4 to 1.6,
the interaction term between gauge fields and fermions, taken from the La-
grangian in Equation 1.3, becomes

Lint =
1

2
√
2
g(J+

α W(+)α + J−
α W(−)α) +

1

2

√

g′2 + g2JZ
αZ

α − eJEM
α Aα, (1.7)

where JEM is the electromagnetic current coupling to the photon field, while
J+, J− and JZ are the three weak isospin currents. It is found that

JZ
α = J3

α − 2 sin2 θW · JEM
α .

Aµ can then be identified with the photon field and, requiring the coupling
terms to be equal, one obtains

g sin θW = g′ cos θW = e (1.8)

which represents the electroweak unification. The GWS model thus predicts
the existence of two charged gauge fields, which only couple to left-handed
fermions, and two neutral gauge fields, which interact with both left- and
right-handed components.

1In the following, a different notation will be also used: W
(−)
µ = Wµ, W

(+)
µ = W†

µ.
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1.3 The Higgs Mechanism

In order to correctly reproduce the phenomenology of weak interactions,
both fermion and gauge boson fields must acquire mass, in agreement with
experimental results. Up to this point, however, all particles are consid-
ered massless: in the electroweak Lagrangian, in fact, a mass term for the
gauge bosons would violate gauge invariance, which is needed to ensure the
renormalisability of the theory. Explicit mass terms for fermions, instead,
would not violate gauge invariance, but in the GWS model the Lagrangian
is also required to preserve the invariance under chirality transformations,
and this is achieved only with massless fermions. Masses are thus intro-
duced with the Higgs mechanism [6][7], which allows fermions and W±, Z
bosons to be massive, while keeping the photon massless. Such mechanism
is accomplished by means of a doublet of complex scalar fields,

φ =

(

φ+

φ0

)

=
1√
2

(

φ1 + iφ2

φ3 + iφ4

)

, (1.9)

which is introduced in the electroweak Lagrangian within the term

LEWSB = (Dµφ)†(Dµφ) + V (φ†φ), (1.10)

where Dµ = ∂µ − igtaW
a
µ + i

2g
′Y Bµ is the covariant derivative. The La-

grangian in Equation 1.10 is invariant under SU(2)I ⊗ U(1)Y transforma-
tions, since the kinetic part is written in terms of covariant derivatives and
the potential V only depends on the product φ†φ. The φ field is charac-
terised by the following quantum numbers:

I3 Y Q
(

φ+

φ0

) (

1/2
−1/2

) (

1
1

) (

1
0

)

Writing the potential term as follows (see also Figure 1.1 for a graphical
representation)

V (φ†φ) = −µ2φ†φ− λ(φ†φ)2, (1.11)

with µ2 < 0 and λ > 0, it results to have a minimum for

φ†φ =
1

2
(φ21 + φ22 + φ23 + φ24) = −µ

2

2λ
≡ v2

2
. (1.12)

This minimum is not found for a single value of φ, but for a manifold of
non-zero values. The choice of (φ+, φ0) corresponding to the ground state,
i.e. the lowest energy state or vacuum, is arbitrary, and the chosen point is
not invariant under rotations in the (φ+, φ0) plane: this is referred to as
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Figure 1.1: Shape of the Higgs potential of Equation 1.11.

spontaneous symmetry breaking. If one chooses to fix the ground state on
the φ0 axis, the vacuum expectation value of the φ field is

〈φ〉 = 1√
2

(

0
v

)

, v2 = −µ
2

λ
. (1.13)

The φ field can thus be rewritten in a generic gauge, in terms of its vacuum
expectation value:

φ =
1√
2
e

i
v
φata

(

0
H + v

)

, a = 1, 2, 3 ,

where the three fields φa and the fourth φ4 = H + v are called Goldstone
fields. Being scalar and massless, they introduce four new degrees of free-
dom, in addition to the six degrees due to the transverse polarisations of
the massless vector bosons W± and Z. The unitary gauge is fixed by the
transformation

φ′ = e−
i
v
φataφ =

1√
2

(

0
H + v

)

=
1√
2

(

0
φ4

)

. (1.14)

The remaining field, the Higgs field, has now a zero expectation value.
Rewriting the Lagrangian in Equation 1.10 with the φ field in the unitary

gauge, LEWSB results from the sum of three terms:

LEWSB = LH + LHW + LHZ, (1.15)

where the three terms can be written as follows, using the approximation
V ∼ µ2H2 + const and neglecting higher order terms:

LH =
1

2
∂αH∂

αH+ µ2H2

LHW =
1

4
v2g2WαW

†α +
1

2
vg2HWαW

†α (1.16)

= m2
WWαW

†α + gHWHWαW
†α

LHZ =
1

8
v2(g2 + g′2)ZαZ

α +
1

4
v(g2 + g′2)HZαZ

α (1.17)

=
1

2
m2

ZZαZ
α +

1

2
gHZHZαZ

α
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Equations 1.16 and 1.17 now contain mass terms for fields W± and Z: each
of the three gauge bosons has acquired mass and an additional degree of
freedom, corresponding to the longitudinal polarisation. At the same time,
three of the four Goldstone bosons have disappeared from the Lagrangian
LEWSB, thus preserving the total number of degrees of freedom: the de-
grees related to the missing Goldstone bosons have become the longitudinal
degrees of the vector bosons. Only the H scalar field is still present and has
acquired mass itself: it is the Higgs field.

Summarising, the Higgs mechanism is used to introduce the weak boson
masses, without explicitly breaking the gauge invariance, thus preserving
the renormalisability of the theory. When a symmetry is “spontaneously”
broken, in fact, it is not properly eliminated: it is rather “hidden” by the
choice of the ground state. It can be shown that the minimum of the Higgs
field is still invariant under the U(1)EM group. Hence, the electromagnetic
symmetry is unbroken and the photon does not couple to the Higgs boson
and remains massless.

1.3.1 Vector Boson Masses and Couplings

Equations 1.16 and 1.17 show that the masses of vector bosons W± and
Z are related to the parameter v, characteristic of the EWSB, and to the
electroweak coupling constants:







mW = 1
2vg

mZ = 1
2v
√

g2 + g′2
→ mW

mZ
=

g
√

g2 + g′2
= cos θW . (1.18)

Also the couplings of vector bosons to the Higgs can be obtained from Equa-
tions 1.16 and 1.17, and are found to depend on the square of mW and mZ:

gHW =
1

2
vg2 =

2

v
m2

W (1.19)

gHZ =
1

2
v(g2 + g′2) =

2

v
m2

Z. (1.20)

A relation between the decay ratios of the Higgs boson to a W pair and to
a Z pair can be derived from Equations 1.19 and 1.20:

BR(H → W+W−)

BR(H → ZZ)
=

(

gHW
1
2gHZ

)2

= 4

(

m2
W

m2
Z

)2

≃ 2.4 .

Finally, the EWSB energy scale can be determined from the relation between
the v parameter and the Fermi constant GF :

v =

(

1√
2GF

) 1
2 ≃ 246 GeV. (1.21)
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1.3.2 Fermion Masses and Couplings

The Higgs mechanism is also used to generate the fermion masses, by in-
troducing in the SM Lagrangian an SU(2)I ⊗ U(1)Y invariant term, called
Yukawa term, which represents the interaction between the Higgs and the
fermion fields. Since φ is an isodoublet, while the fermions are divided in
left-handed doublet and right-handed singlet, the Yukawa terms (one for
each fermion generation) must have the following expression for leptons:

Lℓ = −GHℓ · lℓφℓR + ℓRφ
†lℓ . (1.22)

In the unitary gauge, the first component of φ is zero, therefore a mass term
will arise from the Yukawa Lagrangian only for the second component of lℓ:
this correctly reproduces the fact that neutrino is (approximately) massless.

Lℓ = −GHℓ√
2
vℓℓ− GHℓ√

2
Hℓℓ . (1.23)

As far as the quark fields are concerned, the down quarks (d, s, b) are
treated in the same way as leptons; up quarks (u, c, t), instead, must couple
to the charge-conjugate of φ

φc = −iτ2φ∗ =
1√
2

(

φ3 − iφ4

−φ1 + iφ4

)

(1.24)

which becomes in the unitary gauge

φc =
1√
2

(

η + v
0

)

Therefore, the Yukawa Lagrangian is

LY = −GHℓLLφℓR −GHdQLφdR −GHuQLφ
cuR + h.c. . (1.25)

From Equation 1.23, the mass of a fermion (apart from neutrinos) and its
coupling constant to the Higgs boson are found to be

mf =
GHf√

2
v (1.26)

gHf =
GHf√

2
=
mf

v
. (1.27)

Being GHf free parameters, the mass of the fermions cannot be predicted
by the theory.
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1.3.3 Higgs Boson Mass

The Higgs boson mass is the only yet unknown free parameter of the SM.
The Higgs in fact has never been observed experimentally and its mass
cannot be predicted by the SM. It depends on the parameters v and λ,
but while the former can be estimated by its relation with the constant
GF of Fermi’s theory, the latter is characteristic of the field φ and cannot
be determined other than measuring the Higgs mass itself. However, both
theoretical and experimental constraints exist, including those from direct
search at colliders, in particular LEP and Tevatron.

Theoretical Constraints

Theoretical constraints to the Higgs boson mass [8] can be found by imposing
the energy scale Λ up to which the SM is valid, before the perturbation
theory breaks down and non-SM phenomena emerge. The upper limit is
obtained requiring that the running quartic coupling of Higgs potential λ
remains finite up to the scale Λ (triviality). A lower limit is found instead by
requiring that λ remains positive after the inclusion of radiative corrections,
at least up to Λ: this implies that the Higgs potential is bounded from
below, i.e. the minimum of such potential is an absolute minimum (vacuum
stability). A looser constraint is found by requiring such minimum to be
local, instead of absolute (metastability). These theoretical bounds on the
Higgs mass as a function of Λ are shown in Figure 1.2 [8]. If the validity

Figure 1.2: Triviality bound for different upper limits to λ (red lines). Vacuum
stability (blue dashed line) or metastability (blue dot-dashed line) bounds on the
Higgs boson mass as a function of the new physics scale Λ [8].
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of the SM is assumed up to the Plank scale (Λ ∼ 1019 GeV), the allowed
Higgs boson mass range is between 130 and 190 GeV, while for Λ ∼ 1 TeV
the Higgs mass can be up to 700 GeV/c2. On the basis of these results, the
Large Hardon Collider (Section 2.1) is designed for searches of the Higgs
boson up to masses of about 1 TeV/c2. If the Higgs particle is not found
in this mass range, then a more sophisticated explanation for the EWSB
mechanism will be needed.

Experimental Constraints

Bounds on the Higgs mass are also provided by measurements at LEP [9][10],
SLC [11] and Tevatron [12].

Direct searches at LEP-II allowed to set a lower limit of 114.4 GeV/c2

(95% C.L.) on the Higgs boson mass [13], while recent results from the
Tevatron experiments exclude the mass range of 158 to 175 GeV/c2 (95%
C.L.) [14]. Moreover, constraints on the Higgs boson mass can be extracted
indirectly from the measurement of other electroweak observables, which
have a logarithmic dependence on mH through the radiative corrections [15].
All the precision electroweak measurements performed by the four LEP ex-
periments and by SLD, CDF and D∅ [16][17] have been combined together
and fitted, assuming the SM as the correct theory and using the Higgs mass
as free parameter. The result of this procedure is summarised in Figure 1.3,
where the ∆χ2 of the fit, defined as ∆χ2 = χ2 − χ2

min, is plotted as a func-
tion of mH. The black, solid curve is the result of the fit, while the blue
band represents the theoretical uncertainty due to unknown higher order
corrections. The yellow area shows the regions excluded by LEP-II and
Tevatron measurements. The Tevatron exclusion, in particular, is derived
by the results shown in Figure 1.4.

The indirectly measured value of the Higgs boson mass, corresponding
to the minimum of the curve in Figure 1.3, is mH = 89+35

−26 GeV/c2, where
the errors represent the experimental uncertainty at 68% C.L. derived from
the black line, thus not taking the theoretical uncertainty into account.
An upper limit of 158 GeV/c2 can also be set at 95% C.L., including the
theoretical uncertainty. This limit increases to 185 GeV/c2 when including
the direct search limit of 114.4 GeV/c2. These results are model-dependent,
as the loop corrections take into account only contributions from known
physics, and are thus well-grounded only within the SM theory.

1.4 Higgs Boson Search at the LHC

The experiments at the LHC will search for the Higgs boson within a mass
range going from 100 GeV/c2 to about 1 TeV/c2. In this section, the main
Higgs production and decay processes are described, in order to determine
the most promising channels to look at for the Higgs discovery.
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While the Higgs boson mass is not predicted by the theory, its couplings
to fermions and bosons are predicted to be proportional to the corresponding
particle masses (for fermions) or squared masses (for bosons), as in Equa-
tions 1.19, 1.20 and 1.27. For this reason, the Higgs boson production and
decay are dominated by channels involving heavy particles, mainly the W±

and Z bosons and the third generation fermions. As for the remaining gauge
bosons, the Higgs does not couple to photons and gluons at tree level, but
only by one-loop graphs where the main contribution is given by qq̄ loops for
the gg → H channel and by W+W− and qq̄ loops for the γγ → H channel.

1.4.1 Higgs Production

The main processes contributing to the Higgs boson production at a proton-
proton collider are represented by the Feynman diagrams in Figure 1.5, and
the corresponding cross sections are shown in Figure 1.6, for centre-of-mass
energies of 7 and 14 TeV [18][19]. The former is the energy provided by the
LHC during the 2010 runs, the latter is the LHC design energy that will
be gradually reached in the next years. Figure 1.5d shows that the total
production cross section at 7 TeV is up to one order of magnitude lower
than at 14 TeV.

t

t

t

g

g

H0

(a)

W, Z

W, Z

q’,q

q

q’,q

H0

q

(b)

W, Z

q̄

q

W,  Z

H 0

(c)

t

t̄

t̄

t

g

g

H0

(d)

Figure 1.5: Higgs production mechanisms at tree level in proton-proton collisions:
(a) gluon-gluon fusion, (b) vector boson fusion, (c) W and Z associated produc-
tion (or Higgsstrahlung), and (d) tt̄ associated production.
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Figure 1.6: Cross sections for the different Higgs boson production channels, as
functions of the Higgs boson mass, at (a) 7 TeV and (b) 14 TeV LHC centre-of-
mass energy. (c) Comparison between the total cross sections at the two different
energies. These cross sections include QCD contributions up to NNLO and EW
contributions up to NLO.

Gluon-Gluon Fusion

The gluon-gluon fusion is the dominating mechanism for the Higgs boson
production at the LHC over the whole mass range, because of the high
luminosity of gluons. The process is shown in Figure 1.5a with a t quark-
loop, which is the main contribution, due to the large coupling constant gHt

(Equation 1.27). The latest results in the computation of the cross section
for this process, shown in Figures 1.6a and 1.6b and used in Chapter 5 of this
thesis, include next-to-next-to-leading order (NNLO) QCD contributions,
complemented with next-to-next-to-leading log (NNLL) resummation, and
next-to-leading order (NLO) electroweak corrections. An uncertainty of 15-
20% on the calulation of this cross section is assumed, mostly depending on
the choice of the parton density functions (PDFs, cf. Section 2.1.3) and on
the uncalculated higher-order QCD radiative corrections.
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Vector Boson Fusion

The vector boson fusion (VBF, Figure 1.5a) is the second contribution to
the Higgs boson production cross section. It is about one order of magnitude
lower than gg-fusion for a large range of mH values, and the two processes
become comparable only for masses of the order of 1 TeV/c2. Nevertheless,
this channel is very interesting because of its clear experimental signature:
the presence of two spectator jets with high invariant mass in the forward
region provides a powerful tool to tag the signal events and discriminate the
backgrounds, thus improving the signal to background ratio, despite the low
cross section. Also for this process, NNLO QCD and NLO EW calculations
are available. The uncertainties are in general lower than for the gluon fusion
mode, of 10% order.

Associated Production

In the Higgsstrahlung process (Figure 1.5c), the Higgs boson is produced
in association with a W± or Z boson, which can be used to tag the event.
The cross section for this process is several orders of magnitude lower than
those of gg-fusion and VBF. The cross section for this process is known at the
NNLO QCD and NLO EW level. The inclusion of all available contributions
increases the LO cross section by about 20-25%.

The last process, illustrated in Figure 1.5d, is the associated production
of a Higgs boson with a tt̄ pair. Also for this process, the cross section is
orders of magnitude lower than those of gluon and vector boson fusion. The
presence of the tt̄ pair in the final state can provide a good experimental
signature. For this cross section, NLO QCD calculation are available.

1.4.2 Higgs Decay

The branching ratios of the different Higgs boson decay channels are shown
in Figure 1.7 as functions of the Higgs mass. Fermion decay modes dominate
the branching ratio in the low mass region (up to about 150 GeV/c2). In
particular, the channel H → bb̄ is the most important contribute, since the b
quark is the heaviest fermion available. When the decay channels into vector
boson pairs open up, they quickly dominate. A peak in the H → W+W−

decay is visible around 160 GeV/c2, when the production of two on-shell
W bosons becomes possible and the production of a real ZZ pair is still not
allowed. At high masses, above 350 GeV/c2, also tt̄ pairs can be produced.

The most promising decay channels for the Higgs discovery do not only
depend on the corresponding branching ratios, but also on the capability of
experimentally detecting the signal rejecting the backgrounds. Such chan-
nels are illustrated in the following for different mass ranges.
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Figure 1.7: Branching ratio of different Higgs boson decay channels as a function
of the Higgs boson mass.

Low Mass Region

Though the branching ratio in this region is dominated by the decay into bb̄,
the background constituted by the di-jet production makes it quite difficult
to exploit this channel for a discovery. Some results from this channel can
be obtained when the Higgs boson is produced in association with a tt̄ or via
Higgsstrahlung, since in this case the event has a clearer signature, despite
its low cross section.

For masses below 130 GeV/c2, instead, the channel H → γγ seems to
be the most promising. In spite of its lower branching ratio, the two high
energy photons constitute a very clear signature, which only suffers from
the qq̄ → γγ and Z → e+e− backgrounds.

Intermediate Mass Region

For mass values between 140 and 180 GeV/c2, the Higgs boson decays into
WW(∗) and ZZ(∗) open up and their branching ratios quickly increase, so the
best channels in this mass region are H → WW(∗) → 2ℓ2ν and
H → ZZ(∗) → 4ℓ. The branching ratio of H → WW(∗) is higher, because
of the stronger coupling of the Higgs boson to charged current than to neu-
tral current. Moreover, this decay mode becomes particularly important in
the mass region between 2mW and 2mZ, where the Higgs boson can decay
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into two real W’s and not yet into two real Z’s, and its branching ratio is
close to one. On the other hand, this channel is disfavoured because of the
presence of the two neutrinos in the final state, which makes it impossible to
reconstruct the Higgs mass. Such measurement is possible, instead, if one W
decays leptonically and the other one decays into two quarks. In this case,
though, the final state suffers from the abundant hadronic background.

The decay channel H → ZZ∗ → 4ℓ, despite its lower branching ratio,
offers a very clear experimental signature and high signal to background
ratio. Furthermore, it allows to reconstruct the Higgs mass with high pre-
cision. Therefore, this channel is a good candidate for a discovery in this
mass range.

High Mass Region

This region corresponds to mass values above the 2mZ threshold, where the
Higgs boson can decay into a real ZZ pair. Though the H → ZZ width is still
lower than the H → WW one, the decay into four charged leptons (muons
or electrons) is certainly the “golden channel” for a high mass Higgs boson
discovery.

Higgs Total Decay Width

The total width of the Higgs boson resonance, given by the sum of the partial
widths of all possible decay channels, is shown in Figure 1.8 as a function
of mH. Below the 2mW threshold, the Higgs boson width is of the order of
the MeV/c2. Then it rapidly increases, but remains below 1 GeV/c2 up to
mH ∼ 200 GeV/c2. The low mass range is therefore the most challenging
region, because the Higgs width is dominated by the experimental resolution.

In the high mass region, mH > 2mZ, the total Higgs boson width is
dominated by the W+W− and ZZ partial widths, which can be written as
follows:

Γ(H→W+W−) =
g2

64π

m3
H

m2
W

√
1− xW

(

1− xW +
3

4
x2W

)

(1.28)

Γ(H→ZZ) =
g2

128π

m3
H

m2
W

√
1− xZ

(

1− xZ +
3

4
x2Z

)

(1.29)

where

xW =
4m2

W

m2
H

, xW =
4m2

Z

m2
H

.

As the mass grows, xW, xZ → 0 and the leading term in Equations 1.28
and 1.29 grows proportionally to m3

H. Summing over the W+W− and ZZ
channels, the Higgs resonance width in the high mass region can be written
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Figure 1.8: Total decay width of the Higgs boson as a function of its mass.

as

Γ(H→VV) =
3

32π

m3
H

v2
. (1.30)

From Equation 1.30, it results that ΓH ≃ mH for mH ≃ 1.4 TeV/c2. If
mH is larger than about 1 TeV/c2, therefore, it becomes experimentally
very problematic to separate the Higgs resonance from the VV continuum.
Actually, being the resonance width larger than its own mass, the Higgs
boson cannot be properly considered as a particle any more. In addition, if
the Higgs mass is above 1 TeV/c2, the SM predictions violate unitarity. All
these considerations suggest the TeV/c2 as a limit to the Higgs boson mass:
at the TeV scale at least, the Higgs boson must be observed, or new physics
must emerge.

1.5 Motivation for the LHC

The discovery of the mechanism that gives origin to the mass of all known
particles requires a machine able to span the energy range from about
100 GeV to 1-2 TeV, and to investigate processes with cross sections down
to some tens of fb.

The main goal of the LHC project is certainly the search for the SM
Higgs boson and the study of its properties, or the investigation of some
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alternative EWSB mechanism. Other physics motivations for the LHC are
summarised in the following.

Physics beyond the SM. There are strong motivations to think that the
SM is not the ultimate theory of particle interaction, but only a well
tested low energy approximation of some more fundamental theory.
One reason is the presence in the SM of “too many” free parameters
for a fundamental theory: there are at least 19 of them, 7 more if
non-vanishing neutrino masses are assumed, and most of these are in-
troduced by the Higgs mechanism.
A stronger reason is that, unless some fine tuned cancellation took
place, the Higgs boson mass suffers from a divergent radiative cor-
rection proportional to a high energy cut-off. The presence of new
physics, such as the Supersymmetry (SUSY), can give physical reasons
to the cancellation of the Higgs mass divergent correction (SUSY, on
the other hand, introduces even more free parameters than the SM, at
least 124, depending on the models).
Moreover, Grand Unification Theories (GUTs) predict that the run-
ning coupling constants of the three fundamental interactions, extrap-
olated to a very high energy scale (1016 GeV), unify to a single value:
this does not occur, unless some new phenomena arise at an interme-
diate scale. SUSY, e.g., predicts the existence of a number of new
particles at the TeV scale, which are thus accessible at the LHC: par-
ticles with masses up to 3-5 TeV/c2 can be observed, depending on
the total integrated luminosity.

Precision Measurements. The LHC is a factory of heavy particles, such
as W and Z bosons and t and b quarks: the huge amount of events
that can be collected, thanks to the high luminosity and centre-of-mass
energy, allows all sort of precision measurements: W mass, WWγ and
WWZ triple gauge couplings, mass and decay properties of t quarks,
measurement of the strong coupling constant αS , CP violation, and
many others.

Heavy ion physics. When running as a heavy ion (208Pb82+) collider, the
LHC allows to study the phase transition from hadronic matter to a
plasma of deconfined quarks and gluons, the quark-gluon plasma or
QGP.



Chapter 2

The CMS detector at the

LHC

2.1 The Large Hadron Collider

The LHC [20] is an unprecedent machine in terms of energy, luminosity, size
and complexity of experiments, cost and human resources.

On 23 November 2009, the accelerator produced the first proton-proton
collisions. After few pilot runs at energies of 450 GeV and 1.18 TeV per
beam, the energy was ramped up to 3.5 TeV and, on 30 March 2010, the
first collisions at a centre-of-mass energy of 7 TeV, the highest ever reached
at a particle collider, were recorded by the four main experiments. With
this energy, about 47 pb−1 of integrated luminosity were delivered dur-
ing 2010 (see Figure 2.1a), with a maximum instantaneous luminosity of
2 · 1032 cm−2 s−1.

In November 2010, the first lead ion beams were circulated in the LHC.
In one month, between November and December, about 8 µb−1 of Pb-Pb
collisions were delivered (see Figure 2.1b), at a centre-of-mass energy of
574 TeV (7 TeV per proton pair, 2.76 TeV per nucleon pair), the highest
ever touched in heavy ion experiments.

In the next years, the LHC will progressively increase its energy and
instantaneous luminosity, reaching eventually the design values of 14 TeV,
7 times the highest energy reached so far at Tevatron, and 1034 cm−2 s−1,
about two orders of magnitude more than the luminosity of previous ma-
chines. The design lifespan of LHC is of 10 years.

2.1.1 The Accelerator

The LHC is placed in the already existent 26.7 km long LEP tunnel, situated
about 100 m depth underground on the French-Swiss border. The main
design characteristics of the machine are listed in Table 2.1.

21
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(a) (b)

Figure 2.1: Integrated luminosity delivered by the LHC (in red) and recorded by
CMS (in blue) in (a) proton-proton and (b) lead-lead collisions.

Parameter p-p Pb-Pb

Circumference [km] 26.659

Beam radius at interaction point [µm] 15

Dipole peak field [T] 8.3

Design centre-of-mass energy [TeV] 14 1148

Design Luminosity [cm−2 s−1] 1034 2 · 1027
Luminosity lifetime [h] 10 4.2

Number of particles per bunch 1.1 · 1011 ∼ 8 · 107
Number of bunches 2808 608

Bunch length [mm] 53 75

Time between collisions [ns] 24.95 124.75 · 103
Bunch crossing rate [MHz] 40.08 0.008

Table 2.1: LHC design parameters for p-p and Pb-Pb collisions.

Since collisions occur between particles of the same charge, two sepa-
rate acceleration cavities with two different magnetic field configurations
are required. The bending power needed to keep the beam circulating is the
limiting factor to the achievable centre of mass energy. In fact, from the
equation

p [TeV/c] = 0.3 ·B [T] · ρ [km] ,

where p is the beam momentum, B the magnetic field and ρ the radius of
the ring, one can deduce that the bending power required for p = 7 TeV/c is
about 5.4 T. In practice, since it is not possible to fill the whole machine with
magnets, the needed power is obtained by using about 1200 superconducting
dipoles operating at 1.9 K, each providing a field of about 8.3 T. Boosts will
be given by 400 MHz superconducting radiofrequency cavities with a voltage
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ranging between 8 and 16 MV. The channels for the two beams acceleration
are inserted in a single cryostat.

The event rate R of a process with cross section σ is given by

R = L · σ ,
where L is the instantaneous luminosity of the machine, defined as the num-
ber of collisions per unit time and cross-sectional area of the beams [21]:

L = f
n1n2

4πσxσy
;

σx and σy characterise the Gaussian transverse beam profiles in the hori-
zontal and vertical directions.

Cross sections and event rates for the main processes produced at the
LHC are reported in Figure 2.2 as functions of the centre-of-mass energy.
The high LHC luminosity, already mentioned in previous sections, is a fun-

Figure 2.2: Cross sections and event rates of several processes as functions of the
centre-of-mass energy of p-p collisions. The LHC design luminosity is consid-
ered.

damental requirement to compensate for the low Higgs boson production
cross sections. Such luminosity has the drawback that the total event rate
becomes so high that several interactions overlap in the same bunch cross-
ing. This effect is referred to as pile-up, and also accounts for the overlap
in the detector of signals from different bunch crossings, due to the limited
velocity of detector response and read-out. At the design luminosity, about
20 interactions per bunch crossing will occur.
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2.1.2 Definition of Kinematic Variables

Before proceeding, it is useful to introduce some general definitions and
variables, largely used to describe the phenomenology at hadron colliders.

As will be shown in Section 2.2 and in Figure 2.4 for the case of CMS, the
kinematics of the particles produced in collisions can be described by means
of a Cartesian reference frame, centered in the interaction point and with
the z axis tangent to the beam line. The x axis is chosen to be horizontal
and pointing towards the centre of the ring, and the y axis is vertical and
pointing upwards. The direction of the z axis, i.e. the direction of the beam,
is referred to as longitudinal. The x-y plane, orthogonal to the beam line, is
called transverse plane.

Based on these definitions, the momentum of a particle can be divided
in two components: the longitudinal momentum pz and the transverse mo-
mentum pT, defined as

pT =
√

p2x + p2y . (2.1)

The rapidity of a particle of energy E is defined as

y =
1

2
ln
E + pz
E − pz

. (2.2)

Rapidity has the property of being additive under Lorentz boosts along the
z direction, i.e. it is simply shifted by a constant when subjected to such
transformations. For high energy particles, rapidity can be approximated
by pseudorapidity

η = − ln

(

tan
θ

2

)

, (2.3)

which only depends on the polar angle θ of the particle momentum, i.e. its
angle with respect to the z axis.

2.1.3 Phenomenology of Proton-Proton Collisions

At the nominal centre of mass energy of 14 TeV, the total inelastic proton-
proton cross section σpp is about 80 mb, therefore an interaction rate of
about 109 Hz is foreseen. These events include two classes of interaction:

• soft collisions: large distance collisions between two incoming protons,
in which only a small momentum is transferred; particle scattering
at large angle is thus suppressed, and the final state particles have
small transverse momentum, 〈pT〉 ≃ 500 MeV/c, so that most of them
escape down the beam pipe;

• hard collisions: since protons are not elementary particles, occasion-
ally collisions with high transferred pT occur between two of their
constituents (partons, i.e. quarks and gluons). These interactions rep-
resent the interesting physics events, where massive particles may be
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created. The rate of hard interactions, though, is several orders of
magnitude lower than that of soft interactions.

In hard interactions, the effective centre-of-mass energy
√
ŝ, i.e. the centre-

of-mass energy of the two interacting partons, is proportional to the fractions
xa and xb of proton energy carried by the two partons:

√
ŝ =

√
xa xb s ,

where
√
s is the centre-of-mass energy of the proton beams. The distribu-

tions of the fractional momentum of partons inside the protons are called
parton distribution functions (PDFs). They are different for each type of
parton and are functions of the exchanged momentum, Q2. At high Q2,
the contribution of gluons and sea quarks increases with respect to that of
valence quarks. PDFs are measured in Deep Inelastic Scattering (DIS) ex-
periments and different models are available. In Figure 2.3, for example, the
CTEQ4M PDFs [22] are shown for two different values of Q2.

0

0.5

1

1.5

2

10
-4

10
-3

10
-2

10
-1

1
x

x
f(
x
,Q
2
)

0

1

2

3

4

10
-4

10
-3

10
-2

10
-1

1
x

x
f(
x
,Q
2
)

Figure 2.3: CTEQ4M PDFs for Q2 = 20GeV2/c2 (left) and Q2 = 104GeV2/c2

(right).

The event reconstruction is limited by the fact that the two interact-
ing partons have variable and unknown momenta, so no constraints can be
applied on the total momentum of final state particles. Assuming that the
transverse momenta of partons are negligible, though, the total transverse
momentum in the final state must be zero. The longitudinal momentum,
instead, remains unconstrained.

Another important consequence is that the centre of mass of the in-
teraction may be boosted along the beam direction. For this reason, it is
necessary to use quantities which have invariance properties under boosts
along this direction, such as the transverse momentum (Equation 2.1) and
the rapidity (Equation 2.2). Given the high energy of the particles under
study, rapidity is usually replaced by pseudorapidity (Equation 2.3).

Particles produced in soft collisions are mostly distributed at high ra-
pidity. However, the soft interaction rate is so large that the residual tail
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at high pT is competitive with the hard interaction rate, and constitutes a
background to high pT signal events.

2.2 The CMS Experiment

The Compact Muon Solenoid (CMS) [23][24] is one of the two general pur-
pose detectors which will operate at LHC. Its physics goals range from the
search for the Higgs boson to the searches for new physics beyond the SM and
to precision measurements of already known physics. To achieve these goals,
excellent lepton reconstruction and particle identification are required. The
main features of the CMS detector are the 4 T superconducting solenoid,
which allows a compact design with a strong magnetic field, a robust and
redundant muon system, a good electromagnetic calorimetry and a high
quality tracking system.

The overall structure of CMS consists of several cylindrical layers coaxial
to the beam axis (the barrel layers), closed at both ends by detector disks
orthogonal to the beam direction (the endcaps), to ensure an optimal her-
meticity. The overall length is 21.6 m, the diameter 14.6 m and the total
weight about 14 500 t. Schematic views of the CMS detector are shown in
Figures 2.5 and 2.6.

The CMS coordinate system (see Figure 2.4) used to describe the detec-
tor geometry is a right-handed Cartesian frame, with the z axis coincident
with the beam direction, the z axis pointing to the centre of the LHC ring
and the y axis directed upwards. Because of the cylindrical symmetry of
the CMS design, the reconstruction algorithms use a cylindrical coordinate
system (r, φ, η), r being the distance from the z axis, φ the azimuthal co-
ordinate with respect to the x axis, and η the pseudorapidity defined by
Equation 2.3.

As already mentioned, the core of the apparatus is the magnet, which
contains, from inside out, the following detectors:

• the tracker, made of a silicon pixel detector in the inner region, closest
to the beam, and of silicon microstrip detectors in the outer region,
used to reconstruct charged particle tracks and primary and secondary
interaction vertices;

• the electromagnetic calorimeter (ECAL), which allows for precise mea-
surement of electron and photon energies; it is made of lead tungstate
(PbWO4) scintillating crystals, both in the barrel and in the endcaps,
and extended by a forward preshower detector ;

• the hadron calorimeter (HCAL), used for jet direction and transverse
energy measurements, extended in the forward region with the “very
forward calorimeter”.



2.2 The CMS Experiment 27

Figure 2.4: A three dimensional view of the CMS detector with the conventional
coordinate system.
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Figure 2.6: A transverse view of the CMS barrel region.
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Outside the magnet coil, the iron return yoke of the magnet hosts the muon
spectrometer, used for reconstruction of muon tracks: drift tubes (DT) in
the barrel and cathode strip chambers (CSC) in the endcaps, complemented
overall by resistive plate chambers (RPC), to ensure redundancy and ro-
bustness to the muon trigger.

2.2.1 The Magnet

The CMS magnet [25] is a 13 m long superconducting solenoid, the largest
ever built. It is able to generate a uniform magnetic field of 4 T in the inner
region, storing about 2.5 GJ of energy (Figure 2.7).

It operates at a temperature of 4 K, ensured by a sophisticated helium
cooling system. At such temperature, the flat NiTb cable becomes super-
conducting, allowing a 20 kA current to flow without appreciable loss. The
whole magnet is then contained in an enormous vacuum cylinder, which
isolates it from the external environment.

Outside, an iron structure composed by five barrel layers and three disks
for each endcap constitutes the iron yoke, needed to bridle the return mag-
netic field, which otherwise would get lost, causing disturbances.

The CMS magnet provides a large bending power, allowing a precise
measurement of the transverse momentum of charged particles. A further
and independent pT measurement outside the solenoid is possible thanks to
the iron yoke, which surrounds the muon chambers.

Figure 2.7: Layout of the magnetic field of CMS [26].
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Figure 2.8: Longitudinal view of one quarter of the silicon tracker, including the
pixel detector.

2.2.2 The Tracker

The tracker [27] (see Figure 2.8), which is the innermost subdetector and
the closest to the interaction point, is dedicated to track and vertex recon-
struction. It extends in the region |η| < 2.5, r < 120 cm, |z| < 270 cm, and
it is completely based on silicon detectors, covering a surface of 210 m2, the
largest ever designed for detectors of this kind.

The CMS tracker has to satisfy some important physics requirements:

• an efficient reconstruction of isolated lepton tracks: in the |η| < 2
region, the efficiency is close to 100% (Figure 2.9a);

• a good lepton momentum resolution: for |η| < 2, σ(pT)/pT < 4%
for single muons in a large range of pT values (Figure 2.9b and also
Sections 4.2.4 and 4.3.2);

• reconstruction of interaction vertex and identification of secondary ver-
tices (Figures 2.9c and 2.9d): this task is essential for tagging and
reconstruction of b-jets and, therefore, for top physics, CP violation
and new physics studies.

In order to fulfill all these tasks and perform a good pattern recognition,
two main properties have driven the tracker design:

• low cell occupancy: this requires high granularity detectors, especially
those closer to the interaction point, and fast primary charge collec-
tion, obtained by using thin detectors and overdepleting the silicon
bulks;

• large hit redundancy: ten layers of silicon detectors provide many
measured hits (12-14) per track.

These properties allow for a high tracking efficiency and a low rate of fake
tracks.
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Figure 2.9: (a) Tracking efficiency vs. |η|, in data and simulation, estimated using
the tag-and-probe method with muons from J/ψ decays [28]. (b) Transverse mo-
mentum resolution vs. |η| for simulated muons with pT = 1, 10 and 100 GeV/c.
(c) Transverse impact parameter resolution vs. |η|, in data and simulation, for
different muon momenta. (d) Transverse impact parameter resolution vs. pT,
in data and simulation, for |η| < 0.4 [29].
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Moreover, several material budget constraints are imposed by the ne-
cessity to minimise electron bremsstrahlung and hadronic interactions, not
to degrade tracking and ECAL performances. The region with the high-
est amount of material is the transition region between barrel and endcap
(1 < |η| < 2), due to the high density of cables.

Finally, both pixel and microstrip detectors have to be kept at a working
temperature of −10 ◦C for the whole tracker volume, in order to limit the
radiation damage to silicon sensors, due to the high flux of hadrons and
backscattered neutrons1.

Pixel Detector

The pixel detector (Figure 2.10) consists of three barrel layers and two
endcap disks for each side. The barrel layers, 53 cm long, are placed at
r = 4.4, 7.3 and 10.2 cm. The first layer will be replaced by an outer layer
at r = 13 cm during the high luminosity phase, to reduce the radiation
damage. The two disks of each endcap consist of 24 blades, arranged in a
turbine-like shape, having the inner radius of 6 cm and the outer of 15 cm.
The total area covered with pixels is about 0.92 m2.

Figure 2.10: The pixel detector. The barrel section and the two disks of the end-
caps are visible.

The inner detector provides at least two hits for tracks originating within
2σz from the nominal interaction vertex, in the pseudorapidity region
|η| < 2.2. Due to the high density of tracks, 100 × 150 µm2 pixels are
used to ensure low cell occupancy. A spatial resolution of about 10 µm in
the r-φ plane and 15 µm in the z coordinate can be achieved in the barrel,
about 15 µm and 20 µm respectively in the endcaps.

1Backscattering of neutrons from nuclear interactions in the material of ECAL.
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Silicon Microstrip Detector

The silicon microstrip detector is divided in two main regions. The inner
region is made of 4 barrel layers (tracker inner barrel or TIB) and 3 disks at
each side (tracker inner disks or TIDs). The outer system, instead, consists
of 6 barrel layers (tracker outer barrel or TOB) and 9 disks for each endcap
(tracker endcaps or TECs). It covers a radial region between 20 and 120 cm
and the pseudorapidity region |η| < 2.5.

All four regions (TIB, TID, TOB, TEC) are provided with both single-
sided and double-sided microstrip modules. The strips are oriented along
the z direction in the barrel and along the r coordinate in the endcaps. The
microstrip detector is designed to provide a spatial resolution of about 40-
60 µm in the r-φ plane and about 500 µm along z. The occupancy is lower
than 1%.

2.2.3 The Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) [30] is made of 74 848 lead tungstate
(PbWO4) crystals, chosen because of their excellent energy resolution.

The lead tungstate is characterised by a high density (8.28 g/cm3) and
a short radiation length (X0 = 0.89 cm), so the calorimeter is very com-
pact and can be placed inside the magnetic coil. Furthermore, it has a
small Molière radius (2.2 cm), which gives the ECAL a very fine granu-
larity, needed because of the high particle density produced at the LHC.
Moreover, these crystals are characterised by a very short scintillation de-
cay time, which allows to collect about 80% of the light within 25 ns, so
that they can be used at the crossing rate of 40 MHz.

The ECAL barrel covers the central rapidity region (|η| < 1.48) and the
two ECAL endcaps extend the coverage up to |η| = 3 (Figure 2.11).

Figure 2.11: Longitudinal view of one quarter of the CMS ECAL.
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The crystals have a trapezoidal shape and are arranged in a η-φ grid
in the barrel and a x-y grid in the endcaps. The barrel crystals have a
front face area of 2.2 × 2.2 cm2 (thus matching the Molière radius), 23 cm
length and are positioned at r = 1.29 m. Hence the total depth of ECAL
barrel is 25.8X0, and the transverse granularity is ∆η × ∆φ = 0.0175 ×
0.0175 rad. In the endcaps, crystals have 2.47 × 2.47 cm2 front face, 22 cm
length (corresponding to 24.7X0) and are positioned at z = 3.17 m. Both
in the barrel and in the endcaps, the crystals are tilted of about 3◦ in η
and in φ, thus giving the structure a geometry slightly off-pointing from the
interaction region, in order to improve the hermeticity of the detector.

For trigger purposes, the ECAL crystals are grouped together into 68
trigger towers, whose boundaries line up with the subdivisions of the HCAL.

In the endcaps, a preshower device with higher granularity, consisting
of two lead radiators and two planes of silicon strip detectors, are used
to distinguish between showers initiated by neutral pions and photons, or
charged pions and electrons.

The relatively low light yield of the crystals (about 30 γ/MeV) requires
photodetectors with intrinsic high gain that can operate in a magnetic field.
Silicon Avalanche Photodiodes (APDs) and Vacuum Phototriodes (VPTs)
are used to collect the scintillation light in the barrel and in the endcaps,
respectively.

The energy resolution of a calorimeter can be parametrised as
(

σ

E

)2

=

(

a√
E

)2

+

(

σn
E

)2

+ c2

where a is called stochastic term and includes the effects of fluctuations in the
number of photo-electrons, as well as in the shower containment; σn is the
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noise from the electronics and pile-up; and c is a constant term related to the
calibration of the calorimeter. The values of the three constants measured
on test beams are reported in Table 2.2. The different contributions are
shown in Figure 2.13.
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Figure 2.13: Different contributions to the energy resolution of the ECAL. The
curve labelled “intrinsic” includes the shower containment and a constant term
of 0.55%.

Contribution Barrel (η =0) Endcap (|η| =2)

Stochastic term 2.7%/
√
E 5.7%/

√
E

Constant term 0.55% 0.55%
Noise (high luminosity) 0.155 GeV 0.205 GeV
Noise (low luminosity) 0.210 GeV 0.245 GeV

Table 2.2: Contribution to the energy resolution of ECAL (the energy E is ex-
pressed in GeV).

2.2.4 The Hadronic Calorimeter

The hadronic calorimeter (HCAL) [31] plays an essential role in the identifi-
cation and measurement of hadrons and neutrinos by measuring the energy
and direction of jets and missing transverse energy flow in the event. One of
the main design requirements for the HCAL is therefore a high hermeticity.
In particular, the HCAL angular coverage must include the very forward
region, since the identification of forward jets is very important for the re-
jection of many backgrounds.

The CMS HCAL is thus subdivided in four regions, which provide a good



36 The CMS detector at the LHC

segmentation, a moderate energy resolution and a full angular coverage up to
|η| = 5. The barrel hadronic calorimeter (HB) surrounds the electromagnetic
calorimeter and covers the central pseudorapidity region up to |η| = 1.3. The
end regions are covered up to |η| = 3 by the two endcap hadron calorimeters
(HE). The HB and HE are located inside the solenoid magnet. To satisfy
the hermeticity requirements, then, two forward hadronic calorimeters (HF)
surround the beam pipe at |z| = 11 m, extending the pseudorapidity coverage
up to |η| = 5. Finally, an array of scintillators located outside the magnet,
which is referred to as the outer hadronic calorimeter (HO), is used to
improve the central shower containment.

The overall HCAL is assembled with essentially no uninstrumented cracks
or dead areas. Even the gap between the HB and the HE, through which
the services and cables of the ECAL and the tracker pass, is inclined at 53◦

and points away from the centre of the detector.
The HB and HE are sampling calorimeters with active plastic scintilla-

tors interleaved with brass plates. This absorber material has been chosen
because of its reasonably short interaction length. Moreover, it is non-
magnetic.

The read-out system is composed of wavelength-shifting fibres. Apart
from the first layer, which is read out separately, all the other layers are read
out together in towers of ∆η × ∆φ = 0.087 × 0.087 rad.

The HCAL depth, in terms of nuclear absorption length, goes from
5.15λ0 at η = 0 to 9.1λ0 at |η| = 1.3, and is 10.5λ0 in the endcaps. In
the barrel region, such depth is not enough to contain the full shower. This
is the reason why an additional “tail catcher”, the HO, is placed outside the
magnet.

The energy resolution (epressed in GeV) is

σE/E ∼ 65%
√
E ⊕ 5%

in the barrel,
σE/E ∼ 85%

√
E ⊕ 5%

in the endcaps, and
σE/E ∼ 100%

√
E ⊕ 5%

in the very forward calorimeter.

2.2.5 The Muon System

The muon spectrometer [32] is placed outside the magnet and is embedded
in the iron return yoke (see Figure 2.14), so that the 1.8 T average magnetic
return flux can be used as bending field to enhance muon pT measurements.

The muon spectrometer has three purposes:

• muon identification: muons are the only charged particles which can
go through the whole detector, thanks to their high penetrating power;
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Figure 2.14: Longitudinal view of one quarter of the CMS muon spectrometer.

• muon trigger: high pT muons provide a clear signature for many
physics processes;

• muon momentum measurement: in combination with the tracker, the
muon spectrometer is used to determine muon pT.

Both the barrel and the endcaps of the muon system are made up of four
stations. Three different and complementary detection technologies have
been used: the barrel muon system uses drift tube chambers (DTs), while
the endcaps use cathode strip chambers (CSCs); in both regions, the tracking
detectors are complemented with the use of resistive plate chambers (RPCs).
The reason for these different choices lies in the different particle rates and
occupancies, both higher in the endcaps, and in the intensity of the magnetic
field, lower in the barrel.

Drift Tubes Chambers

In the barrel region, the expected occupancy is low (< 10 Hz/cm2), allowing
for the use of drift tubes as detection element. In Figure 2.15, a section of
a drift tube cell is illustrated.

The DT chamber design is very redundant: each chamber is made up
of twelve layers of DTs, grouped in three independent subunits, called su-
perlayers (SLs). Two of them have the anode wires parallel to the beam
axis, to measure the transverse coordinate r-φ; the remaining SL is placed
between the other two and is orthogonal to them, in order to determine
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Figure 2.15: Section of a drift tube cell.

the longitudinal coordinate z. The structure of a DT chamber is shown in
Figure 2.16.

Figure 2.16: Schematic view of a DT chamber, also showing the different orien-
tation of the SLs.

The DTs are made of parallel aluminium plates, with cells obtained
with perpendicular “I” shaped aluminium cathodes. The anodes are 50 µm
diameter steel wires placed between the cathodes. Field shaping is improved
with two biased and insulated strips in correspondence to the wire. The
internal volume is filled with a gas mixture of Ar (85%) and CO2 (15%) at
atmospheric pressure, because this gas is non-flammable and can be safely
used in underground operations in large volumes, as required in CMS.

The single hit position resolution is about 260 µm at nominal voltage
values, with a single cell efficiency close to 100%. The angular resolution of
the full chamber is about 1.8 mrad in the bending plane [33].
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Cathode Strip Chambers

Due to the larger occupancy of the endcap regions, from few Hz/cm2 to
more that 100 Hz/cm2, and the intense and non uniform magnetic field,
cathode strip chambers have been chosen in this region. The CSCs are
multiwire proportional chambers with one cathode plane segmented in strips
running orthogonal to the wires. An avalanche developed on a wire induces
a distributed charge on the cathode plane. The orthogonal orientation of
the cathode strips with respect to the wires allows the determination of two
coordinates from a single plane (see Figure 2.17). Each chamber is formed
by six trapezoidal layers, with strips in the radial direction for a precise
measurement of the azimuthal coordinate φ.

muon
cathode

cathode

wires

wires

induced charge

cathode with strips

plane cathode

avalanche

3.12 mm

9.
5 

m
m

3 - 16 mm

Figure 2.17: Orthogonal sections of a cathode strip chamber.

Wires have a resolution of about 0.5 cm, strips about 50 µm. The full
chamber spatial resolution varies from about 50 µm in the first CSC station
to about 250 µm in the fourth [34].

Resistive Plate Chambers

Resistive plate chambers are installed both in the barrel and the endcap
regions. They have a limited spatial resolution, but an excellent time reso-
lution, thanks to their fast response of about 3 ns. This feature makes the
RPCs suitable for trigger purposes: they are used as a dedicated trigger
subsystem, mainly for unambiguous bunch crossing identification.

The RPCs (Figure 2.18) used in CMS are “double-gap” RPCs, made
of four bakelite planes forming two coupled gaps 2 mm thick, filled with
a C2H2 F4 and C4H10 gas mixture. They operate in avalanche mode: a
moderate electric field across the gap allows to sustain a higher rate, but a
robust front-end signal amplification is needed, since the gas multiplication
is reduced.
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Figure 2.18: Section of a double gap resistive plate chamber.

2.2.6 The Trigger System

At the nominal luminosity of 1034 cm−2 s−1, an average of 17 interactions per
bunch crossing are expected, resulting in an event rate of 109 Hz. Technical
difficulties in handling, storing and processing extremely large amounts of
data impose a limit of about 100 Hz on the rate of events that can be written
to permanent storage. The goal of the CMS trigger system is therefore to
reduce the data by a factor of 107 (see Figure 2.19).
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Figure 2.19: Cross sections and event rates at the LHC design luminosity as func-
tions of particle masses. The L1 and HLT input and output rates are indicated.
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The selection of the events is based on their physics content, so the on-
line algorithms must have a level of sophistication comparable to that of
the off-line reconstruction. On the other hand, the time available to accept
or reject an event is extremely limited, given the bunch crossing time of
25 ns. In such a short time interval, it is impossible to read out all raw
data from the detector. For this reason, CMS adopts a multi-level trigger
design, where each step of the selection uses only part of the available data.
In this way, higher trigger levels have to process fewer events and can use
more refined algorithms to perform a detailed reconstruction.

The CMS trigger is structured in two physical levels: the Level-1 Trigger
(L1) [35] and the High Level Trigger (HLT) [36]. The L1 is based on custom-
made hardware and uses only coarsely segmented data from calorimeters and
muon detectors, while all the high-resolution data is held in pipeline memo-
ries in the front-end electronics. A schematic representation of the L1 trigger
is provided in Figure 2.20. The HLT, instead, is software implemented in
a single processor farm, and is organised in several logical levels of increas-
ing complexity, each accessing more data than the previous one. A more
detailed description of the muon HLT is given in Section 3.8.
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Figure 2.20: Structure of the Level-1 Trigger system.
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Chapter 3

Muon Reconstruction

Muon detection and reconstruction play a key role in the CMS physics pro-
gram, both for the discovery of new physics and for precision measurements
of SM processes. CMS has been designed for a robust detection of muons
over the entire kinematic range of the LHC and in a condition of very high
background. The muon system allows an efficient and pure identification of
muons, while the inner tracker provides a very precise measurement of their
properties. An excellent muon momentum resolution is made possible by the
high-field solenoidal magnet. The steel flux return yoke provides additional
bending power in the muon spectrometer, and serves as a hadron absorber
to facilitate the identification of muons.

Several muon reconstruction strategies are available in CMS, in order to
fulfill the specific needs of different analyses. The reconstruction of muons
consists of three main stages:

• local reconstruction (Section 3.2): in each muon chamber, the raw data
from the detector read-out are reconstructed as individual points in
space; in CSC and DT chambers, such points are then fitted to track
stubs (segments);

• stand-alone reconstruction (Section 3.3): points and segments in the
muon spectrometer are collected and fitted to tracks, referred to as
“stand-alone muon tracks”;

• global reconstruction (Section 3.4): stand-alone tracks are matched to
compatible tracks in the inner tracker and a global fit is performed
using the whole set of available measurements: the resulting tracks
are called “global muon tracks”.

Muon identification (Section 3.5) represents a complementary approach
with respect to global reconstruction: it starts from the inner tracker tracks
and flags them as muons by searching for matching segments in the muon
spectrometer. The muon candidates produced with this strategy are referred
to as “tracker muons”.

43
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After the completion of both algorithms, the reconstructed stand-alone,
global and tracker muons are merged into a single software object, with
the addition of further information, like isolation and energy collected in
matching calorimeter towers. This information can be used for further iden-
tification, in order to achieve a balance between efficiency and purity of the
muon sample.

The three steps of global muon reconstruction and the muon identifica-
tion are discussed in more detail in Sections 3.2 to 3.5. Particular emphasis
is placed on the description of stand-alone reconstruction and of its devel-
opment, which represents an important part of the work reported in this
thesis.

3.1 Simulation of Muon Samples

Throughout this chapter, several samples of simulated muons are used. All
samples are produced with a full Monte Carlo simulation of the CMS detec-
tor response, based on geant [37].

The performance of the reconstruction algorithms (Sections 3.3 to 3.5)
is tested on single-muon Monte Carlo samples, generated with pythia [38]
at different transverse momentum values. These samples are produced with
“ideal conditions”, i.e. using the CMS design geometry and considering per-
fect detector alignment and calibration. Muons have a flat η distribution,
between -2.5 and 2.5.

In Section 3.7, the performance of muon reconstruction observed in 2010
CMS data is compared with the expected performance in simulation. For
this purpose, J/ψ → µ+µ− and Z → µ+µ− events are generated with a
“start-up scenario”, i.e. with the realistic alignment and calibration con-
ditions at the beginning of data taking [39][40][41]. The J/ψ samples are
generated with pythia, and contain both prompt and non-prompt J/ψ, in
proportion to the respective cross sections. Non-prompt J/ψ from decays
of B+, B0 and Bs are considered. The Z samples are generated with alp-

gen [42], but using pythia for the hadronisation and showering phases.

3.2 Local Reconstruction

Local reconstruction is the reconstruction of basic hits and segments in in-
dividual muon chambers, starting from the output of the Data Acquisition
system. The results are track segments in the DTs and CSCs and individual
points in the RPCs.

All the measurements reconstructed in the muon system, as well as in
the inner tracker, are generally referred to as “reconstructed hits” and im-
plemented in the reconstruction software with a common interface, called
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“TrackingRecHit”. Points and segments, despite their differences, are all
instances of this general class, giving great flexibility to the fitting algorithm.

3.2.1 Local Reconstruction in the DTs

Local reconstruction in the DTs [33] begins with the reconstruction of mono-
dimensional hits in individual drift cells. The only information contained
in these hits is their distance from the anode, with an intrinsic left/right
ambiguity and without any information about their position along the wire.

The cell hits are the starting point for the reconstruction of segments in
the r-φ and r-z projections separately. These two-dimensional segments still
do not provide any information about the coordinate along the sense wires,
but they allow the measurement of the track angle in the measurement plane
(orthogonal to the wires).

The 3D position and direction of the muon crossing the chamber are
obtained combining the two projections. The resulting three-dimensional
segments have an angular resolution of about 0.7 mrad in φ and about
6 mrad in θ [33].

3.2.2 Local Reconstruction in the CSCs

Each CSC plane measures a point in two dimensions. The radial coordinate
r is measured by the wires, the azimuthal coordinate φ by the strips. To
obtain a precise measurement, the charge distribution of a cluster of three
neighbouring strips is assigned a position according to a look-up table. The
tabulated positions are pre-determined by fits of charge distributions with
the so-called “Gatti function” [43].

The hits in a chamber are used to fit a three-dimensional straight line
segment (made of up to six points). The position resolution of segments
varies from about 50 µm in the first CSC station to about 250 µm in the
fourth [34]. The directional resolution varies with the chamber type, with
an average of about 40-50 mrad in φ, slightly worse in θ.

3.2.3 Local Reconstruction in the RPCs

The RPCs are characterised by an excellent time resolution, of the order of
few nanoseconds, while their spatial resolution is limited by the strip pitch.
In each chamber, the two coordinates (φ and z in the barrel, φ and r in
the endcaps) and their uncertainties are obtained by clusterising the fired
adjacent strips and computing their centroid, assuming a uniform charge
distribution on the area of the strips. The resolution on φ is around 1 cm,
while the orthogonal coordinate is only constrained by the strip length [44].
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3.3 Stand-Alone Reconstruction

The reconstruction of a track in the muon spectrometer starts from an ini-
tial state, called seed, estimated from DT and CSC segments in the off-line
reconstruction (Section 3.3.1) and from the parameters of the Level-1 trig-
ger candidates in the on-line reconstruction (Section 3.8.1). The track is
then extended using an iterative algorithm which, at each step, collects the
compatible hits in a chamber and updates the trajectory parameters (Sec-
tion 3.3.2). Once all the tracks are built and possible duplicates or ghosts
removed (Section 3.3.3), the remaining tracks are extrapolated to the point
of closest approach to the beam line. In order to improve the momentum
resolution, a beam spot contraint can be applied (Section 3.3.4).

3.3.1 Seed

The seeding algorithm takes DT and CSC segments as input and combines
them to produce a set of initial states which are the starting point for the
reconstruction of muon tracks.

First, a pattern of segments in the stations is searched for, using rough
geometrical criteria. For a pattern, which may also consist of just one seg-
ment, the pT of the seed candidate is estimated using parametrisations of
the form:

pT = A− B

∆φ
(3.1)

For DT seed candidates with segments in MB1 or MB2, ∆φ is the bending
angle of the segment with respect to the vertex direction, assuming that the
muon has been produced at the interaction point. If segments from both
MB1 and MB2 exist, the weighted mean of the estimated pT’s is taken. If
the seed candidate has only segments in MB3 and MB4, the difference in
bending angle between the segments in the two stations is used to calculate
the pT. In the CSC and overlap region, the seed candidates are built with
a pair of segments in either the first and second stations or the first and
third stations. ∆φ is the difference in the φ coordinate between the two
segments. Otherwise, the direction of the highest quality segment is used.
Although this algorithm is currently used only for the off-line seeding, its
fast estimation of the muon momentum could be used in an intermediate
trigger selection step between Level-1 and Level-2.

The efficiency of building a muon seed is mainly determined by detector
acceptance and, in part, by the efficiency of segment reconstruction. Fig-
ures 3.1a to 3.1c show the muon seed efficiency as a function of the main
kinematic variables. Muons were simulated at different transverse momenta,
from 1 GeV/c to 1 TeV/c, with a uniform η distribution between -2.5 and 2.5
and assuming a perfectly aligned detector. The inefficiencies at |η| around
0.3 and 0.8 in Figure 3.1a are due to the discontinuity of the muon detector
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in the barrel region, i.e. the gap between wheels. The inefficiency in φ be-
tween 0.8 and 1.8 rad (Figure 3.1b) is due to the presence of “chimneys” in
sectors 3 and 4, used to route magnet services.

Figure 3.1d shows a distribution of the q/pT resolution:

Rseed(q/pT) =
(pT)

seed − (q/pT)
sim

(q/pT)sim
, (3.2)

for muons simulated with pT = 20 GeV/c. The distribution is fitted using a
double Gaussian, where the larger Gaussian partly accounts for the tails aris-
ing from energy loss processes, such as ionisation, δ-rays and bremsstrahlung,
which becomes relevant especially at high pT. In Figure 3.2a, the q/pT res-
olution of muon seeds for different pT values is estimated as the smaller σ of
this fit, which represents the width of the core distribution. In Figure 3.2b,
the mean value of the fit is taken as a measure of the bias in the estimation
of q/pT.

3.3.2 Pattern Recognition and Fit

Tracks are built using the Kalman filter technique [45] (see Appendix A for a
brief description), a recursive algorithm which performs the pattern recogni-
tion layer by layer and, at the same time, updates the trajectory parameters.
Once all the hits have been collected, a final fitting step (smoothing) can be
applied, updating the trajectory state at the location of all intermediate hits
with the information from all the collected measurements, thus obtaining the
optimal track parameters.

The algorithm is flexible enough to allow different possible strategies:
the fit can be applied in either direction, from the innermost layer towards
the outermost or viceversa (forward or backward), possibly multiple times to
remove a bias from the initial seed, and using either segments or individual
hits to update the trajectory parameters. In the following sections, the
current strategy will be described.

Forward Filter

In the standard configuration, the parameters of the seed state are propa-
gated to the innermost compatible muon chamber. Here the most compat-
ible measurement is searched for on a χ2 basis, estimating the incremental
χ2 (∆χ2) given by the inclusion in the fit of a given track segment (or in-
dividual hit, in the case of RPCs). Here, χ2 is always understood to be
normalised to the number of degrees of freedom of the segment or hit. If
more than one compatible measurement is found, the one with the lowest
∆χ2 is kept. Measurements with ∆χ2 > 1000 are considered outliers, not
compatible with a trajectory hypothesis, and are not taken into account.
Moreover, only if ∆χ2 < 25 the trajectory parameters are updated with the
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Figure 3.1: Muon seed efficiencies (a) vs. η, (b) vs. φ and (c) vs. pT.
(d) Rseed(q/pT) distribution for muons at pT = 20 GeV/c. Muons are sim-
ulated with ideal conditions (cf. Section 3.1).

new measurement information (i.e. position and direction of DT and CSC
segments and position of RPC hits). Measurements failing this requirement
are recorded in the trajectory, but not used to update its parameters. In
the CMS jargon, such measurements are, somehow inappropriately, referred
to as “invalid hits.”

The updated track parameters are then propagated to the next reachable
chamber and the same procedure is repeated until no more chambers are
reachable.

The forward filtering step is considered successful if compatible measure-
ments are found in at least two muon chambers, one of them being a DT
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Figure 3.2: (a) q/pT resolution and (b) relative bias of muon seed vs. pT, esti-
mated respectively as the σ and mean of the core of a double Gaussian fit to
Rseed(q/pT) (e.g. see Figure 3.1d). Muons are simulated with ideal conditions.

or CSC chamber. Otherwise the reconstruction algorithm is stopped and
no track is produced. If measurements from at least two different chambers
(one DT or CSC at least) have been used to update the trajectory parame-
ters, the result of the forward filter is considered reliable and is passed to the
following steps. Otherwise (i.e. no hits, or only hits from a single chamber
have ∆χ2 < 25), a track is built with the same parameters as the starting
seed, with no contribution from the collected measurements (these are also
called “zero-hit” tracks).

The use of a double ∆χ2 threshold accomplishes two different require-
ments: the loose compatibility cut allows a very high efficiency, while the
tighter threshold guarantees that only the most compatible measurements
contribute to the determination of the trajectory parameters. This increases
the quality of the reconstructed tracks and prevents the use of background
hits, e.g. coming from electronic noise, punch-through or showering muons
(cf. Section 3.6), which can spoil the parameter estimation to the point
that, in the following iterations, no more measurements are collected and
the track is discarded for lack of hits.

The “zero-hit” trajectories represent an extreme case. Since they are
based only on the seed information, their quality is generally worse than for
the other trajectories. Nonetheless they are made available for the global
reconstruction, which, in some cases, can succeed even starting from a poorly
reconstructed stand-alone track.

In Figure 3.3, the effect of the application of this strategy on pT res-
olution of stand-alone (a) and global (b) tracks is shown for a sample of
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simulated muons with pT = 100 GeV/c. The blue histograms are the distri-
butions obtained applying a single ∆χ2 threshold in stand-alone reconstruc-
tion, the red are obtained with a double threshold. The blue distribution of
stand-alone tracks shows a shoulder around −1, due to tracks reconstructed
with pT ≪ 100 GeV/c. This shoulder was found to be originated mostly by
radiative processes, such as δ-rays and bremsstrahlung, which produce extra
hits in the chambers. For this reason, this effect increases at higher pT. The
use of a double ∆χ2 cut proves more effective in rejecting the extra hits,
thus improving the pT resolution: in the red histogram, the shoulder is es-
sentially suppressed and the efficiency is slightly higher. The improvement
in the stand-alone track quality propagates to the global reconstruction,
reducing the non-Gaussian tails and slightly increasing the global efficiency.

All the thresholds discussed above, as well as several options in the
application of the algorithm, can be specified through a set of configuration
parameters. A complete list of the parameters used in the forward filter is
reported in Appendix B (Table B.1).
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Figure 3.3: Muon pT resolution of (a) stand-alone and (b) global tracks, using
different strategies for pattern recognition and fit: in the blue histograms, a single
∆χ2 threshold is used for the hit selection and for the update of the trajectory;
in the red histograms, different cuts are used to select hits and to include them
in the fit, as specified in Tables B.1 and B.2.

Backward Filter

The outcome of the pre-filter can be affected by a significant bias from the
initial seed state. For this reason, the track parameters obtained at the last
update of the forward pattern recognition are used as input to a second
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filtering step, this time navigating inward (backward filter or simply filter).
The track parameters errors can be optionally rescaled prior to doing the
backward filtering.

The backward filter algorithm is similar to the forward filter, with the
differece of the outside-in extrapolation direction and of the use of individual
hits constituting the collected segments for the fit. Besides, tighter cuts are
used in the pattern recognition.

The procedure is repeated until no more inward layers are reachable. As
in the forward filter, the final track candidate is kept if compatible hits are
found in at least two chambers and in at least one DT or one CSC chamber.

The complete list of parameters used in the backward filter is reported
in Table B.2.

Refits

A bias coming from the seed state can still be present after the backward
filter. For this reason, it is possible to refit the hits collected during the back-
ward filter a configurable number of times, without performing the pattern
recognition.

Each refit consists in a Kalman filter step without pattern recognition,
followed by a smoothing step in the opposite direction (see Appendix A for
more details). The starting state is the last updated state of the backward
filter, with the covariance matrix rescaled by a large factor, e.g. 100. This
rescale is needed to prevent an underestimation of the errors, since the initial
state already includes the information of the hits to be fitted.

The complete list of parameters used in the final fit is reported in Ta-
ble B.3.

3.3.3 Ghost Suppression

The trajectory building algorithm is run for each seed. If the seeding al-
gorithm fails to merge all the track segments from the same muon, several
seeds can be built from a single muon, giving rise to duplicates of the same
tracks. These duplicates, called ghosts, usually share a fraction of their mea-
surements. In order to remove them, all the track candidates that share at
least one hit are compared with each other and only the best candidate is
kept, according to the follwing criteria:

• if the difference in the number of hits is larger than four, the candidate
with more hits is kept;

• otherwise, if more than 95% of the hits are shared, one candidate has
pT > 7 GeV/c and the other has pT < 3.5 GeV/c, then the candidate
with the lowest transverse momentum is rejected;
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• otherwise, the candidate with the smallest normalised χ2 of the fitis
kept.

This step is also called trajectory cleaning.
In Figure 3.4, the ghost rate in stand-alone and global reconstruction is

shown for a sample of simulated muons with pT = 100 GeV/c. The blue
histograms show the ghost rate obtained without the application of ghost
suppression at stand-alone level, while the red histograms are the ghost rates
when this cleaning is applied. The algorithm proves very effective, especially
in the barrel region, where the rate of duplicate tracks is reduced by several
orders of magnitude.
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Figure 3.4: Ghost track rates vs η for (a) stand-alone and (b) global muons, with-
out applying the stand-alone trajectory cleaner (blue) or with the standard clean-
ing strategy applied (red), for muons at pT = 100 GeV/c.

3.3.4 Beam Spot Constraint

In order to improve the momentum resolution of tracks, the beam spot
position is used to constrain the track parameters. Although the beam
position in the transverse plane is known within few tens of microns, the
beam spot position uncertainty is set to 1 mm in the constraint. A more
stringent constraint was found not to produce a significant improvement
in the momentum resolution, while it would be more subject to cause a
momentum bias in case of a systematic bias in the beam spot position.
In the z direction, instead, the design beam spot uncertainty of 5.3 cm is
used. A loose cut on the vertex-track χ2 (see Table B.4) is applied to avoid
constraining tracks that are not compatible with the beam spot position.
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In Figure 3.5, the effect of the beam spot contraint on the momentum
resolution is shown. The q/pT resolution of stand-alone tracks is taken as
the σ of the core of a double Gaussian fit to Rsta(q/pT) (cf. Equation 3.2),
as described in Section 3.3.1 for the case of the seed. An improvement as
large as 20% at pT = 1 TeV/c is obtained.

The constrained tracks are stored and made available to the global re-
construction. The unconstrained tracks are kept for reference and saved in
a separate collection.

The complete list of parameters used in the beam spot constraint is
reported in Table B.4.

 [GeV/c]
T

Muon p
10 210 310

  r
es

ol
ut

io
n

T
q/

p

0.1

0.2

0.3

0.4

0.5
with no update at vertex

updated at vertex

T
 resolution of stand-alone tracks vs p

T
q/p

(a)

Figure 3.5: q/pT resolution of stand-alone tracks, before (blue) and after (red) the
beam spot constraint, estimated as the σ of the core of a double Gaussian fit, as
described in Section 3.3.1.

In Figure 3.6, the efficiency of stand-alone track reconstruction is shown
as a function of the main kinematic variables, for simulated muons at differ-
ent transverse momenta, with a flat η distribution between -2.5 and 2.5 and
with design geometry and alignment. The inefficiencies at η ≃ 0.3 and 0.8,
and at φ between 0.8 and 1.8 rad are inherited from the seeding step (see
Section 3.3.1). Figure 3.6c shows the stand-alone efficiency relative to the
seeding step: a small loss is visible for pT < 5 GeV/c, while full efficiency
with respect to seeding is reached at higher momentum. Figure 3.7b shows
that a small bias in q/pT, coming from the seed initial state, is still present,
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although reduced by about one order of magnitude with respect to the seed.
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Figure 3.6: Stand-alone muon track efficiencies (a) vs. η, (b) vs. φ and (c) vs. pT,
using simulated muons at different transverse momenta and with desing geome-
try and alignment. (d) Rsta(q/pT) distribution (cf. Equation 3.2) for stand-alone
muons at pT = 20 GeV/c.

3.4 Global Reconstruction

The reconstruction of global muon tracks begins after the completion of
the reconstruction of the stand-alone tracks (see Section 3.3) and the in-
ner tracker tracks (described in Section 3.4.1). Each stand-alone track is
matched to a compatible tracker track (Section 3.4.2) and a fit of all the
available measurements is performed (Section 3.4.3).
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Figure 3.7: (a) q/pT resolution and (b) relative bias of stand-alone muon tracks
vs. pT, estimated respectively as the core σ and mean of a double Gaussian fit to
Rsta(q/pT) (e.g. see Figure 3.6d). Muons are simulated with ideal conditions.

3.4.1 Track Reconstruction in the Inner Tracker

As in the muon system, the first step of the track reconstruction [46] is
finding a seed, which is the starting point for the pattern recognition.

Two different algorithms have been implemented for pattern recogni-
tion. In the first one, seeds are built using two or three consecutive hits,
in the pixel and/or in the strip detector. The pattern recognition is then
performed layer by layer, with an iterative technique based on the Kalman
filter, similarly to that used in the muon spectrometer alone.

The second algorithm, called road search, uses only the silicon strip de-
tector to find the seeds: it takes one hit in the innermost layer and one in the
outermost and considers the possible paths which can connect the two ini-
tial hits. The pattern recognition is performed collecting the measurements
around the paths.

Both algorithms end with a final fit of the collected hits, followed by the
suppression of ghost tracks.

In the standard muon reconstruction, only the tracker tracks obtained
with the Kalman filter approach are used for the matching with the muon
spectrometer and for the global fit.

3.4.2 Track Matching

The process of identifying the tracker track to combine with a given stand-
alone muon track is referred to as track matching and consists of two steps.
The first step is to define a region of interest (ROI) in the track parameter
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space that roughly corresponds to the stand-alone muon track, and to select
the subset of tracker tracks inside this ROI. The second step is to iterate
over this subset, applying more stringent spatial and momentum matching
criteria to choose the best tracker track to combine with the stand-alone
muon.

The ROI is defined using the stand-alone track parameters and assuming
that the muon comes from the interaction point. A rectangular η-φ region is
chosen according to the error estimates of the stand-alone muon momentum
at the interaction point. The origin of the ROI is taken as a fixed r-z region
around the beam spot. A minimum pT limit for the tracks in the ROI is
chosen as 60% of the stand-alone muon pT, and is used to determine the
curvature of the tracking region. The definition of the ROI has a strong
impact on the reconstruction efficiency, fake rate and CPU reconstruction
time.

The matching is performed by comparing the parameters of the stand-
alone track with those of all tracker tracks in the ROI. This is best done
by propagating the tracks onto a common reference surface, e.g. the de-
tector layer of the innermost stand-alone track hit. In order to maximise
the matching efficiency, several criteria are applied in sequence. First, the
tracks with the a χ2 compatibility with the stand-alone track1 below a fixed
threshold are chosen. If all tracks fail this cut, then the positions of the
stand-alone and inner tracks on the reference plane are compared. If also
this criterion fails and no pair is found within a fixed cut, the matching is
attempted by comparing the track directions at the interaction point, with
a very loose cut applied. If all criteria fail, the reconstruction is stopped
and no global track is produced. It is clear that the matching algorithm can
select more than one tracker track for a given stand-alone. In this case, all
matched tracks proceed in the reconstruction chain.

3.4.3 Global Fit

The last step is to fit a global track using all hits belonging to the matching
tracker and stand-alone tracks. The global refit algorithm attempts to per-
form a fit for each tracker-stand-alone track pair. If more than one global
track is produced for a given stand-alone, the one with the best χ2 is chosen.
Thus, for each stand-alone muon there is a maximum of one global muon
that will be reconstructed. The reconstruction ends with the association of
energy deposits in the calorimeters to the global tracks.

Since the pattern recognition has already been performed during the
reconstruction of the tracker and stand-alone muon tracks, no additional
pattern recognition is done: the default global fit algorithm simply combines
the tracker hits of the chosen track with the muon hits of the stand-alone

1χ2 = (asta − atrk)
T [Csta + Ctrk]

−1 (asta − atrk), where ai is the vector of the five
parameters of a track and Ci is the corresponding covariance matrix.
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muon. However it is also possible to combine only a subset of the hits for the
global fit. In particular, choosing a subset of the muon hits provides a better
momentum resolution for high energy muons, when the measurements in the
muon system are frequently contaminated by electromagnetic showers. The
treatment of very energetic muons will be described in Section 3.6.

In Figure 3.8, the efficiency of global track reconstruction is shown as a
function of the main kinematic variables, for simulated muons at different
transverse momenta, with a flat η distribution between -2.5 and 2.5 and
with design geometry and alignment. The inefficiencies at η ≃ 0.3 and 0.8,
and at φ between 0.8 and 1.8 rad (Figures 3.6a and 3.6b) are inherited
from the previous reconstruction steps (see Figures 3.1a and 3.6a). A larger
inefficiency appears in the barrel region for muons with pT = 5 GeV/c,
uniformly distributed in φ. Such inefficiency at low pT is visible also in
Figure 3.8c, which compares global, stand-alone and seeding efficiencies.
At low pT, muons easily stop in yoke without crossing all muon stations,
especially in the barrel region, and stand-alone tracks are reconstructed
with a relatively low number of hits and with a poorer momentum resolution.
This makes the matching with tracker tracks more difficult and less efficient.
As will be shown in Section 3.5, muon identification proves more efficient in
this pT region.

In Figure 3.9a, the resolution of global tracks is found to be between 1
and 2% up to pT = 100 GeV/c and slightly above 6% at 1 TeV/c. Figure 3.9b
shows a q/pT bias of the order of few permil up to 1 TeV/c.

3.5 Muon Identification

As explained in Section 3.4, the standard muon track reconstruction starts
from the muon system and combines stand-alone muon tracks with tracks
reconstructed in the inner tracker. This approach naturally identifies the
muon tracks in the detector. However, a large fraction of muons with trans-
verse momentum below 6-7 GeV/c (cf. Figure 3.8c) does not leave enough
hits in the muon spectrometer to be reconstructed as stand-alone muons.
Moreover, some muons can escape in the gap between the wheels.

A complementary approach has therefore been designed to identify off-
line these muons and hence improve the muon reconstruction efficiency:
it consists in considering all silicon tracker tracks and identifying them as
muons by looking for compatible signatures in the calorimeters and in the
muon system.

The algorithm for the muon identification of the tracker tracks starts
with the extrapolation of each silicon track outward to its most probable
location within each detector of interest (ECAL, HCAL, HO, muon system).
After collecting the associated signals from each detector, the algorithm
determines compatibility variables corresponding to how well the observed
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Figure 3.8: Global muon track efficiencies (a) vs. η, (b) vs. pT and (c) vs.

φ. (d) Rglb(q/pT) distribution (cf. Equation 3.2) for global muons at
pT = 100 GeV/c.

signals fit with the hypothesis that the silicon track is produced by a muon.
A very loose threshold on the compatibility variables is applied to select
candidates that are saved in the muon collection; different physics analyses
can apply further selections on the same variables, in order to balance the
purity and efficiency of the muon identification.

In the calorimeters, the algorithm calculates and stores the energies in
all the crystals (ECAL) or towers (HCAL) crossed by the track, as well as
the energies in a 3 × 3 region. Based on these energies, a compatibility
variable is determined, which describes how consistent these energies are
with respect to what is expected for a muon. Muons identified through this
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Figure 3.9: (a) q/pT resolution and (b) relative bias of global muon tracks vs.

pT, estimated respectively as the core σ and mean of a double Gaussian fit to
Rglb(q/pT) (e.g. see Figure 3.8d). Muons are simulated with ideal conditions.

calorimeter-based compatibility are referred to as “calo-muons”.
In the muon system, for each crossed or nearly crossed chamber the

algorithm stores the following variables:

• the distance between the propagated track and the nearest chamber
edge, in both the chamber local x and y directions, with a conventional
sign (negative inside the active volume, positive outside the active
volume), and the corresponding 1σ uncertainty;

• the position (x, y) and slope (dx/dz, dy/dz) of the extrapolated track
in the local chamber coordinates and the corresponding 1σ uncertain-
ties;

• the segments in the chamber that are near the propagated track (“as-
sociated segments”).

The above information can be employed for the purpose of muon identi-
fication. Muons identified by at least one associated segment are called
“tracker-muons”.

Since each track is treated individually, if two or more tracks are near
each other, it is possible that the same segment or set of segments is asso-
ciated to more than one track, resulting in duplicate tracker muons. This
ambiguity can be resolved by the arbitration algorithm, which assigns seg-
ments to tracks by looking at the best ∆x or ∆R =

√

∆x2 +∆y2 match.
Figure 3.10 shows the efficiency of the different muon reconstruction

algorithms described in this and previous sections, for transverse momenta
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below 10 GeV/c. Since the muon identification algorithms do not need
a track reconstructed in the muon system, calo-muons and tracker-muons
exhibit a fairly high efficiency also in kinematical regions where the stand-
alone reconstruction is not fully efficient, especially at very low pT, below
3 GeV/c. The turn-on curve for tracker-muon efficiency in Figure 3.10b
shows a step at 3 GeV/c, where the contribution of the muon barrel begins:
in the central region (|η| < 1.2, also visible in Figure 3.10a), muons with
lower transverse momentum do not reach the spectrometer, because of the
energy loss in the inner detectors and the bending in the strong magnetic
field. This inefficiency is significantly reduced in the case of calo-muons,
which do not require an identification from the muon system. For the same
reason, the calo-muon algorithm is efficienct also for |η| > 2.4, exploiting
the larger coverage of the calorimeters.
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Figure 3.10: Muon reconstruction efficiencies (a) vs. η and (b) vs. pT, for all
the reconstruction algorithms described so far, for simulated muons with a flat
η distribution between -2.5 and 2.5 and a flat pT distribution between 0 and
10 GeV/c.

Figure 3.11 shows the q/pT resolution of muon tracks resulting from dif-
ferent fits: stand-alone, tracker-only and global. In the entire η range, the
resolution of global tracks is clearly dominated by the tracker resolution,
up to pT ≃ 200 GeV/c. For higher pT, the contribution of the muon sys-
tem becomes significant, and improves the global resolution by 10-20% at
1 TeV/c.
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Figure 3.11: Muon q/pT resolution vs. pT for the three different types of fit:
stand-alone (red), tracker-only (magenta) and global (blue). Different pseu-
dorapidity regions are considered separately: (a) |η| < 0.8, (b) 0.8 ≤ |η| < 1.2,
(c) 1.2 ≤ |η| < 2.1 and (d) |η| ≥ 2.1.

3.6 Reconstruction of Very High Momentum Mu-

ons

Muons with energies of several hundred GeV and more have a high proba-
bility of producing electromagnetic showers in the iron of the CMS magnet
return yoke. These large energy losses can significantly degrade the per-
formance of the muon track fit. Two main effects can contribute to this
degradation:

• the muon can lose a large fraction of its energy; in this case, the part of
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the track following the energy loss should be discarded as the particle
momentum has changed;

• the shower can contaminate the muon detectors, causing the local re-
construction algorithms to return incorrect trajectory measurements.
Including these measurements in the track fit can lead to incorrect
reconstructed momentum values.

The approach chosen to minimise the negative effect of showers on muon
momentum estimation consists in performing several refits of the global
muon trajectory, selecting different sets of hits.

“First Muon Station.” A fit with the hits from the tracker and the first
muon station where hits are available. This selection minimises the
effect of a large change in muon momentum after showering.

“Picky Muon Reconstructor.” A fit with the hits selected by an algo-
rithm applying tight cuts for hit compatibility with the trajectory, but
only in muon stations with high multiplicity of reconstructed hits. This
approach minimizes the influence of contaminated chambers, while
preserving the hits from chambers providing good trajectory measure-
ment, despite containing a shower.

These two refits are performed for each global muon. The resulting tracks
are compared with the global and tracker-only tracks to determine the best
fit based on goodness-of-fit variables.

3.7 Performance of Muon Reconstruction in 2010

Data

In this section, the performance of muon reconstruction is tested on samples
of data taken during the 2010 LHC collision runs at 7 TeV. The events are
selected using unprescaled muon triggers.

The Z candidates used for the efficiency measurements (Section 3.7.1)
are selected with single-muon triggers, requiring the presence of a Level-3
muon (cf. Section 3.8) with a pT threshold of 15 GeV/c (see Table 3.1). The
Z samples used for the measurement of resolution and other track properties
(Sections 3.7.2 and 3.7.3), in addition, exploit also a double-muon trigger,
which requires two Level-3 candidates with pT thresholds of 3 GeV/c.

For the J/ψ sample, special triggers are used, which require the presence
of a Level-3 candidate with a low pT cut, plus a tracker track with no pT
requirements.
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3.7.1 Muon Efficiency

The efficiency is estimated using the tag-and-probe method, briefly explained
in Appendix C and in [47][28][48]. In general, a “tag” is defined as a muon
with tight identification requirements, while a “probe” is a simple track
with possible quality cuts. A “passing probe” is a probe that satisfies the
selection criteria whose efficiency is to be measured. Additionally, the tag
muon must be associated to a muon trigger object, so that the probe is not
biased by the need for a trigger in the event. The association is defined
by a cut on ∆R =

√

∆φ2 +∆η2 between the muon track and the trigger
candidate.

For low transverse momentum, below 15 GeV/c, the efficiency is probed
using muons from J/ψ decays, while the higher momentum region is inves-
tigated with Z → µ+µ− events. In the plots shown in this section, whenever
the efficiency is plotted as a function of η, only the high pT muons from Z de-
cays are used. The muon efficiencies in data are compared with the results
obtained in simulation with the same tag-and-probe method, along with
the simple “counting efficiency”, defined as the fraction of passing probes
relative to the number of selected probes in a sample of simulated signal
events.

In J/ψ → µ+µ− events, muons have a rather soft pT spectrum. Global
muons are used as tags and tracks with no further requirements are used
as probes. The tag is also required to be associated to the Level-3 muon
candidate produced by the J/ψ trigger, described above.

In the Z case, muons are expected to have higher pT values, so tighter
quality and identification criteria can be required, to reduce the background
level to a minimum and restrict the analysis to a sample of very high quality
muons. The tag is a global muon with the following quality requirements:

• it must be both a global and a tracker muon;

• its track must have more than ten hits in the silicon tracker, at least
one of which in the pixel detector, and at least one valid hit in the
muon chambers;

• transverse impact parameter lower than 2 mm;

• normalised χ2 of the global track lower than 10.

In addition, the tag must be associated to the Level-3 candidate. The probe
is a simple tracker track with a minimum pT of 5 GeV/c.

In Figures 3.12 and 3.13, the efficiency of different muon categories are
reported. In each case, a passing probe is defined as a probe track associated
with the muon candidate in question. The association is checked with a ∆R
cut.
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In Figure 3.12, the efficiency of stand-alone muons is reported as a func-
tion of |η| and pT. The agreement between the tag-and-probe efficiency in
simulation and the Monte Carlo truth shows the validity of the method. The
efficiency measured in data is in fairly good agreement with the expectations,
except for small discrepancies at low pT.
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Figure 3.12: Stand-alone muon efficiency vs. (a) |η|, (b) pT in the whole η range,
or limited to (c) the barrel or (d) endcap regions. The blue bands represent
the “counting efficiency” in simulation, the red points the efficiency obtained
with the tag-and-probe method applied to the same Monte Carlo samples, and
the black points are the result on data. In (a), only Z → µ+µ− events are
considered. In (b), (c) and (d), J/ψ → µ+µ− events are used below 15 GeV/c,
Z above. The dashed, vertical line separates the two regions.

In Figures 3.13a and 3.13b, the efficiency of global muons is shown as
a function of |η| and pT. In Figures 3.13c and 3.13d, the same efficiencies
are shown for global muons with a set of standard quality cuts, the same
described above for the tag selection, used in many CMS analyses involving
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high-pT muons. With these quality cuts, the agreement betweeen data and
simulation is further improved.
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Figure 3.13: Global muon efficiency vs. |η| (left) and pT (right), for plain global
tracks (above) and after a set of quality cuts (below). In the plots vs. |η|, only
Z → µ+µ− events are used.

3.7.2 Stand-alone Muon Resolution

The resolution on the measurement of stand-alone track parameters (pT, η,
φ) is obtained from data using the inner track as reference:

Rsta(q/pT) = (q/pT)sta−(q/pT)trk

(q/pT)trk

Rsta(η) = ηsta − ηtrk

Rsta(φ) = φsta − φtrk .

(3.3)

This is an acceptable approximation, given that the resolution for the inner
track is one order of magnitude better than the resolution of the stand-alone
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track. A more sophisticated algorithm to measure the resolution of global
and tracker tracks from data will be described in Chapter 4.

A sample of muons coming from the decay of Z boson candidates is used.
The same quality requirements listed for the selection of tags from Z in Sec-
tion 3.7.1 are here applied to both muons. The resolutions measured on
data are compared with the results obtained using a sample of simulated
Z → µ+µ− events, with a realistic scenario of the detector alignment and
calibrations at the start of data taking, and selected with the same require-
ments applied on data. The results for data and simulation are compared
in Figure 3.14. Some discrepancies between data and simulation are visible,
especially in the low pT region and the φ spectrum. In general, however, the
agreement is fairly good.

3.7.3 Muon Track Hits and χ2

Using the same Monte Carlo and data samples of Z candidates described in
Section 3.7.2, other properties of the stand-alone and global tracks can be
probed.

In Figure 3.15, the number of hits in global tracks are shown for data and
simulation. In Figure 3.15b, the groups of peaks represent the structure of
the muon spectrometer, organised in four stations. The agreement between
data and simulation is good, even though data show on average one hit
less per track than simulation. This loss is likely due to dead channels
in the muon chambers that are not correctly modelled in Monte Carlo, or
to an imperfect description of the detector material budget or magnetic
field, which can reduce the pattern recognition efficiency in the extrapolation
through the detector layers. In the inner tracker detectors (Figures 3.15c
and 3.15d), the discrepancy in the number of hits per track is even lower.
As a consequence, the total number of hits per global track (Figure 3.15a)
is between one and two.

In Figure 3.16, the normalised χ2 distributions of stand-alone and global
tracks are shown for data and simulation. In both cases, the distribution in
data has a longer tail than in simulation. Possible causes for this difference
are the accuracy of alignment and calibration scenarios used in the simula-
tion, as well as the modelling of measurement uncertainties and of material
material effects in the track fit.

3.8 Muon Trigger

The CMS muon trigger, as explained in Section 2.2.6, is structured in a first
hardware level, the Level-1 Trigger (L1), and a software part, the High Level
Trigger (HLT).

The Level-1 electronics uses groups of segments from DTs and CSCs,
and hit patterns from RPCs. It identifies muon candidates, determines
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Figure 3.14: Resolution of stand-alone muon track (a) η, (b) φ, (c) q/pT and
(d) pT, in simulation (red line) and data (black markers), according to the
difeinitions provided in Equation 3.3. A sample of Z boson candidates is used.

their position and quality, and provides a transverse momentum estimate in
a discretely binned form, based on segment slopes in DTs and CSCs, and on
predefined hit patterns in RPCs. It also provides event timing and assigns
events to a particular bunch crossing. Finally, the Global Muon Trigger
(GMT) matches DT, CSC and RPC candidates, and rejects unconfirmed
candidates of low quality. Up to four muon candidates, satisfying some
minimal quality criteria and with the highest pT, are transmitted to the HLT
for further processing. More information about the Level-1 muon trigger can
be found in [49].

The HLT is implemented in software and runs on the CMS on-line fil-
ter farm. Muon HLT performs a full track reconstruction, using the same



68 Muon Reconstruction

Number of hits / global track
0 10 20 30 40 50 60 70 80

E
nt

rie
s

0

200

400

600

800

1000

1200 Simulation

Data

(a)

Number of muon hits / global track
0 10 20 30 40 50 60

E
nt

rie
s

0

200

400

600

800

1000

1200

1400

1600 Simulation

Data

(b)

Number of Si-pixel hits / global track
0 1 2 3 4 5 6 7 8

E
nt

rie
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Simulation

Data

(c)

Number of Si-strip hits / global track
0 5 10 15 20 25 30

E
nt

rie
s

0

1000

2000

3000

4000

5000 Simulation

Data

(d)

Figure 3.15: (a) Total number of hits per global track and number of hits in the
(b) muon, (c) pixel and (d) strip detectors per global track. Simulation (red
line) and data (black markers) are compared.

algorithms and software employed in the off-line reconstruction, with the
differences described in the next section.

The muon HLT is structured in two main levels. This allows for a first
reduction of the rate, based on a limited part of the information, which saves
time for a more detailed reconstruction of the selected events. The Level-2
(L2) uses muon system information to perform a stand-alone reconstruction,
as in Section 3.3. A separate module in L2 computes the isolation of each
muon candidate using calorimeter information.

The Level-3 (L3) performs reconstruction in the silicon tracker and
merges tracker tracks with L2 tracks, performing a global fit, as in Sec-
tion 3.4. To keep execution time low, tracker reconstruction is regional, i.e.
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Figure 3.16: Normalised χ2 distribution of (a) stand-alone and (b) global tracks,
in simulation (red line) and data (black marker).

the pattern recognition and track fitting are performed only in a small slice
of the tracker (the ROI, cf. Section 3.4.2). The L3 isolation algorithm uses
information from nearby pixel detector hits.

After each reconstruction level, a selection is applied on the reconstructed
muon candidates. The main selection variables that can be used are the
number of muon candidates in the event, their quality, pT, η, impact pa-
rameter, and isolation variables. The trigger requirements are implemented
in software modules called filters. A sequence of reconstruction steps and
filters is called trigger path. Different trigger paths can be defined by vary-
ing the filter cuts. In such a way, the muon trigger can be specialised to
fulfill the needs of different physics analyses. As an example, in Table 3.1
the requirements of four of the most basic trigger paths for 2010 data taking
are listed.

It is important to stress that a trigger path is considered successful only if
the requirements of all the three levels are satisfied. When a muon candidate
passes a trigger level, all the candidates in the event are transmitted to
the following level, even those that failed the selection. In particular, a
muon candidate failing to pass the L1 filter of a given path may still be
reconstructed at L2 and L3, if the event passes to the next trigger levels
because of another trigger requirement; such a candidate (“volunteer”) is
not considered for the trigger path which failed at L1.

In Section 3.8.1, muon reconstruction is described in the context of the
HLT, stressing in particular the differences with the off-line reconstruction.
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HLT Mu15 HLT DoubleMu3

L1
≥ 1 muon with
pT > 7 GeV/c,
quality > 3

≥ 2 muons with
pT > 0 GeV/c,
quality ≥ 3

L2
≥ 1 muon with
pT > 7 GeV/c

≥ 2 muons with
pT > 0 GeV/c

L2 iso N/A N/A

L3
≥ 1 muon with
pT > 15 GeV/c,
|d0| ≤ 2 cm

≥ 2 muons with
pT > 3 GeV/c,
|d0| ≤ 2 cm

L3 iso N/A N/A

Table 3.1: Thresholds and requirements of the basic muon triggers for 2010 data
taking. The unsigned impact parameter, |d0|, is calculated w.r.t. the beam spot.
For the meaning of L1 quality, see [49]. Note that these paths do not include
isolation requirements.

3.8.1 Muon Reconstruction in the High Level Trigger

Level-2 Muon Seeding

The L2 muon reconstruction starts from an initial seed state. Unlike the off-
line case, where seeds are obtained combining segments in the muon system,
in the on-line reconstruction the L1 muon candidates are used as external
seeds, with a significant reduction of seeding time. The full muon recon-
struction is then performed on a regional basis, only where a L1 candidate
is found. Although faster, this approach limits the HLT efficiency to the L1
efficiency: there cannot be a L2 muon reconstructed if no corresponding L1
muon object is present.

For each L1 muon candidate promoted by the GMT to the HLT, a L2
seed is built. An initial state is created from the position and momentum of
the L1 candidate and fixed errors are assigned to all the parameters. Finally,
the seed state is propagated to the innermost compatible muon chamber.

Level-2 Muon Trajectory Building

Starting from each L2 seed, the reconstruction of L2 tracks proceeds exactly
as in the off-line case, described in Section 3.3. The local reconstruction and
trajectory building are performed only in those regions of the muon system
where a L1 candidate/L2 seed was built, in order to comply with the time
requirements of the trigger. The flexibility of the software allows a variety
of different reconstruction schemes: it is possible to configure which muon
detectors to use, the direction and granularity of the pattern recognition,
whether to apply the final fitting-smoothing step, etc. The configuration that
is currently used is the same employed in the off-line reconstruction. It com-
prises two trajectory building steps: the first in the inside-out direction and
using segments, the second in the opposite direction and using single hits.
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Once the trajectories are built, ghost suppression is applied as described in
Section 3.3.3, and a beam spot constraint is imposed (Section 3.3.4). Each
trajectory preserves a link to its own seed, hence to the corresponding L1
candidate. This is particularly important to allow the suppression of volun-
teers.

A notable difference from the off-line reconstruction is present in the
application of ghost suppression. This peculiar behaviour was expressly
introduced to address a specific problem concerning volunteers, arising at
cleaning level. A single muon can generate more than one L1 candidate, e.g.
if the L1 trigger fails to merge candidates from different sub-detectors. In
this case, several tracks will be produced, and the cleaner is designed to keep
only one. Suppose e.g. that two L1 objects, ta1 and tb1, are ghosts of the same
muon, and only ta1 passes the L1 trigger filter. The corresponding L2 tracks,
ta2 and tb2, share hits and undergo the usual ghost suppression algorithm. If
the cleaner selects tb2, the L2 trigger filter will treat it as a volunteer and
reject it. Figure 3.17 illustrates this mechanism. In this case, though, ta1-t

b
1

and ta2-t
b
2 represent the same muon candidate, and it is reasonable to use

either L1 object to validate either L2 track. For this purpose, the cleaner
produces a map that links each L2 track to the seeds of all its duplicates. In
such a way, the L2 filter can accept a L2 track if any of the corresponding
L1 candidates has passed the L1 filter. Figure 3.18 shows the gain in L2
reconstruction efficiency obtained using this strategy, compared with the
efficiency of L2 seeding.

Figure 3.17: The flowchart illustrates how the trajectory cleaner handles ghost L2
tracks. Without a special handling, the L2 filter rejects the L2(a) candidate,
since the corresponding L1 failed. With the new strategy, a map links the two
ghost L1 candidates, L1(a) and L1(b). Thus, the L2 filter uses the successful
L1(b) to validate L2(a).

Level-3 Muon Seeding

After the completion of Level-2 muon reconstruction and Level-2 filtering
steps, the algorithm proceeds to reconstruct Level-3 muon candidates. In
the HLT environment, the full tracker reconstruction cannot be performed
because it is too CPU intensive. Therefore, track reconstruction is done in
small regions of the central tracker corresponding to likely muon candidates.
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Figure 3.18: L2 reconstruction efficiency vs. pT (a) without and (b) with the use of
the mechanism described in Section 3.8.1 (in red), compared with the efficiency
of L2 seeding (in blue). The L2 seeds are built from L1 candidates passing a
pT threshold of 3 GeV/c.

This restrictive reconstruction is accomplished by a proper selection of tra-
jectory seeds which limits the track reconstruction to a region consistent
with the L2 muon, i.e. the ROI described in Section 3.4.2.

In the following paragraphs, different L3 seeding algorithms are de-
scribed. The hit-based seeds use combinations of hits found on the tracker
layers to estimate the initial position and direction. State-based seeds, in-
stead, use a trajectory state, without information from the tracker measure-
ments, to find the initial position and direction.

Hit-Based Seeding The inside-out hit-based seed option (IOHit) selects
pairs or triplets of hits in the pixel detector, as in the off-line seeding (Sec-
tion 3.4.1). The inner hit is required to be in the ROI. In the case of L2
muons with |η| > 2, the hit-pairs can be a combination of pixel and strip
layers. In the outside-in hit-based seed option (OIHit), the L2 trajectory
state is propagated to the outer tracker bound. From here, compatible mea-
surements are looked for in TOB and TEC layers and used to update the
predicted state from L2.

State-Based Seeding The track parameters obtained from the L2 mea-
surement are propagated to the first compatible layer of the pixel detector
(inside-out state-based seed or IOState) or to the outermost layer of TOB
and TEC (outside-in state-based seed or OIState). The state given at the
innermost (or outermost) layer of the tracker is used to proceed with pattern
recognition from the inside-out (or outside-in).
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Cascade algorithm Each of the L3 seeding algorithms described above
performs differently in different parts of the detector and has advantages
and disadvantages. For this reason, a combined seeding sequence is used
in order to benefit from the advantages of each one, while minimising the
disadvantages. Three of the four algorithms, the OIState, OIHit and IOHit,
are run in a sequence, starting with the fastest (OIState) and finishing with
the slowest (IOHit). In order to save CPU time, the slower algorithms are
never called if the faster algorithms have a favourable outcome: if a L3
muon is successfully reconstructed from the seed, then the sequence for that
L2 muon is stopped; otherwise, the sequence continues to the next seed
generator and L3 reconstruction module.

Level-3 Muon Trajectory Building

Once the L3 seeding is completed, tracks are reconstructed in the tracker
with the same procedure described in Section 3.4.1, only inside the ROI
determined by each L2 muon. The best tracker tracks to be combined with
a given L2 muon are then selected, following the same matching criteria as
in the off-line reconstruction (cf. Section 3.4.2). Finally, for each L2-tracker
match, a global fit is performed, using the whole set of hits in the tracker
and muon system. If more than one global L3 track is built from the same
L2 muon, only the one with the best χ2 is kept. Thus, for each L2 muon,
there is a maximum of one global L3 muon that is reconstructed.

In Figure 3.19, the efficiency of single-muon HLT path “Mu3” is shown
as a function of η and pT. The Mu3 path has no pT cut at L1, and requires
pT > 3 GeV/c at L2 and L3. The efficiencies are obtained with the tag-and-
probe method, applied to muons from J/ψ and Z decays in data collected
by CMS in 2010. The tags are defined by the the same requirements used
in Section 3.7.1 for J/ψ (below pT = 15 GeV/c) and Z (above). The probes
are required to be global muons, so these are trigger efficiencies with respect
to off-line global muons. The on-line reconstruction efficiency is essentially
equal to the off-line efficiency, thus the inefficiencies are introduced by the
trigger requirements.
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Figure 3.19: Efficiency vs. (a) η and (b) pT (for 1.2 < |η| < 2.1) of the HLT
single-muon path Mu3. The efficiencies are obtained using the tag-and-probe
method with J/ψ and Z → µ+µ− events, in simulation (red) and 2010 CMS
data (black). The blue bands represent the counting efficiency of simulated
signal events. Plot (a) is made using only muons from Z decays. Plot (b) is
obtained using muons from J/ψ decays below 15 GeV/c, from Z decays above.



Chapter 4

Momentum Scale Calibration

The CMS detector is designed to provide a reliable identification of tracks
from pp collisions and a precise measurement of their momentum in the
solenoidal magnetic field. The momentum measurement of charged parti-
cles is affected by systematic uncertainties due to the imperfect knowledge
and modeling of the detector and magnetic field. Great effort is spent to
ensure a precise alignment of the silicon sensors of the tracker [39] and of
the muon chambers [40], a detailed description of the material budget in the
detector [50] and of the magnetic field inside and outside the solenoid vol-
ume [26]. Nevertheless, residual effects can still lead to a systematic bias in
the measurement of the track momentum and broaden its resolution. More-
over, the reconstruction algorithms used to fit the track trajectory can suffer
from intrinsic biases (e.g. see Figure 3.9b). All these effects, if properly de-
tected and quantified, can be absorbed by properly modeling a scale factor
for the momentum as a function of the measured kinematic variables (pT, η
and φ).

An accurate calibration of track momentum and the investigation of
residual systematic effects is essential in order to perform precision mea-
surements, like top quark and W boson masses, B hadron spectroscopy,
etc. This calibration is made feasible by the availability of reconstructed
resonance decays, typically those involving two-body decays of neutral par-
ticles. The calibration procedure described in the following sections exploits
all particles with an easily detectable decay to muon pairs: the J/ψ and
ψ(2S) mesons, the three narrow Υ states, and the Z0 boson. The muon
pairs originated from the decays of these particles have momenta in a range
from a few GeV/c to a few hundred GeV/c, while they are hardly useful for
a direct check of the momentum measurement of TeV-energy tracks. Nev-
ertheless, they do constitute an invaluable tool to spot deficiencies in the
Monte Carlo description of the detector, and their input is thus beneficial
to improve the reconstruction of tracks of any momentum. They also allow
a precise determination of track momentum resolution, whose knowledge

75
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is no less important than that of the momentum scale in several precision
measurements.

The reference quantity which provides sensitivity, on an event-by-event
basis, to the possible biases on the reconstructed muon track parameters is
the parent’s invariant mass. This is not a per-track variable, so a probabilis-
tic approach is necessary in order to relate the difference between expected
and observed mass with an hypothetical bias on the measured parameters
of either or both daughter tracks. Once a set of functions describing the de-
pendence of the bias and resolutions on track kinematics is established, the
best estimate of the parameters of those functions can be determined from a
likelihood minimisation, provided that a sufficient set of homogeneous data
is used. An algorithm that uses this approach to correct the momentum of
muons has been developed, and is described in detail in Section 4.1.

First, the algorithm mentioned above is used to find corrections for low
pT muons from J/ψ, up to about 10-15 GeV/c. This work is reported in
Figure 4.2. The strategy to calibrate the momentum scale and measure
the momentum resolution is developed using simulated J/ψ samples (Sec-
tions 4.2.2 and 4.2.3), then applied to about 19 pb−1 of J/ψ → µ+µ− events
selected from 2010 CMS data (Section 4.2.4).

In order to calibrate the momentum of muons in a higher pT range, Z →
µ+µ− events can be exploited. In this case, the available statistics in data
is clearly lower, so a simpler strategy has to be conceived. The calibration
is applied both to tracker tracks and global tracks of muons. This work and
its results are reported in Section 4.3.

4.1 The MuScleFit Algorithm

The MuScleFit algorithm [51][52] is conceived to correct the muon momen-
tum measurement and determine its resolution, combining the reconstructed
kinematics of the muon pair with the supposed knowledge of the parent par-
ticle species. Since the invariant mass of the muon pair depends on the scale
of the muon momenta, the average difference between the reconstructed
dimuon mass and the nominal resonance mass can be used to determine the
momentum scale and its dependence on each muon kinematic variable. The
algorithm is based on a multi-dimensional likelihood fit that uses as input
the decay to muon pairs of the aforementioned resonances, along with some
probability density functions describing the shape of each resonance, and a
set of ansatz functions for correcting the muon momentum and estimating
its resolution.

For a given resonance, the reconstructed mass distribution can be mod-
elled as the theoretical line-shape, σ(m; m0), where m0 is the nominal res-
onance mass, convoluted with a Gaussian to account for the detector reso-
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lution s:

Psig(m, s) =

∫

dm′ σ(m
′; m0)√
2πs

e−
(m′−m)2

2s2 . (4.1)

Apart of a normalisation factor, Equation 4.1 can be regarded as the prob-
ability density function of muon pairs from decays of the resonance in ques-
tion, with reconstructed mass m and mass resolution s. In Figure 4.1, the
probability density functions for J/ψ and Z are shown. Since the nomi-
nal J/ψ width is very small, i.e. less than 100 keV [21], the intrinsic J/ψ
line-shape is modelled with a very narrow (“δ-like”) function, plus a triple-
exponential tail extending towards low masses, which accounts for the effect
of the final state radiation. The Z line-shape instead is modelled with the
horace Monte Carlo generator [53], which includes the exact O(α) elec-
troweak calculation plus higher order QED corrections. As explained above,
the models are then convoluted with a Gaussian of given width s.
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Figure 4.1: Probability density functions for J/ψ and Z resonances.

An ansatz function is needed to parametrise the momentum scale cor-
rection

pcorrT = F (x; a) · pT , (4.2)

where the vector x contains the kinematic variables on which the pT bias
is found to be dependent, usually (pT, φ, cot θ), and a is the set of free
parameters of the function. Other ansatz functions are used to parametrise
the resolution of each kinematic variable xi

σ(xi) = Gi(x; bi) (4.3)

and will depend on as many sets of parameters. A last function is introduced
to model the non resonant background shape: Pbkg(m; c).
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Given a muon pair, with kinematics defined by xa and xb, the momenta
of the two muons are corrected accordingly to Equation 4.2 and the invariant
mass of the pair is computed:

ma,b = m(pcorrT, a , φa, cot θa; p
corr
T, b , φb, cot θb). (4.4)

The mass resolution of the muon pair can be formally written, neglecting
the covariance terms, as

sa,b =

√

√

√

√

∑

α=a,b

3
∑

i=1

(

∂m

∂xi

)2

σ2(xi, α) , (4.5)

where σ(xi, α) = Gi(xα; bi). Under the hypothesis that the muon pair comes
from the decay of a given resonance, the event can be assigned a probability
Psig(ma,b, sa,b), accordingly to Equation 4.1.

From a sample of dimuon events, assumed to originate from decays of
the chosen resonance, a likelihood function can be defined as

− lnL = −
Nevt
∑

k=1

ln [fsig · Psig(mk, sk) + (1− fsig) · Pbkg(mk)] (4.6)

where mk and sk are computed with the measured muon momenta of event
k and are functions of a, bi and c; fsig is the fraction of signal events
and is a nuisance parameter in the fit. The minimisation of − lnL with
respect to all these parameters allows the simultaneous determination of
scale, resolution and background modelling, given the observed distribution
of the reconstructed dimuon mass in the sample. The fit to the parameters
can be repeated to check its stability. The algorithm even allows to perform
a multi-resonance fitting, taking into account more than one resonance at a
time and the corresponding backgrounds.

Mass Resolution

Equation 4.5 is used in MuScleFit to compute the resolution of the dimuon
invariant mass from the resolution of the kinematic variables of each muon.
This formula is valid under the assumption that the covariance between each
pair of variables gives a negligible contribution to the mass resolution. The
complete expression is

sa,b =

√

√

√

√

∑

α,β=a,b

3
∑

i,j=1

∂m

∂xi, α

∂m

∂xj, β
σ(xi, α, xj, β) , (4.7)

where σ(xi, α, xj, β) is the covariance between the observables xi of muon α
and xj of muon β. It is implied that σ(xi, α, xi, α) = σ2(xi, α) is the variance
of the observable xi of muon α.
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In Figure 4.2, the variance of the J/ψ mass, σ2(m) = s2a,b, is shown as
a function of η and pT of the muon tracks, along with the separate con-
tributions from the variances of each kinematic variable, (∂m/∂xi · σ(xi))2,
where xi = pT, cot θ and φ. The mass variance is clearly dominated by the
muon pT term, while the cot θ and φ contributions are two orders of mag-
nitude lower. In Figure 4.3a, the absolute value of the pT,a-pT,b covariance
term is shown, and in Figure 4.3b the sum of all the remainder covariances,
again in absolute value. σ(pT,a, pT,b) is the most relevant covariance, and its
contribution to σ2(m) is of the same order as σ2(cot θ) and σ2(φ) or higher,
especially in the high |η| regions.

Since the mass resolution σ(m) is largely dominated by the pT resolu-
tion σ(pT), some features of the ansatz function σ(pT)/pT, in particular its
dependence on muon kinematics, can be deduced directly from the mass
resolution on data.

Although φ and cot θ resolutions and all covariances are orders of mag-
nitude lower than σ(pT), their contribution may be relevant with sufficient
statistics, i.e. when the likelihood fit becomes sensitive to details of the mass
resolution of the same order. In particular, this is the case for J/ψ, as will
be shown in Section 4.2.3.

4.2 Momentum Scale Calibration Using J/ψ

J/ψ → µ+µ− decays represent the largest source of dimuons in the early
data taking. In order to be identified, the muons must reach the muon
stations, and this implicitly imposes a transverse momentum threshold of
about 3 GeV/c in the barrel (see Figure 3.10). Therefore, the transverse
momentum and pseudorapidity of the muons coming from low-momentum
J/ψ are highly correlated, with the low pT muons populating only the endcap
region.

4.2.1 Signal Selection

Since the muon momentum resolution is dominated by the tracker fit up to
pT ≃ 200 GeV/c (see Figure 3.11), in the present analysis only the track built
with the silicon hits is considered for the momentum scale and resolution
measurement, also for muons reconstructed by the global algorithm. In such
a way, global and tracker muons can be analysed together.

The global muon algorithm (Section 3.4) provides pure identification
and good quality track reconstruction, but low efficiency at low momen-
tum. Therefore, in the selection of J/ψ candidates, muons reconstructed
by the tracker muon algorithm (Section 3.5) are also considered: if a global
muon pair satisfying the selection requirements is not found in an event,
also global-tracker and tracker-tracker muon pairs are subsequently searched
for. This approach increases the efficiency at low pT, but leads to a larger
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Figure 4.2: (a) Variance of the J/ψ mass vs. η and pT; contributions to σ2(m)
from (b) pT, (c) cot θ and (d) φ.
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Figure 4.3: Contribution to the variance of the J/ψ mass from (a) σ(pT,a, pT,b)
and (b) all the other covariances, in absolute value.
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background from punch-through and decays in flight of hadrons. Further
selection for tracker muons is thus necessary.

An initial suppression of beam background is performed by applying the
following quality cuts to each event:

• at least one vertex of good quality, with a number of degrees of free-
dom > 4, longitudinal position |z| < 15 cm and transverse position
r < 2 cm;

• if more than ten tracks are reconstructed, at least 25% of them must
be of “high-purity” quality, i.e. satisfy quality requirements described
in [29]

The inner tracker track of each muon is required to pass the following
selection:

• number of hits in the silicon detectors > 11;

• number of hits in the pixel detector > 1;

• normalised χ2 of the track fit < 4;

• transverse impact parameter |d0| < 3 cm and longitudinal impact pa-
rameter |dz| < 30 cm.

In order to ensure a high purity sample, tracker muons are further selected
by requiring a satisfactory matching in direction and position between the
track extrapolated from the inner tracker and the segments reconstructed
in the muon stations (cf. Section 3.5). For global muons, the combined fit
of tracker and muon hits must have a normalised χ2 < 20.

When a pair of opposite sign muons satisfy the above requirements, their
tracks are fitted together to reconstruct a common vertex. The resulting J/ψ
candidate is retained if the normalised χ2 of the fit has a probability above
0.1%.

The dimuon invariant mass spectrum obtained with∼ 19 pb−1 integrated
luminosity after the above selection is shown in Figure 4.4.

The invariant mass distribution of the selected muon pairs is divided into
bins of the main kinematic variables of the single tracks and fitted with a
Crystal-Ball function [54], summed with an exponential for the background.
The Crystal-Ball mean and standard deviation for each bin provide an es-
timation of the scale and resolution, respectively, for that kinematic con-
figuration. The scale and resolution of single tracks, instead, are obtained
using the MuScleFit algorithm, as explained in Section 4.1. Throughout
this chapter, whenever J/ψ quantities are shown vs. single track variables,
the distributions are filled twice per event, using both muons.
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Figure 4.4: µ+µ− invariant mass spectrum after the selection described in Sec-
tion 4.2.1, for an integrated luminosity of about 19 pb−1 and a centre-of-mass
energy of 7 TeV. The J/ψ and ψ(2S) peaks are visible.

4.2.2 Preliminary Studies on Simulated J/ψ → µ+µ− Events

Before applying the MuScleFit algorithm on LHC collision data, prelimi-
nary studies are performed using simulation, in order to assess the effects of
material modeling, magnetic field, alignment and reconstruction algorithms
on the momentum scale. Simulated J/ψ → µ+µ− decays with systematically
altered detector configurations help in disentangling the different sources of
momentum bias, and motivate the assessment of each potential cause in-
dividually. The simulated data samples are reconstructed perturbing, one
by one, the relevant detector parameters, and the changes in J/ψ mass and
width are studied as functions of the muon kinematic variables. The de-
scription of these preliminary studies can be found elsewhere [55]. In the
following, a brief summary of the main results is reported.

Detector Material Description The reconstruction algorithm is based
on an approximated description of the material budget. Such approxima-
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tion, combined with other systematics in the reconstruction algorithm, in-
troduces biases with complicated patterns and magnitude of up to 0.1%
(Figure 4.5a), especially in the transition and endcap regions, where the
amount of material is larger and not uniform. The distribution of materials
is also responsible for the dependence of the momentum resolution on pseu-
dorapidity (Figure 4.5b). To assess the sensitivity of reconstruction to such
approximations, different models [50] were used, with different amounts of
material. In Figure 4.5, the standard material budget is compared with a
model having about 8% more material, in terms of radiation length. The
difference in J/ψ mass is found to be of the order of 1-2 MeV/c2, uniform
in η. The mass resolution is only slightly broadened.
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Figure 4.5: (a) J/ψ mass and (b) mass resolution as functions of η, for the stan-
dard material budget model (black triangles) and for a modified model with a
larger amount of material (magenta circles). The mass and resolution are esti-
mated as the peak and σ of a Crystal-Ball fit.

Magnetic Field To study the effect of the description of the magnetic
field, the standard model used in CMS was compared with a different map,
based on a parametrisation, with differences of up to 0.1% [26][56]. The main
effect of the modified map is to introduce a bias increasing with |η|, from
0.01% in the barrel to 0.1% in the endcaps, indicating that the reconstruction
is more sensitive to possible errors in the magnetic field mapping at high
|η| and low pT (see Figure 4.6). No relevant differences are found instead in
mass resolution.

Misalignment To study the systematic effects related to detector mis-
alignment, the “ideal” and “start-up” alignment scenarios (cf. Section 3.1)
are compared. The start-up misalignment introduces a small mass bias
( < 1 MeV/c2) for low muon pT and high |η|, and degrades the mass resolu-
tion, especially at high pT (Figure 4.7). The most notable effect of misalign-
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Figure 4.6: J/ψ average mass as a function of (a) η and (b) pT, for the nominal
magnetic field map and for the modified one.
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Figure 4.7: (a) J/ψ mass and (b) mass resolution as a function of η pT of both
muons in an event, for the ideal (black triangles) and start-up alignment sce-
narios (magenta circles). Mass and resolution are estimated as the peak and
width of a Crystal-Ball fit. The largest biases are found at low pT, while the
degradation in resolution increases with the muon pT.

ment is a large bias in φ. This effect becomes visible when plotting the J/ψ
mass as a function of the φ angle of positive and negative charged muons
separately. As an example, Figure 4.8 shows the J/ψ mass for φ(µ+) and
φ(µ+), for ideal conditions (in black) and for a modified geometry containing
a radial distortion (in red), corresponding to a transformation ∆r = k · r
in the radial coordinate. A sinusoidal-like bias is observed, with opposite
phase for µ+ and µ−. When the distributions for µ+ and µ− are plotted
together, as explained in previous section, the opposite effects cancel out.
Hence, in all the studies presented in this chapter, the φ-dependance of bias
and resolution will be always analysed separately for positive and negative
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muons.
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Figure 4.8: J/ψ average mass as a function of the azimuthal angle φ, separately
for (a) positive and (b) negative muons, for a perfectly aligned geometry (black
triangles) and for the case of a radial distortion (red circles).

4.2.3 Calibration with a Realistic Scenario

After the dedicated studies described above, the MuScleFit calibration
strategy is tested using simulations with realistic conditions: a sample of
simulated prompt J/ψ → µ+µ− events at 7 TeV energy, corresponding to
an integrated luminosity of about 13 pb−1, is reconstructed with the detec-
tor alignment and calibration scenarios reproducing the conditions at the
moment of the start of data taking. The transverse momentum bias and
the resolution on the kinematic variables of the simulated muons before the
correction (e.g., cf. Figure 4.9) are used to build sensible ansatz functions for
the fit. Note that the bias and resolution of the dimuon mass reflect closely
the bias and resolution of the single muon pT (e.g. compare the black graphs
in Figures 4.5a and 4.5b with Figures 4.9a and 4.9b, respectively). Thus,
the dependence of the pT ansatz functions on the muon kinematics can be
directly deduced from mass distributions in data (cf. considerations in Sec-
tion 4.1).

The transverse momentum resolution is modelled with the following
function

σ(pT )

pT
=



























f(pT) + a3 + a4 η
2 for |η| ≤ a0

(|η| − a0) (y2 − y1)/(a1 − a0) + y1 for a0 < |η| ≤ a1

f(pT) + a5 + a6 (|η| − a7)
2 for a1 < |η| ≤ a2

f(pT ) + a8 + a9 (|η| − a10)
2 for |η| > a2

, (4.8)

where f(pT) = a11 pT for |η| < 1.4 and 0 otherwise. The values of y1 and
y2 are chosen such that the region with a0 < |η| ≤ a1 is described by a
line connecting the two adjacent parabolas, that is y1 = a3 + a4 a

2
0 and

y2 = a5 + a6 (a1 − a7)
2.
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Figure 4.9: Muon pT relative bias (left) and resolution (right) as functions of
muon η (above), pT (centre) and φ of the positive charged muon (below), for a
sample of prompt J/ψ simulated with a realistic start-up scenario, before cali-
bration. pT relative bias and resolution are defined as the mean and width of a
Gaussian fit to the distribution of Rµ(pT), according to the definition given in
Equation 3.2.
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The resolution on the polar angle is parametrised from the Monte Carlo
truth as

σ(cot θ) = 9.9 · 10−4 − 2.3 · 10−4 |η| − 5 · 10−4 η2 + 10.7 · 10−4 |η|3

and the resolution on the azimuthal angle is fitted to an average value
σ(φ) = a12.

The function used for the momentum correction is

pcorrT = pT · ( 1 +A+B f(|η|) + Cq,h |φ| sin(2φ+Dq,h) ) , (4.9)

where f(|η|) is tabulated from the actual mass distribution vs. muon |η|,
subtracting the mean of the function over |η|, and has hence an average
value of zero. The parameters Cq,h and Dq,h are different for positive and
negative charge (q = +, −) and for φ > 0 or φ ≤ 0, i.e. for the upper or lower
half of the CMS detector (h = u, l). The total number of free parameters is
ten. The fit strategy is to first fit the resolution and, in a second iteration,
the scale correction.

In Figure 4.10, the J/ψ mass is shown as a function of η, pT, φ of µ+ and
φ of µ−, before and after the correction procedure. The biases are clearly
reduced and the mass distribution is generally shifted towards the nominal
value, with maximum discrepancies within 1–2 MeV/c2. The limit on the
correction is due to the choice of rather simple functions. The results can
be improved by further refining the description of the biases.

The result of the resolution fit is shown in Figure 4.11 for the dimuon
mass (a, b) and muon pT (c, d). The mass resolution fit is in good agreement
with the Monte Carlo expectation, except for small residual discrepancies
at low pT and high |η|. The pT resolution fit, instead, shows larger discrep-
ancies in all the pT range. A detailed study showed that such discrepancies
result from the covariance terms neglected in Equation 4.8, especially the
covariance between the pT of the two muons (cf. Section 4.1). The correct
treatment would be to include all the covariance terms in the computation of
the mass resolution, along with appropriate ansatz functions to parametrise
them. However, this would increase the number of free parameters and make
the fit overly complicated. Since the effect is reasonably small, the difference
between the pT resolution from the fit and the Monte Carlo truth can be
assigned as a systematic error to the resolution measurement on data.

4.2.4 Calibration with 7 TeV Data

The calibration procedure described in the previous section is applied to a
sample of dimuon events from the first year’s collision data at 7 TeV centre-
of-mass energy, corresponding to about 19 pb−1 of integrated luminosity.

One additional difficulty with respect to the simulation is the presence of
the background. Even after the signal selection described in Section 4.2.1,
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Figure 4.10: J/ψ mass vs. (a) η, (b) pT, (c) φ of µ− and (c) φ of µ+, before and
after the calibration with MuScleFit.

the background level is high and varies significantly with the J/ψ and muon
kinematics. In Figure 4.12, the dimuon invariant mass is fitted, in each bin
of muon η, with a convolution of a Crystal-Ball function and an exponential
of the form ek·m, to account for the background shape: for each bin, the
fraction of signal events fsig (cf. Equation 4.6) is reported in Figure 4.12a,
and the parameter k in Figure 4.12b. The amount of background and its
shape show a strong dependence on the pseudorapidity. Thus, different
exponential functions must be adopted in different (η(µ1), η(µ2)) regions.

In Figures 4.13 and 4.14, the measured J/ψ mass and width are com-
pared in data and simulation, before the calibration. Mass and width are
obtained as the peak value and σ of a Crystal-Ball fit in each bin, plus
an exponential for the background. A shift up to 6 MeV/c2 is observed in
the mass distributions, especially at high pseudorapidity and low momen-
tum. In the same regions, the resolution in data is up to 10% worse than in
simulation.

The likelihood fit is performed assuming the same ansatz functions used
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Figure 4.11: J/ψ mass relative resolution (above) and pT relative resolution (be-
low) vs. muon η (left) and pT (right), as obtained from the Monte Carlo truth
(in black) and from the fitted ansatz functions (in red).

in Section 4.2.3 for the simulated samples. These parametrisations of scale
and resolution are motivated by the largest effects seen in the Monte Carlo
studies (Section 4.2.2) and in the analysis of the mass average and width
in data (Figures 4.13 and 4.14). The fit strategy is the same adopted with
the simulated samples: first the background is determined in each η bin,
then the momentum resolution is fitted with Equation 4.8 and finally the
momentum scale correction is determined and applied to each muon using
Equation 4.9.

The results of the momentum scale fit are reported in Table 4.1a. In Fig-
ure 4.15, the dimuon invariant mass is shown before and after the momentum
calibration and fitted with the sum of a Crystal-Ball and a Gaussian having
the same mean value, plus an exponential for the background. After the scale
correction, the initial value of the mass peak is shifted by about 3 MeV/c2

in the right direction. The corrected mass, (3094.97 ± 0.05) MeV/c2, still
differs from the nominal value, (3096.916 ± 0.011 MeV/c2) MeV/c2 [21].
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Figure 4.12: (a) Signal fraction fsig and (b) k parameter vs. η, obtained by fitting
the dimuon invariant mass distribution in each bin with a Crystal-Ball and an
exponential ek·m.

It should be noted, though, that the fit with a Crystal-Ball function is not
expected to return the exact value: applying it to the J/ψ line-shape model
described in Section 4.1, which includes a tail due to the final state radiation
(see Figure 4.1a), a shift of a few MeV/c2 is found, with a linear dependence
on the mass resolution. Given the resolution observed in data, a shift around
2 MeV/c2 is expected. Therefore, the mass value extracted from data after
the corrections is perfectly compatible with the nominal value.

The modelling of the final state radiation tail in the J/ψ mass line-shape
represents the main source of systematic uncertainty in the scale correction.
Such uncertainty has been estimated, in a conservative way, by comparing
the results of a Crystal-Ball fit to the used line-shape and to a model with
a simplified FSR tail. The difference has been found to be below 1 MeV/c2,
corresponding to an effect lower than 1.5 · 10−4 on the momentum scale.

Figure 4.16 shows the J/ψ mass as a function of the muon kinematics,
before and after the scale corrections. The mass values after the corrections
are in good agreement with the expected ones. Again, the shift due to the
use of Crystal-Ball fits must be considered, which can be as large as 2-
3 MeV/c2 in the phase-space regions where the mass resolution is worse, i.e.
at high |η| and low pT. However, all the distributions are flatter than those
before the corrections and the largest biases are recovered, in particular in
the endcap regions and for pT < 3 GeV/c. The φ modulations observed for
separate charges are also partly recovered.

The result of the transverse momentum resolution fit is reported in Ta-
ble 4.1b and the fitted function is shown in Figure 4.17, along with the
corresponding result obtained on simulated data. As already observed in
Figure 4.13, a discrepancy up to 10% in the transverse momentum resolu-
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Figure 4.13: Measured J/ψ mass in data (black) and simulation (red) vs. (a) η,
(b) pT, (b) φ of positive muon and (c) φ of negative muon, before the calibra-
tion.

tion is found between data and simulation, mainly in the high |η| and low
pT region.

The systematic uncertainties coming from the choice of the parametri-
sation function can be estimated from the Monte Carlo exercise described
in Section 4.2.3: the maximum difference between the pT resolution fitted
on simulated data and that extracted from the Monte Carlo truth is about
20% in the barrel and 5% in the endcaps. In Figure 4.17, the sum of the
systematic and statistical errors is represented by the gray band.
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Figure 4.14: Measured J/ψ width in data (black) and simulation (red) vs. (a) η,
(b) pT, (b) φ of positive muon and (c) φ of negative muon, before the calibra-
tion.
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Figure 4.15: Measured dimuon invariant mass spectrum, (a) before and (b) af-
ter the scale correction, fitted with the sum of a Crystal-Ball function and a
Gaussian, plus an exponential for the background.
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Figure 4.16: J/ψ mass before (black) and after (red) the scale calibration, plotted
vs. (a) η, (b) pT, (b) φ of positive muon and (c) φ of negative muon.
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Parameter Value

A (9.4 ± 0.3) · 10−4

B 0.49 ± 0.01
C+, u (-2.2 ± 0.3) · 10−4

D+, u 0.92 ± 0.14
C+, l (-5.7 ± 0.5) · 10−4

D+, l -0.30 ± 0.07
C−, u (-2.2 ± 0.3) · 10−4

D−, u 2.3 ± 0.2
C−, l (-7.6 ± 0.4) · 10−4

D−, l -0.02 ± 0.06

(a)

Parameter Value

a0 1.26 ± 0.06
a1 1.83 ± 0.04
a2 2.24 ± 0.01
a3 (6.73 ± 0.06) · 10−3

a4 (6.43 ± 0.05) · 10−3

a5 (8.0 ± 7.7) · 10−3

a6 (9.2 ± 3.1) · 10−3

a7 0.83 ± 0.14
a8 (2.55 ± 0.03) · 10−2

a9 0.19 ± 0.04
a10 2.27 ± 0.01
a11 (1.2 ± 0.7) · 10−4

a12 (3.1 ± 6.5) · 10−5

(b)

Table 4.1: Results of the transverse momentum (a) scale and (b) resolution fits
on about 19 pb−1 of integrated luminosity, using Equations 4.9 and 4.8.
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Figure 4.17: Resolution on muon transverse momentum, measured with about
19 pb−1 of integrated luminosity (blue line), compared with the results obtained
with simulation (black points). In both cases, the resolution is fitted using
Equation 4.8. The gray band represents the uncertainty on the function fitted
on data, computed from the errors on the parameters summed in quadrature to
the systematic error due to the choice of the parametrisation, as explained at
the end of Section 4.2.3.
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4.3 Momentum Scale Calibration Using Z

During the first year of data taking, CMS collected about 2 · 104 Z → µ+µ−

events, selected with the strategy described in Section 4.3.1. These events
have been used to investigate possible biases and measure the resolution of
muon transverse momenta in a range hardly accessible with muons from
J/ψ decays, from about 10 GeV/c up to 80-100 GeV/c. Unlike the J/ψ
case, the momentum of muons from Z decays allows a very tight selection,
thus the Z signal has a nearly negligible background. On the other hand,
the lower statistics gives less sensitivity to the details of the dependance of
scale and resolution on muon kinematics. Thus, simpler functions are used
to parametrise them.

In Section 4.3.2, the strategy and results of the calibration of inner tracks
using Z → µ+µ− events from 2010 CMS data are presented for an integrated
luminosity of about 30 pb−1. In Section 4.3.3, the same strategy is applied
to global tracks and the results are compared to those obtained with inner
tracks.

4.3.1 Signal Selection

As a preliminary selection against beam background, the same requirements
on primary vertex and quality of tracks described in Section 4.2.1 are ap-
plied.

In the transverse momentum range considered in this study, both the
tracker muon (Section 3.5) and global muon (Section 3.4) reconstruction
algorithms are expected to have maximal efficiency. In order to reduce the
contamination from decays-in-flight and punch-through, the muons are re-
quired to be identified by both algortihms. Further selection is then applied
to tracker and global tracks of both muons:

• number of hits in the silicon detectors > 10;

• number of hits in the pixel detector > 1;

• transverse impact parameter |d0| < 2 mm;

• at least two muon stations included in the global track;

• normalised χ2 of the global track fit < 10;

• transverse momentum (taken from the tracker fit alone) > 20 GeV/c;

• isolation requirements, as described in [57];

• both muons with |η| < 2.1;

• dimuon invariant mass between 60 and 120 GeV/c2.
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4.3.2 Calibration of Inner Tracks’ Momentum

In Figures 4.18 and 4.19, the mass and resolution of the Z resonance are
shown as functions of the muon kinematic variables, in data and simulation,
as measured using the inner tracker track of muons. Mass and resolution
are estimated, respectively, by the mean value and the Gaussian σ of a
Voigtian fit [58] to the resonance peak. The agreement between data and
simulation is good, especially in the mass resolution. The Z mass vs. η and
pT is well reproduced in Monte Carlo, with opposite trends in η for positive
and negative muons. Sinusoidal shapes are visible in φ(µ+) and φ(µ−), but
with different phases in data and Monte Carlo.

As already stated, the background level is very low and can be fitted
with a single exponential in all the kinematic region. The ansatz functions
are determined considering the main features observed in data and simula-
tion (Figures 4.18 and 4.19 and Figures 4.22 and 4.23). The resolution is
parametrised as

σ(pT )

pT
=















f(pT) + a2 η
2 for |η| ≤ a0

f(pT) + a3 (|η| − a4)
2 for η < −a0

f(pT) + a5 (|η| − a6)
2 for η > a0

, (4.10)

where f(pT) = a1 +1.8·10−4 pT. The linear pT dependence is fixed to a value
fitted separately on Monte Carlo, to reduce the number of free paramenters
in MuScleFit. In the external |η| regions, two different parabolas are used,
to reproduce the asymmetric trends observed both in Monte Carlo and in
data. No continuity is required between the central and external parabolas.
The cot θ and φ resolutions are found to be negligible, and are thus fixed to
0 in the fit. In Figures 4.23c and 4.23d, a φ-modulation is visible also in pT
resolution, but the size of this modulation is at least one order of magnitude
smaller than the effects observed in η and pT, and is thus neglected.

The momentum scale correction is applied using the following function:

pcorrT = b0 + b1 pT + q b2 η + q b3 sin(φ+ b4) , (4.11)

where q is the muon charge and accounts for the opposite trends of µ+ and
µ− observed in data and Monte Carlo in the η and φ dependences. Note
that the sinusoidal functions for opposite charge muons are here used with
the same phase and amplitude.

The fit strategy is the same used in the J/ψ case: background, resolution
and scale are fitted separately, in this order. In Table 4.2, the results of the
resolution and scale fits are reported.

In Figure 4.20, the Z mass vs. muon η, pT and φ before and after the
calibration are compared. The corrected distributions are, in general, flatter
and closer to the expected mass value. As in the case of the J/ψ, it must
be noted that the Z mass measured at the LHC is about 0.5 GeV/c2 lower
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Figure 4.18: Z mass vs. (a) η of positive muon, (b) η of negative muon, (c) η,
(d) pT, (e) φ of positive muon and (f) φ of negative muon, as measured on
data (black) and simulation (red), before the scale calibration procedure. Each
bin reports the mean value of a fit to the Z mass with a Voigtian plus an
exponential.
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Figure 4.19: Resolution on the Z mass vs. (a) η of positive muon, (b) η of negative
muon, (c) η, (d) pT, (e) φ of positive muon and (f) φ of negative muon,
as measured on data (black) and simulation (red), before the scale calibration
procedure.
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Parameter Value

a0 1.59 ± 0.03
a1 0.022 ± 0.007
a2 (7.6 ± 0.9) · 10−3

a3 (3.9 ± 2.9) · 10−2

a4 1.39 ± 0.22
a5 0.09 ± 0.24
a6 1.72 ± 0.22

(a)

Parameter Value

b0 1.0182 ± 0.0011
b1 (-4.66 ± 0.27) · 10−4

b2 (5.23 ± 0.45) · 10−3

b3 (5.20 ± 0.39) · 10−3

b4 0.37 ± 0.07

(b)

Table 4.2: Results of the transverse momentum (a) resolution and (b) scale fits,
using Equations 4.10 and 4.11.

than the PDG value, 91.1876 ± 0.0021 GeV/c2 [21], due to the convolution
of the elementary production cross section with the parton distribution func-
tions and to the final state radiation: a mean value of about 90.7 GeV/c2 is
expected. The main biases, i.e. those found in φ(µ+) and φ(µ+), are essen-
tially eliminated. In the η distribution, the mass values are shifted towards
the expected value, but the relatively simple function chosen to model the
scale correction is not sufficient to correct properly some fluctuations. Also
in the pT distribution, the corrected mass is slightly closer to the expected
value. The structure observed in pT around 50 GeV/c is still present. Its
origin is currently under study, and is probably related to the kinematics
of boosted Z bosons. More accurate functions will be developed when more
data becomes available.

In Figure 4.21, the Z line-shape, before and after the momentum correc-
tion, is fitted with a Voigtian function and an exponential. The mean value,
σ and background parameters are reported. The correction shifts the mass
peak by almost 100 MeV/c2 towards the expected value.
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Figure 4.20: Z mass vs. (a) η, (b) pT, (b) φ of positive muon and (c) φ of negative
muon, before (black) and after (red) the scale calibration procedure.
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Figure 4.21: Z mass line-shape, (a) before and (b) after the momentum calibra-
tion.
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4.3.3 Calibration of Global Tracks’ Momentum

In order to compare the performance of track reconstruction using the inner
tracker alone or in combination with the muon spectrometer, the same cal-
ibration procedure described in the previous section is here applied to the
muon global tracks. In Figures 4.22 and 4.23, the pT relative bias and reso-
lution of inner and global tracks are compared, using a sample of simulated
Z → µ+µ− events. As expected from Chapter 3, the results are compati-
ble: the biases are very close and show the same dependences on the muon
parameters, and the resolutions coincide within the errors. Thus, the cali-
bration of global tracks is performed using the same parametrisations and
strategy adopted with inner tracks: Equations 4.10 and 4.11.

Figures 4.24 and 4.25 show a comparison between the Z mass and mass
resolution measured on about 30 pb−1 of data using global tracks or using
the inner tracker alone, both after the track momentum calibration. Again,
the results are completely compatible, confirming the expectations.
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Figure 4.22: Muon pT relative bias as a function of muon (a) η, (b) pT, (c) φ of
positive muon and (d) φ of negative muon, for simulated Z → µ+µ− events,
with a realistic start-up scenario.
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Figure 4.23: Muon pT relative resolution as a function of muon (a) η, (b) pT,
(c) φ of positive muon and (d) φ of negative muon, for simulated Z → µ+µ−

events, with a realistic start-up scenario.
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Figure 4.24: Z mass after the calibration, measured on about 30 pb−1 of data,
using inner tracker tracks (blue) and global tracks (red), as a function of (a) η,
(b) pT, (b) φ(µ

+) and (c) φ(µ−).
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Figure 4.25: Z mass resolution after the calibration, measured on about 30 pb−1

of data, using inner tracker tracks (blue) and global tracks (red), as a function
of (a) η, (b) pT, (b) φ(µ

+) and (c) φ(µ−).
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Chapter 5

Standard Model Higgs Boson

Search in the Four Muon

Final State

The SM Higgs boson decay into four muons, H → ZZ → 4µ, is one of the
most promising discovery channels at the LHC over the whole range of
possible Higgs masses allowed by the SM (cf. Chapter 1).

In this chapter, a prospective analysis of this search is presented for an
LHC centre-of-mass energy of 7 TeV and an instantaneous luminosity of
2 · 1032 cm−2 s−1. This analysis is part of a CMS search strategy aiming at
a combination of the results of the three different leptonic decay channels,
H → ZZ → ℓ+ℓ−ℓ′+ℓ′−, with ℓ and ℓ′ being muons or electrons, described
in [59][60][61] for energies of 14 and 10 TeV. The aim of the present work
is to adapt the startegy to the actual operating conditions of the 2010 LHC
data taking and to the expected conditions for 2011. The latest develop-
ments in lepton reconstruction and identification are adopted, exploiting, in
particular, the experience gained from the first year’s data.

The selection is here described in detail only for muons. However, a
common strategy is used for all final states (as outlined in Section 5.1),
based on cuts on the same kinematic variables. In particular, the same
Monte Carlo simulation of signal and background samples (Section 5.2) was
used for the three channels, and is thus presented here in the context of the
complete H → ZZ → 4ℓ analysis. The final results obtained on a total inte-
grated luminosity of 1 fb−1 combining the three channels are also presented
(Section 5.9).

5.1 Analysis Baseline

The analysis is targeted an integrated luminosity of 1 fb−1, which is expected
to be delivered by the end of 2011 at a centre-of-mass energy of 7 TeV.
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With this luminosity, the expected number of Higgs events is very low for
any possible mass. Thus, it is essential to keep the signal efficiency as high
as possible.

The use of a common cut-based analysis for the three final states allows
a cross-check of the results. After the trigger selection (Section 5.4), a first
skimming procedure (Section 5.5.1), common to the three final states, brings
the data volume to a more manageable level. Further preliminary selections
(Section 5.5.2) are applied separately to the three channels: these are aimed
at reducing the abundant QCD background and consist of loose cuts on the
lepton transverse momenta and on the two-lepton and four-lepton invariant
masses.

The final selection (Section 5.6) is based on the same variables for the
three different channels, in order to keep the selection as homogeneous as
possible, although the specific characteristics of electrons and muons and
the different background levels contributing to each final state have to be
taken into account.

In Section 5.7, the results of the selection applied to the 2010 CMS
data, for an integrated luminosity of about 32 pb−1, are compared with the
expectations from Monte Carlo simulations. Particular emphasis is put on
the development of techniques for the control of background rates from data
and for a data-driven derivation of experimental and background systematic
uncertainties (Section 5.8).

Finally, the expected sensitivity of CMS for the observation of a SM-like
Higgs boson is discussed in a mass range from 115 to 250 GeV/c2 (Sec-
tion 5.9).

5.2 Monte Carlo Simulation of the Relevant Physics

Processes

Datasets of signal and background events with the 4ℓ final state were pro-
duced with a detailed Monte Carlo simulation of the detector response, and
with the complete CMS reconstruction chain, including the imperfect cali-
bration and alignment expected at the beginning of data taking.

Different Monte Carlo generators were used for signal and background
production, in particular pythia [38], alpgen [42], MadGraph [62] and
powheg [63]. For all processes, the showering and hadronisation phases
were performed by pythia.

In all distributions presented in the following and for the final results, the
number of events of each sample is rescaled according to the highest-order
cross section computation available for that process: in general, the back-
grounds are known at NLO level, and the signal at NNLO [18][19]. Thus,
in all figures in this chapter, unless differently specified, each distribution is
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Process Generator (order) σHO ·BR (HO)

(130 GeV/c2) 6.87 fb (NNLO)
H → 4ℓ (150 GeV/c2) powheg (NLO) 10.41 fb (NNLO)

(200 GeV/c2) 15.93 fb (NNLO)
tt̄ → 2ℓ2νbb̄ powheg (NLO) 16.71 pb (NLO)
Zbb̄ → 2ℓbb̄ alpgen (LO) 2.93 pb (NLO)

ZZ(∗) → 4ℓ MadGraph (LO) 4.80 pb (NLO)

Table 5.1: Description of the simulated datasets for signal and main backgrounds.
Here ℓ stands for e, µ or τ .

scaled with the following factor:

wHO =
L · σHO

Ngen
, (5.1)

where σHO is the highest-order available cross section, Ngen is the number of
generated Monte Carlo events and L is the integrated luminosity considered
in this prospective analysis, i.e. 1 fb−1. In the comparisons between data
and simulations, the simulated distributions are normalised to the integrated
luminosity considered in data, i.e. about 32 pb−1.

Table 5.1 summarises the generators used and the cross sections at the
highest known order for the Higgs signal and for the three main backgrounds:
tt̄ + n-jets, Zbb̄ + n-jets, ZZ(∗) + n-jets. Additionally, other backgrounds
are taken into account: n-jets (hereafter referred to as “QCD”), Z/W±

+ n-jets, Zcc̄ + n-jets. “Jets” are here understood as gluon- or light quark-
induced jets (u, d, s), and their number n is up to four. For the event
generation, the parton density function set CTEQ6L1 is used, with the
QCD scale set at pythia’s default values. The masses of the b and t quarks
are set to 4.75 and 172.5 GeV/c2, respectively. Finally, ℓ is understood as
being any charged lepton, e, µ or τ , and Z stands for Z, Z∗ or γ∗.

5.2.1 Signal H → ZZ(∗) → 4ℓ

The Higgs boson events were generated at NLO with powheg through the
main production channel, gg → H. H is forced to decay into two Z bosons,
which are allowed to be off-shell, and both Z bosons are forced to decay into
lepton pairs. Thus, the cross section quoted in Table 5.1 is

σNNLO(pp → H) ·BR(H → ZZ(∗)) · BR(Z → 2ℓ)2.

In the 4µ and 4e channels, the cross sections are enhanced due to the in-
terference of amplitudes with permutations of identical leptons in the final
state. Since powheg does not account for such enhancement, a correction
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factor is evaluated with CompHEP [64] and considered in the 4µ and 4e
analyses. This factor is significant only for Higgs masses below 200 GeV/c2.
Figure 5.1 shows the H → 4ℓ cross section and the 4µ/4e enhancement factor
as a function of the Higgs boson mass.
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Figure 5.1: (a) NNLO cross section for H → ZZ(∗) → 4ℓ as a function of the
Higgs boson mass (ℓ = e, µ here). (b) Enhancement factor of the 4µ and 4e
branching ratios with respect to the 2µ2e one (without this factor, the ratio would
be 0.5).

5.2.2 Background tt̄

A fully inclusive sample of tt̄ + n-jets (n = 0, 1, 2, 3) was generated with
powheg. Events were preselected with the following requirements: at least
four leptons (e or µ) with pT > 4 GeV/c and |η| < 2.7.

5.2.3 Background Zbb̄

The process gg/qq̄ → Zbb̄ → 2ℓbb̄ was generated at LO with alpgen and
filtered with the same requirements used for tt̄. The NLO cross section was
calculated using mcfm [65].

5.2.4 Background ZZ

The qq̄ → ZZ(∗) → 4ℓ sample was generated with MadGraph in the t and
s channels, then filtered with the same requirements described above. To
account for contributions from all the NLO diagrams, events are reweighted
in the analysis with a mass-dependent factor, KNLO(m4ℓ), computed with
mcfm and shown in Figure 5.2. The average correction, also shown in the
figure, is 1.345. The contribution from gluon fusion process gg → ZZ(∗)
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is also included, weighting about 20% with respect to qq̄ → ZZ(∗) at large
Higgs masses.
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Figure 5.2: Mass-dependent NLO k-factor for the ZZ(∗) → 4ℓ process, evaluated
with mcfm.

5.3 Definition of Muon Variables

Before proceeding to the description of the selection strategy, it is useful to
define some variables that will be used at different stages of the analysis.
The variables are here defined for muons, but equivalent definitions are valid
also for electrons.

5.3.1 Muon Isolation Variables

To define the isolation of a muon, a cone in the η-φ space is built around
its track, with radius ∆Riso =

√

∆η2 +∆φ2. Another narrower “veto” cone
is defined around the muon, with ∆R veto < ∆R iso. All the tracks or
energy deposits falling inside the isolation cone, but outside the veto cone
are considered in the calculation of the isolation observable. Minimal cuts
on the pT and quality of the tracks are applied. If two or more muons fall in
the same isolation cone, the contribution of the extra muon(s) is subtracted.
Optimal values for the two cones were found to be ∆R iso = 0.3 and ∆R

veto = 0.015.
The track-based isolation variable are defined as

µIsotrk =

∑

i pT, i

pT, µ
, (5.2)
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where ∆R veto <∆R i <∆R iso. Similar definitions apply to the calorimeter-
based isolation variables, replacing the pT of tracks with the energy of
calorimeter deposits in the cone around the muon track: µIsoECAL and
µIsoHCAL. A combined isolation variable can be defined as

µIso = α · µIsotrk + β · µIsoECAL + γ · µIsoHCAL

=

∑

i
(α · pT,i + β ·EECAL,i + γ ·EHCAL,i)

pT,µ
,

(5.3)

where the coefficients α, β and γ can be optimised to obtain the best perfor-
mance. Note that µIso depends on the muon pT through the denominator.
An independent variable can be defined removing the division by pT:

µIsoind =
∑

i

(α · pT,i + β · EECAL,i + γ · EHCAL,i) . (5.4)

5.3.2 Muon Track Impact Parameter

The impact parameter (IP) of a track provides a measurement of its three-
dimensional distance from the primary vertex of the collision. The transverse
and longitudinal impact parameters (TIP, LIP) are defined on the transverse
plane x-y and on the longitudinal axis z, respectively.

The IP significance (SIP) is defined as the ratio between the IP and its
error

SIP =
IP

σIP
, (5.5)

thus it takes into account the finite resolution of the position measurement.
Similar definitions hold for the significances of the TIP and LIP.

The CMS pixel detector provides an excellent resolution both in the
transverse plane and in the longitudinal direction, so a selection based on
the three-dimensional SIP can be expected to give performances comparable
to separate cuts on STIP and SLIP.

Note that, in general, the IP and its significance can be positive or
negative. For the purpose of this analysis, however, the sign is irrelevant,
thus all the IP-related variables used hereafter are understood as absolute
values.

5.3.3 Dimuon and Four-Muon Invariant Mass

Throughout the analysis, the invariant mass of muon pairs (i.e. the mass of
Z candidates) and the invariant mass of the four muons (i.e. the mass of the
Higgs candidate) are exploited. Even when only four muons are present in
the event, an ambiguity arises in the definition of the muon pairs to form
the Z candidates. If more than four muons are detected, the number of
possible µ+µ− combinations increases, and also the Higgs candidate can
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Trigger Object L1 thres. [GeV/c2] HLT thres. [GeV/c2]

Single µ 7 15
Double µ 0-0 3-3

Table 5.2: pT thresholds for muon L1 and HLT paths used in this analysis. No
isolation is required. For more details on these path, see Table 3.1

be reconstructed in several ways. To solve these ambiguities, a univocal
definition is needed for the two Z candidates.

The two muon pairs are reconstructed in the following way:

• the first Z candidate (expected to be on mass shell) is chosen as the
muon pair with opposite charge and with the closest invariant mass to
the nominal Z boson mass;

• the second Z candidate (“Z(∗)”) is formed by choosing, among the
remaining muons, the two with highest pT and opposite charge.

When more than four muons are found, the Higgs boson candidate is built
from the two µ+µ− pairs selected as above.

In the context of the H → 4ℓ analysis, the aforementioned definitions
apply also to the 4e channel. For the 2µ2e final state, the leptons in a
pair are also required to match in flavour. This also reduces the level of
ambiguity.

5.4 Trigger Selection

In the decay of the Higgs boson, for any allowed mass, at least one of the
intermediate Z bosons is likely to be produced on the mass shell and decay
into a pair of muons with pT around mZ/2. Thus, the triggering strategy
relies on the presence of one or two high-pT muons. The LHC luminosity
foreseen for the first years of data taking, 2 · 1032 cm−2 s−1, allows for
unprescaled muon HLT paths with pT thresholds as low as 15 GeV/c. A
very high trigger efficiency is therefore expected for the Higgs signal. For the
4µ channel, in order to maximise the trigger efficiency, the logical OR among
single and double muon HLT paths is chosen. Similar paths, including also
some requirements on the isolation of muons, will be exploited at higher
luminosities (e.g., see [60] and [61]). For this analysis, instead, it was chosen
not to use the “isolated” trigger paths, since they are not fully commissioned
yet. A list of the used HLT paths is provided in Table 5.2.

In this work, in order to compare the results from simulated and real
data, the HLT paths considered in data taking are emulated in simulation
by applying the same cuts on top of the skimming step (Section 5.5.1).
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5.5 Preliminary Selections

The events passing the combination of triggers described in Section 5.4 un-
dergo a preliminary selection, aimed at rejecting the majority of “unuseful”
events that will not pass the entire selection, while preserving the signal
efficiency and the phase space for the measurement of backgrounds and for
systematics studies. This preliminary selection consists of two steps, called
skimming (described in Section 5.5.1) and preselection (Section 5.5.2).

5.5.1 Event Skimming

The aim of this first selection is to reduce the data volume after the HLT
to a manageable level. The skimming is designed to keep the signal effi-
ciency close to 100% and significantly suppress QCD, W + jets and Z + jets
backgrounds.

The same skimming strategy is applied in the three analyses:

• at least two leptons (e or µ) with pT > 10 GeV/c;

• one additional lepton with pT > 5 GeV/c.

These cuts leave the number of signal events almost unchanged, while the
total number of events is reduced by a factor 50 with respect to the HLT
output. It was also checked that none of the signal events rejected by the
skimming would have passed the full selection.

5.5.2 Event Preselection

The main goal of this step is to reject fake leptons, mostly coming from multi-
jet events, so to bring the contributions from QCD di-jet and W/Z + jets to
a level comparable to or below the three main backgrounds. The rejection
of fake leptons also serves to reduce the combinatorial ambiguities due to
the presence of more than four leptons in the event.

For the 4µ final state, the preselection consists of the following cuts:

• at least two µ+µ− pairs with invariant mass m(µ+µ−) > 12 GeV/c2;
the muons are required to be “global muons” (see Chapter 3) with
pT > 5 GeV/c for |η| < 1.2 (barrel), or pT > 5 GeV/c and p > 9 GeV/c
for |η| between 1.2 and 2.4 (endcaps);

• at least one combination of two matching pairs with an invariant mass
m(4µ) > 100 GeV/c2;

• at least four muons with loose isolation requirements: µIso < 1, ac-
cording to the definition given in Equation 5.3 (with α = β = γ = 1).
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The requirement of two muon pairs with the right combination of charge
and flavour is motivated by the main characteristics of the signal event
topology, and the cut on the invariant mass of the four muons eliminates
events that are incompatible with the SM Higgs mass constraints. The
cut on the invariant mass of muon pairs protects against the contamination
from low mass hadronic resonances. Finally, the loose isolation requirements
further suppress the QCD background and reject fake muons and punch-
through.

The reduction of the background rate at each preselection step is shown
in Figure 5.3a for the 4µ case. The dominating QCD and W + jets back-
grounds are completely suppressed after the requirement of four loose-isolated
muons, and the contribution of the Z + jets process is brought down to a
level comparable with that of the tt̄, Zbb̄ and ZZ final states.

The four-muon invariant mass reconstructed after the preselection is
shown in Figure 5.3b. The spikes visible in the Z + jets distribution are
due to the limited number of events available in simulation, compared to
the large cross sections of these process: the weights used to normalise the
distributions (Equation 5.1) are therefore very large. This is confirmed by
the statistical error bars in Figure 5.3a.
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Figure 5.3: (a) Number of signal and background events per fb−1 in the 4µ chan-
nel. QCD, W/Z + jets, tt̄, Zbb̄ and ZZ backgrounds are shown, along with
the H → ZZ → 4µ signal at mH = 150 GeV/c2. (b) Four-muon invariant mass
spectrum after the preselection (the distributions are stacked). Higgs bosons with
masses 130, 150, and 200 GeV/c2 are considered.
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5.6 Signal Selection

After the preselection, the event sample is dominated by tt̄, Zbb̄/Zcc̄ and
Z + jets. The following steps of the analysis will be focused on the rejec-
tion of these backgrounds. In all these processes, two muons originate from
inside the jets, and are therefore surrounded by hadrons. In the two main
backgrounds, tt̄ → 2Wbb̄ and Zbb̄, the muons produced inside the b-jets are
likely to have large impact parameters with respect to the primary vertex,
due to the long lifetime and large mass of b-hadrons. Thus, the isolation and
IP variables defined in Section 5.3 can strongly reduce these backgrounds.
Moreover, constraints on the invariant mass of muon pairs can provide fur-
ther rejection power. The discriminating strategies exploiting these variables
are described in Sections 5.6.1 to 5.6.3, and their combination for a cut-based
event selection is discussed in Section 5.9. The selection is described for the
4µ channel only.

5.6.1 Muon Isolation

The isolation variables have been introduced in Section 5.3.1. Several ob-
servables are available: track-based or calorimeter-based variables, or their
combinations with different weights. Among them, the best discriminating
power between signal and background is shown by µIso (Equation 5.3) [61],
here used with the three coefficients, α, β and γ, set to 1, i.e. counting with
the same weight the contributions from the three sub-detectors, tracker,
ECAL and HCAL. However, different definitions were used to test the sta-
bility of the isolation cut, and it was verified that the efficiencies do not
strongly depend on the variable definitions. µIso showed better discriminat-
ing power than µIsoindep (Equation 5.4).

The selection of an event is based on the isolation of the two least isolated
muons, which are likely to come from jets in background events. Rather than
using the isolation of the two muons separately, their sum is found to be more
effective: µIso2 least = µIso4th + µIso3rd. The distribution of µIso2 least is
shown in Figure 5.4a for the signal and main backgrounds. In Figure 5.4b,
the signal efficiency is shown as a function of the tt̄ and Zbb̄ efficiencies
for different cuts on µIso2 least. Efficiencies are computed with respect to
preselected events. For a cut µIso2 least < 0.4, the signal efficiency is about
90% for a Higgs boson mass of 150 GeV/c2, with background efficiencies
around 5% for tt̄ and below 10% for Zbb̄.

Isolation vs. Muon pT

As shown above, µIso2 least is more effective on tt̄ than on Zbb̄. This is
due to the different characteristics of the b-jets in the two processes: in tt̄,
jets are initiated by heavily boosted b quarks, coming from the decay of
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Figure 5.4: (a) Combined isolation variable µIso2 least distribution for signal and
main backgrounds in the 4µ channel. All the distributions are normalised to
unity. (b) Discriminating power of the cut on µIso2 least against tt̄ and Zbb̄
backgrounds, in the 4µ channel.

W bosons; in Zbb̄, b-jets are generally less collimated in the detector and
lead to muons with a softer pT spectrum. In order to preserve the signal
efficiency while suppressing low pT muons in Zbb̄ events, the isolation criteria
for such muons can be made pT dependent. In Figure 5.5, the bidimensional
distributions µIso2 least vs. muon pT are shown for a Higgs signal with mass
150 GeV/c2 and for the Zbb̄ background. Here µIso2 least is redefined using
the µIsoindep variable (Equation 5.4) of the two least isolated muons. In such
a way, µIso2 least does not depend on the pT of muons and no correlations
are introduced between the two variables. On the abscissa, the pT of the
third (pT, 3, Figure 5.5a) or fourth (pT, 4, Figure 5.5b) highest-pT muon can
be used. Signal and background are well separated, so that the plane can
be divided into two regions, respectively dominated by the signal or the
Zbb̄ background. This conclusion has also important consequences for the
control of background systematics (see Section 5.8). This separation can
be expected, given that the muons from b-jets, other than non-isolated, are
usually characterised by a lower pT than those coming from the decay of
heavy bosons.

The signal and background regions are best separated by a slanting line
of the form

µIso2 least = A · pT, 3/4 − B .

The discriminating lines shown in Figure 5.5 are optimised for a Higgs boson
mass mH = 150 GeV/c2 and used for all the mass values in this analysis.
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Figure 5.5: Combined isolation variable µIso2 least vs. pT of the (a) third and
(b) fourth highest pT muon, for a Higgs boson mass of 150 GeV/c2 and for
the Zbb̄/Zcc̄ backgrounds in the 4µ final state.

5.6.2 Impact Parameter

In signal events, muons are expected to come from the primary vertex of the
interaction, so the IP of their tracks is statistically compatible with zero.
In tt̄ and Zbb̄ events, instead, two muons originate from the displaced decay
vertex of the b-hadron, so a larger IP with respect to the primary vertex
is expected. Such information can be exploited to discriminate tt̄ and Zbb̄
backgrounds from signal.

As explained in Section 5.3.2, several IP-related variables are available.
The three-dimensional IP was found to have the same discriminating power
as the combination of two separate variables on the transverse plane (TIP)
and longitudinal direction (LIP). More precisely, the significance of the
three-dimensional IP, SIP, is used, in order to account for the finite reso-
lution of the detector. The four muons, selected as in Section 5.5.2, are
sorted by increasing SIP. In background events, the third and fourth muons
(i.e. the two with the highest SIP) are likely to come from b-jets, and are
thus considered for the selection. In Figures 5.6a and 5.6b, the SIP distri-
butions of the third and fourth muon are presented for a Higgs signal with
mH = 150 GeV/c2 and for the main backgrounds. As expected, tt̄ and Zbb̄
have distributions extending to much larger values than the Higgs, while
the irreducible ZZ background is essentially indistinguishable from the sig-
nal. The discriminating power of the SIP variable of the third muon against
tt̄ and Zbb̄, after the preselection, is illustrated in Figure 5.6c.
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Figure 5.6: Distributions of the muon impact parameter significance SIP for the
(a) third and (b) fourth muon, sorted by increasing SIP, for signal and for tt̄
and Zbb̄/Zcc̄ backgrounds. All the distributions are normalised to unitary area.
(c) Discriminating power of the SIP of the third muon.

5.6.3 Kinematics

The presence of two Z bosons in the intermediate state of the Higgs decay
chain, one of which is likely to be on mass shell, provides further rejection
power against all the main backgrounds.

The muons forming the candidate Z(∗) (according to the definition given
in Section 5.3.3) have a harder pT spectrum in the signal than in the tt̄ and
Zbb̄ backgrounds. The invariant mass of the first muon pair (the on-shell
candidate Z) well separates the signal from the non-resonant tt̄ background.
The mass of the second muon pair (the candidate Z∗) can be exploited to
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reject both tt̄ and Zbb̄. Moreover, the mass spectra of both muon pairs dis-
tinguish the Higgs signal from the irreducible ZZ background, which receives
contributions also from γ∗. The invariant mass distributions of both muon
pairs for the signal and the main backgrounds are shown in Figure 5.7, after
the preselection step.
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Figure 5.7: Invariant mass distributions of the Z (left) and Z(∗) (right) candi-
dates, according to the definitions given in Section 5.3.3, for a Higgs signal with
mH = 150 GeV/c2 and the main backgrounds. All the distributions are nor-
malised to unity. The spikes in the Z + jets distribution are due to the limited
number of events in the simulated sample, as explained in Section 5.5.2 and
shown by the error bars in Figure 5.3a.

5.6.4 Event Selection

The observables described in the previous sections are used for a cut-based
mass-independent selection. This allows for a simple, reliable and robust
search procedure for the start-up luminosities and conditions. An additional
sliding window cut in the measured 4µ invariant mass spectrum is used to
derive the sensitivity for a Higgs boson of given mass mH. The selection
cuts are optimised to provide the best significance for the observation of a
Higgs boson with a mass around 150 GeV/c2.

Cuts are applied to muon isolation, impact parameter and the bidimen-
sional distribution of isolation vs. muon pT. As for the dimuon invariant
mass, only loose cuts are applied, in order to minimise the dependence on
mH and thus obtain a simple selection, quasi-optimal for any mH hypoth-
esis. The set of selection cuts is reported in Table 5.3 and the number of
signal and background events after each cut is shown in Figure 5.8a for an
integrated luminosity of 1 fb−1.
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Variable Threshold

Isolation
µIso2 least < 0.4

µIso2 least< 1.5 · pT, 3 − 15
µIso2 least< 2.0 · pT, 4 − 10

IP significance
SIP(4

th µ) < 5
SIP(3

th µ) < 4

mZ 50–100 GeV/c2

m∗
Z 20–100 GeV/c2

Table 5.3: Set of selection cuts.

The reconstructed 4µ invariant mass spectrum after the whole selection
is shown in Figure 5.8b. The Zbb̄ background is completely suppressed and tt̄
is considerably reduced, with an event rate well below the ZZ(∗) continuum.
SM Higgs boson signals expected for an experiment at 1 fb−1 of integrated
luminosity, for masses 130, 150 and 200 GeV/c2, are superimposed for il-
lustration. The signals are observed as narrow peaks. The average number
of events expected from Higgs signals is comparable to or larger than that
expected from the background in a narrow mass window centered on the
signal. Thus, after the mH independent baseline selection, a signal with
mass mH = 130-200 GeV/c2 would emerge above the background.
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Figure 5.8: (a) Number of signal and background events per fb−1 in the 4µ final
state after each selection cut. tt̄, Zbb̄/Zcc̄ and ZZ backgrounds are shown, along
with H → ZZ → 4µ signal at mH = 150 GeV/c2. (b) Four-muon invariant mass
spectrum after the complete selection (the distributions are stacked). A Higgs
boson with mass 150 GeV/c2 is considered.
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5.7 Results on the Data Collected in 2010

The selection criteria described in the previous sections are applied to the
LHC collision data collected by CMS in 2010, for an integrated luminosity
of about 32 pb−1. The results are compared with the expectations from
simulation shown above. Figures 5.9 and 5.10 show the distribution of the
main variables used for the selection, after the HLT and skimming steps
and the requirement of four reconstructed muons. The data are in good
agreement with the expectations from simulation.

 [GeV/c]
T,1

p
20 40 60 80 100 120 140

E
ve

nt
s 

/ (
2.

5 
G

eV
/c

)

-310

-210

-110

1

10

210

Data
ZZ + jets

 + jetsc/cbZb
 + jetstt

Z + jets
W + jets
QCD

(a)

 [GeV/c]
T,2

p
10 20 30 40 50 60

E
ve

nt
s 

/ (
1 

G
eV

/c
)

-310

-210

-110

1

10

210

Data
ZZ + jets

 + jetsc/cbZb
 + jetstt

Z + jets
W + jets
QCD

(b)

 [GeV/c]
T,3

p
5 10 15 20 25 30

E
ve

nt
s 

/ (
0.

5 
G

eV
/c

)

-310

-210

-110

1

10

210

Data
ZZ + jets

 + jetsc/cbZb
 + jetstt

Z + jets
W + jets
QCD

(c)

 [GeV/c]
T,4

p
6 8 10 12 14 16 18 20 22 24

E
ve

nt
s 

/ (
0.

5 
G

eV
/c

)

-310

-210

-110

1

10

210

Data
ZZ + jets

 + jetsc/cbZb
 + jetstt

Z + jets
W + jets
QCD

(d)

Figure 5.9: Transverse momentum of the four muons of each event, sorted from
the highest pT (a) to the lowest pT (d), for events after HLT, skimming and
the requirement of four reconstructed muons, in data and simulation, for an
integrated luminosity of 32 pb−1. The Monte Carlo distributions include only
the backgrounds and are stacked.
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Figure 5.10: Distributions of the (a) highest SIP and (b) second highest SIP of
each event. (c) Distribution of the isolation variable µIso2 least. Invariant
mass of the (d) Z and (e) Z(∗) candidates, according to the definitions given
in Section 5.3.3. Events after HLT, skimming and the requirement of four re-
constructed muons are considered, in data and simulation, for an integrated
luminosity of 32 pb−1. The Monte Carlo distributions include only the back-
grounds and are stacked.
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In Figure 5.11a, the 4µ invariant mass distribution is shown after the
HLT and skimming steps and the requirement of four reconstructed muons.
At this stage, the event sample is still dominated by the QCD background,
and the agreement with the Monte Carlo expectation is fairly good.
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Figure 5.11: Four-muon invariant mass spectrum (a) after the skimming and the
requirement of four reconstructed muons, (b) after the preselection, and (c) af-
ter the whole selection, for an integrated luminosity of 32 pb−1. Higgs bosons
with masses 130, 150 and 200 GeV/c2 are also shown for reference. The black
points are the CMS data. The Monte Carlo distributions are stacked.

In Figure 5.11b, the same comparison is made after the preselection.
Four events are left, which is much more than expected from simulation.
In Table 5.4, a description of these four events is provided. All the events
contain at least one Z boson candidate. Event 1, in particular, seems a
plausible Zγ∗ event, considering the invariant mass of the second muon pair
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m(4ℓ) [GeV/c2] m(2ℓ) [GeV/c2] pT (µ) [GeV/c] µIso SIP

1 110.0
90.04

35.32 0 0.422
37.13 0.03 0.460

0.35
5.17 0 0.832
9.55 0 1.811

2 125.5
92.08

9.17 0 1.187
20.25 0.69 7.407

29.06
5.11 0.13 0.771
7.81 0 0.360

3 167.8
101.13

63.67 0.02 0.507
48.78 0 0.240

39.90
26.66 0.008 0.426
14.13 0 0.496

4 201.7
92.12

19.56 0 0.537
25.88 0 1.029

92.23
48.14 0 0.994
43.44 0 0.411

Table 5.4: Description of the four events surviving the preselection.

and the isolation of the corresponding muons. It should be noted that
events of such kind are not included in the simulated samples used in this
analysis: although the ZZ(∗) Monte Carlo sample described in Section 5.2.4
does include the contribution from Z∗ and γ∗, a mass cut is applied at
generator level, such that m(γ∗/Z∗) > 20 GeV/c2. This partly accounts for
the observed discrepancy. Event 2 satisfies a specific selection for Zbb̄ and
tt̄ events (see Section 5.8.1 and Figure 5.14b) and has a good Z candidate,
so it is a plausible Zbb̄ event. Though there is no sufficient information to
confirm the presence of two b-jets. Event 3 is consistent with ZZ∗ and event
4 has two clean Z candidates, both on mass shell.

In Table 5.5, the number of events in 32 pb−1 of data is reported after
each step of the selection, and compared to the number of signal and back-
ground events expected from simulation. Only one of the four preselected
events survives the whole selection, i.e. event 4. Event 1 is rejected by the
requirement on the invariant mass of the Z(∗) candidate and the bidimen-
sional µIso2 least vs. pT cuts. Event 2 fails the isolation, isolation vs. pT and
SIP cuts. Event 3 does not satisfy the requirements on the invariant mass
of the on-shell Z candidate.

The four-muon invariant mass of event 4 is around 202 GeV/c2 and
lies roughly on the top of the mass spectrum expected from Monte Carlo
simulations (cf. Figure 5.11c). The Poissonian probability of observing one
ZZ → 4µ event in 32 pb−1 of data, after the selection chain described above,
is about 8%. Considering a four lepton final state, since no events are se-
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Process Presel. Iso Iso vs. pT IP sign. Z(∗) mass

H 130 GeV/c2 0.0137 0.0126 0.0114 0.0113 0.0095
H 150 GeV/c2 0.0232 0.0211 0.0201 0.0200 0.0186
H 200 GeV/c2 0.0420 0.0359 0.0353 0.0349 0.0335

ZZ 0.1218 0.1039 0.1023 0.1007 0.0863
Zbb̄/Zcc̄ 0.2790 0.0223 0.0024 0 0

tt̄ 0.1134 0.0059 0.0027 0.0005 0.0005
Z + jets 0.0793 1.2 · 10−6 8.9 · 10−7 0 0

Total MC 0.5935 0.1321 0.1074 0.1012 0.0868

Data 4 3 2 2 1

Table 5.5: Number of events after each selection step, in data and in simulation,
for an integrated luminosity of 32 pb−1. The total number of simulated events
includes only backgrounds.

lected in the 4e and 2µ2e channels, the probability of a single observation
rises to about 23%. At the same luminosity, the probability for the observa-
tion of a Higgs boson with mass around 200 GeV/c2 and decaying into four
muons is instead about 3.2%, and 9.9% considering all three final states. A
display of event 4 is shown in Figure 5.12.

5.8 Control of Background and Systematic Uncer-

tainties

In the first phase of LHC data taking, when a very low statistics is available
and the discovery of a SM-like Higgs boson in the four-lepton final state is
inaccessible, particular emphasis is placed on the understanding of the sys-
tematic uncertainties, on the measurement of the efficiency of the algorithms
used in the analysis, and on the precise estimate of the background rates.

5.8.1 Control of Background from Data

After the cut-based selection described in Section 5.6.4, only a handful of
events are left in both signal and background. It is therefore crucial to
estimate correctly the amount of background remaining in the signal phase
space. A typical procedure consists in choosing a control region outside the
signal phase space, measuring the number of background events therein, and
extrapolating it to the signal region, using the ratio between the number of
background events in the signal region and in the control region derived
from the Monte Carlo simulation.
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(a) (b)

(c)

Figure 5.12: Display of the 4µ event passing the whole H → 4µ selection (event
4 in Table 5.4): (a) r-z view, (b) r-φ view, (c) 3D view.

Measurement of the ZZ Background Contribution from Data

Indirect Measurement Two data-driven methods are used to evaluate
the level of the ZZ background in a given Higgs mass window, defined as

mH − 2σm < m(4ℓ) < mH + 2σm ,

where σm is the width of the Higgs boson resonance with mass mH. One
method consists in using the sidebands in the m(4ℓ) spectrum outside the
signal window as control region. The second method relies on the measure-
ment of the number of Z → 2ℓ events in the signal region. In this case, the
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control region coincides with the signal region, but using a different reference
process.

In both cases, the ZZ background rate NZZ(∆m) in any given signal
mass window ∆m can be predicted from the observed event count in the
control region NCR:

Npred
ZZ (∆m) = ρ(mH) ·Nmeas

CR .

The factor ρ(mH) is derived from Monte Carlo:

ρ(mH) =
N theo

ZZ (∆m) · εZZ
N theo

CR · εCR
,

where the ε’s are the reconstruction and selection efficiencies.
Both methods are described in detail elsewhere [66]. The uncertainties

for such predictions have two distinct components: systematic errors asso-
ciated with the factor ρ(mH) and statistical errors associated with Nmeas

CR .
The theoretical systematic uncertainties on ρ(mH) (PDFs and QCD

scales [66]), known at the NLO level, are of the order of 2-4% in both
methods. Systematic uncertainties on reconstruction and isolation efficien-
cies cancel out nearly completely in the side-bands method, and only partly
in the other method, where two muons are reconstructed. Muon reconstruc-
tion and isolation cut efficiencies can be measured with a 1% uncertainty.
For both methods, the uncertainty on luminosity cancels out completely.

The largest difference comes from the statistical uncertainty on the mea-
surement of Nmeas

CR : the rate of ZZ → 4µ events produced at the LHC is
about 10−5 times that of Z → µ+µ−, which means that the statistical error
on NCR obtained with the side-bands method is at least two orders of mag-
nitude larger than that obtained with the normalisation to single Z events.

Direct Measurement The analysis flow described in the previous sec-
tions for the Higgs boson search will be also used to measure the ZZ → 4µ
cross section with the first data [67].

For this purpose, both Z candidates are required to be on mass shell, with
an invariant mass between 65 and 115 GeV/c2. These cuts alone, applied on
top of the preselection, leave the background at a few percent level. After the
whole selection described in Table 5.3, about 3 ZZ → 4µ events are expected
with an integrated luminosity of 1 fb−1 at 7 TeV, while the tt̄ and Z + jets
backgrounds are completely suppressed and the expectation value for Zbb̄
is 0.003 events. In Figure 5.13a, the 4µ invariant mass spectrum after this
selection is shown for an integrated luminosity of 1 fb−1. In Figure 5.13b, the
same distribution at 32 pb−1 is compared with the results from data. Only
one event passes the whole ZZ selection, the same selected by the H → 4µ
analysis (event 4 in Table 5.4).
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Figure 5.13: Four-muon invariant mass spectrum after the ZZ selection, for in-
tegrated luminosities of (a) 1 fb−1 and (b) 32 pb−1, compared with the results
of the same selection applied on CMS data (black marker). Higgs bosons with
masses 130, 150 and 200 GeV/c2 are also shown for reference. The Monte
Carlo distributions are stacked.

Measurement of the Zbb̄ and tt̄ Background Contributions from

Data

A small number of tt̄, Zbb̄ and Z + jets events survive the whole selec-
tion described in Section 5.6.4. To measure the contamination from these
backgrounds, a control region can be defined by inverting some cuts in the
standard selection.

A possible strategy to isolate background events can profit from the
following cuts, applied on top of the standard skim (Section 5.5.1):

• four muon invariant mass larger than 100 GeV/c2, to suppress the
QCD background;

• invariant mass of the off-shell Z candidate (according to the definition
in Section 5.3.3) below 60 GeV/c2, to suppress ZZ and Higgs signal;

• largest value of SIP larger than 4;

• isolation variable µIso2 least larger than 0.2.

In Figure 5.14a, the invariant mass spectrum of the on-shell Z boson candi-
date in this control region is shown for an integrated luminosity of 1 fb−1. In
Figure 5.14b, the same distribution is compared with CMS data: one event
is found, which is event 2 of Table 5.4.

As shown in these plots, Higgs signal and ZZ background are removed
almost completely. The contributions from tt̄ and Zbb̄ processes can be
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separated by fitting the peak and the non-resonant continuum in the invari-
ant mass distribution of the on-shell Z candidate. A small contamination
from Z + jets events is still present and cannot be disentagled from the
Zbb̄ component. Since the fraction of such events is reasonably small, their
contribution can be accounted for by adding a systematic uncertainty to the
total error in the count of Zbb̄ events. The systematic error on the expected
number of events in the Z mass distribution can be estimated by performing
pseudo-experiments, varying the number of initial expected events with a
Poisson distribution. A total error of the order of 35% is found, assuming
100% uncertainty on the number of Z + jets events contaminating the mass
peak [61][67].

Alternatively, the simple isolation cut described above can be replaced
by the bidimensional cut on the distribution µIso2 least vs. pT of the third
or fourth muon, as explained in Section 5.6.1 and shown in Figure 5.5.
The control region found by inverting these bidimensional cuts is basically
free from signal and more populated by Zbb̄ events than the region defined
by simple isolation cuts. A possible strategy exploiting this selection is
described elsewhere [60].

]2) [GeV/c2Z
1

m(Z

20 40 60 80 100 120 140 160

)2
E

ve
nt

s 
/ (

4 
G

eV
/c

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 2H 130 GeV/c
2H 150 GeV/c
2H 200 GeV/c

ZZ + jets

 + jetsc/cbZb

 + jetstt
Z + jets

(a)

]2) [GeV/c2Z
1

m(Z

20 40 60 80 100 120 140 160

)2
E

ve
nt

s 
/ (

4 
G

eV
/c

-310

-210

-110

1

Data
2H 130 GeV/c
2H 150 GeV/c
2H 200 GeV/c

ZZ + jets

 + jetsc/cbZb
 + jetstt

Z + jets

(b)

Figure 5.14: Measured invariant mass distribution of the on-shell Z candidate for
events in the tt̄/Zbb̄ control region, (a) for an integrated luminosity of 1 fb−1

(linear scale) and (b) 32 pb−1 (logarithmic scale), compared with the results of
the same selection applied on CMS data (black marker). In both figures, the
Monte Carlo distributions are stacked.

5.8.2 Control of Systematics from Data

Several methods have been developed to measure muon efficiencies, resolu-
tion, momentum scale and other properties directly from data. A brief list
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is provided in the following.

Muon Efficiencies

Muon reconstruction efficiency can be measured from data with the tag-and-
probe method, using muon decays of J/ψ (for low pT) and Z (for high pT), as
explained in Section 3.7 and in Appendix C. With 1 fb−1, the single muon
reconstruction efficiency can be measured with an uncertainty better than
1%, depending on muon kinematics. Knowing the single muon efficiency and
the kinematics of muons in H → 4µ and ZZ → 4µ events, the 4µ efficiency
can be deduced with a precision better than 4%. Comparing the results
of this method on simulated data with the efficiency obtained from Monte
Carlo truth, a systematic discrepancy of about 2% is found.

The tag-and-probe technique is also used to evaluate the HLT efficiency.
The corresponding uncertainty, for the purpose of this analysis, is found
to be negligible. The efficiency of some analysis cuts, such as isolation,
vertexing, etc., can be measured with the same method as well.

Muon Momentum Resolution

Muon pT resolution can be measured from data using methods that exploit
the J/ψ and Z mass peaks, such as the MuScleFit algorithm, described in
Chapter 4. The uncertainty on the muon pT resolution directly propagates
into the four-muon invariant mass reconstruction. The m(4µ) distribution
width drives the width of the search window that will be used for evaluating
the significance of a signal excess at low Higgs masses. The uncertainty
on the width of the window is estimated to be around 3% and its effect is
almost negligible: even an error as large as 25% would have a very small
impact on the signal significance.

Applying this method on simulated data, the m(4µ) resolution inferred
from single muon pT resolution can be compared with the Monte Carlo truth.
The results are in good agreement form(4µ) < 200 GeV/c2, while significant
deviations are found for larger masses. The reason of this discrepancy is
under investigation, but it does not affect the results presented here.

Muon Momentum Scale

The momentum scale of muons and the corresponding uncertainty can be de-
termined with the same tools used for the momentum resolution (Chapter 4).
This uncertainty is very small and usually neglibible in this analysis, and af-
fects significantly the number of background events in a given mass window
only on steep slopes of the m(4µ) distribution, especially between 180 and
200 GeV/c2. Even in this region, however, this effect can be neglected if the
momentum scale is known with a precision better than 0.1 GeV/c, which is
reached with few hundred Z → 2µ events.
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Muon Isolation

The main source of systematics on muon isolation is the limited knowledge
of the underlying event. Previous studies [68] using different models for the
underlying event have shown that the variation of the isolation efficiency
can be as large as 5%.

Several strategies are available to measure the isolation efficiency directly
from data. The tag-and-probe method can be used, but it was found to
give uncertainties of the order of 10%. Thus, dedicated methods have been
developed, such as the random cone [69][68] and the kinematic template [61]
techniques. Using these, the isolation cut can be calibrated with few tens of
selected Z + jets events and with uncertainties as low as 1%.

Vertexing Algorithm

A strategy for measuring the background rejection power of IP-based selec-
tions has been developed. This method is based on a control sample includ-
ing one Z candidate plus a b-tagged jet, provided that b-tagging algorithm
does not make use of the IP information (e.g. see [70]) and provides a pure
selection. Fake Higgs candidates are then built by combining the muons
associated to the Z candidate with any other pair of tracks in the event,
making sure that the four tracks satisfy some minimum requirements for a
signal-like event (two- and four-muon invariant masses as in Section 5.5.2).
Once this sample of “fake Higgs” has been extracted, the background power
rejection obtained by cutting on the worst SIP track can be checked.

Summary of Systematic Uncertainties

Other than those described in the previous sections, the main sources of
systematic uncertainty for this analysis are listed below.

Integrated luminosity: it can be obtained from the measurement of in-
clusive Z and W bosons production, with the limitation coming from
the limited knowledge of the parton density functions in the calcula-
tion of the theoretical vector boson cross sections. An uncertainty of
11% is commonly assumed.

Higgs cross section: the dominant production channel, gg → H, is known
at the NNLO, complemented with the NNLL resummation. An uncer-
tainty of about 15-20% is assumed, depending mostly on the sensitivity
to the QCD scale and on PDF uncertainties [19].

Background cross sections: 2-8% for qq̄ → ZZ, as a function of the 4µ
mass; about 30% for gg → ZZ, which is only known at the lowest
order; about 30% for Zbb̄; 20% for tt̄.
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5.9 Results

The goal of this search is either to confirm the existence of a Higgs signal
or to exclude it. In order to quantify the sensitivity of this analysis to the
presence of a Higgs boson signal, a simple counting experiment approach
is adopted. The results are here presented for an integrated luminosity of
1 fb−1, for the 4µ final state and for a combination of the three leptonic
channels.

5.9.1 Significance

In a counting experiment, for any given Higgs mass hypothesis mH, the
events are counted in a mass window m(4ℓ) ± 2σ(m(4ℓ)). This window
slides along the measured mass spectrum of Figure 5.8b to test the various
possible mH hypotheses.

Given the mean number of expected signal and background events in the
mass window, s̄ and b̄ respectively, the likelihood ratio Q(n) is defined as

Q(n) =
L(n, s̄+ b̄)

L(n, b̄)
, (5.6)

where

L(n, x) =
e−x · xn
n!

(5.7)

is the Poisson probability of observing n events when a mean x is expected.
In the case of multiple channels, the likelihood ratio is the product of the
individual likelihood ratios for each channel.

The estimator used in this analysis is the log-likelihood ratio, defined as

− 2 lnQ = −2(s̄ + b̄) ln(1 + s̄/b̄) + 2s̄ , (5.8)

which, in the high statistics limit, tends to a ∆χ2 distribution.
Under the background-only hypothesis, the p-value is the probability

for Q to be equal or greater than the Qobs value built with the number of
observed events:

p = P(Q ≥ Qobs | b) . (5.9)

The significance for a signal observation is obtained converting the p-value
into an equivalent number of one-sided tail σ of a Gaussian distribution.
Typically, a significance value of 3 is considered sufficient to claim an obser-
vation, while 5 is regarded as the limit to claim a discovery.

In Figure 5.15, the expected sensitivity with 1 fb−1 of data is shown as
a function of the Higgs boson mass, for the three separate channels and for
their combination. The continuous lines, connecting several data points be-
tween 115 and 250 GeV/c2, are obtained by extrapolating the results of pre-
vious studies at LHC centre-of-mass energies of 14 and 10 TeV [59][60][61]:
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the significancies are simply rescaled to account for the lower cross sections
of signal and background processes at 7 TeV. The three red points at 130,
150 and 200 GeV/c2 show the sensitivity of the optimised strategy presented
here, combining the results of the three parallel analyses for the 4µ, 4e and
2µ2e final states: the significance of the present study is higher than that
extrapolated from previous studies, especially at low Higgs boson masses.
Nevertheless, it is clear that 1 fb−1 at 7 TeV is not sufficient for an obser-
vation at any mH value, even combining the three channels.
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Figure 5.15: Expected significance of an event excess with 1 fb−1 of data, for
several Higgs boson mass hypotheses. The continuous lines are extrapolated
from analyses at higher energies, as explained in the text, for the three sepa-
rate leptonic channels and for their combination. The red markers show the
significance of the analysis presented here, combining the three channels.

5.9.2 Exclusion Limits

In the absence of a significant deviation from the background-only hypoth-
esis, an upper limit on the H → ZZ → 4µ cross section σ can be set. This
limit is usually expressed in terms of r = σ/σSM, where σSM represents the
expected cross section for a SM Higgs at a given mass. Using a Bayesian
approach [61], the exclusion limit is derived from the a posteriori probability
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for r, given n observed events:

P(r) =
L(n, b̄+ r · s̄) · π(r)

∫ ∞

0
L(n, b̄+ r′ · s̄) · π(r′) dr′

, (5.10)

where π(r) is the prior on the value of r. A standard confidence level (C.L.)
of 95% for the exclusion limit is set by solving the equation

∫ ∞

r
P(r) dr = 0.05 . (5.11)

The experimental uncertainties can be included in the calculation of
L(n, b̄+ r · s̄). Systematics are taken to be 100% correlated, which rep-
resents the most conservative assumption and is a good approximation in
this analysis. However, the effect of including systematics here is rather
small, as the sensitivity for an integrated luminosity of 1 fb−1 is dominated
by the statistical uncertainties.

The Bayesian exclusion limit is obtained by repeating multiple toy Monte
Carlo experiments and taking the mean value 〈r〉 and the 68% fluctuation
bands. The results for the three separate channels and for their combination
are shown in Figure 5.16. As in the case of the significance, the continuous
lines are extrapolations from the analyses at 14 and 10 TeV, while the red
markers represent the results of the new analysis, described in the previous
sections, for the combination of the three channels. Again, the statistics
available at 1 fb−1 is not enough to exclude a SM-like Higgs boson at 95%
C.L. in the considered mass range, even when combining the three final
states.

5.10 Conclusions

The results of this chapter clearly show that the discovery of a SM-like Higgs
boson is inaccessible with 1 fb−1 of integrated luminosity for an LHC centre-
of-mass energy of 7 TeV. The highest significance can be reached for a Higgs
boson of mass 150 GeV/c2, and is slightly above 2. Simply extrapolating
this result, at least 2 fb−1 are needed for an observation, more than 5 fb−1

for a discovery at 7 TeV. A higher energy would obviously improve the
discovery potential.

From Figure 5.16, it can be deduced that few fb−1 will allow to exclude
the existence of the SM Higgs boson in the mass region above 180 GeV/c2,
inaccessible to the Tevatron experiments.

These results also depend on the precision with which the systematics are
determined and the backgrounds measured. Hence, the data that CMS will
collect in 2011 will mainly serve to measure the background rates, especially
for ZZ and Zbb̄, and to improve the knowledge of the detector and of the
algorithms used in this analysis.
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Figure 5.16: 95% C.L. exclusion limits of a SM Higgs boson in the 4µ final state
with 1 fb−1 of data. On the y axis, the variable r = σ95%/σSM is shown. The
continuous lines are extrapolated from analyses at higher energies, as explained
in the text, for the three separate leptonic channels and for their combination.
The red markers show the significance of the analysis presented here, combining
the three channels. The yellow 68% fluctuation band is referred to the old
analysis.

However, the time-scale for a discovery will be driven by the LHC plans
concerning the centre-of-mass energy and instantaneous luminosity to be
delivered, which are continuously evolving: the discovery could be closer
than expected.



Summary

The reconstruction of muon tracks and the precise measurement of their
properties play a key role in fulfilling the challenging CMS physics program,
since muons provide a clear signature in many analyses. One of the most
notable examples is the search of the Standard Model Higgs boson, whose
decay into four muons represents the favourite discovery channel at the LHC
and allows the most precise measurement of its mass and the determination
of its properties. The work presented in this thesis is my contribution to
this ideal path, which starts from the development of track reconstruction
in the CMS muon spectrometer and comes to the elaboration of a complete
analysis strategy for the search of the SM Higgs boson in four muons final
state.

The reconstruction of muons combines the information of the inner track-
ing system with the outer muon spectrometer, to ensure high precision,
efficiency and purity. In particular, I developed the algorithms for the re-
construction of tracks in the muon spectrometer. I tested their performance
on simulated muons, described some of the features that I introduced to
address specific problems and showed the resulting improvements, such as a
better resolution in high-momentum muons, a lower ghost rate, and a higher
efficiency of muon trigger.

The first year of LHC data taking gave me the chance to test the perfor-
mance of muon reconstruction and of the last developments on muons from
proton-proton collisions, to adapt the algorithms to cope with the evolution
of data taking conditions, and to make sure that the reconstruction and
trigger are ready to face the data taking of next years at higher luminosities
and energies. The results of this work are described in Chapter 3.

After muon reconstruction, the momentum measurement may need fur-
ther refinements, to eliminate biases coming from several sources, in par-
ticular residual misalignments and imperfect knowledge of material budget
and magnetic field. Moreover, it is essential to measure precisely the the
muon momentum resolution, which is a source of systematic uncertainty for
several physics analyses. A dedicated algorithm has been developed for this
purpose, called MuScleFit, which uses muon pairs from the decay of neutral
resonances. In the context of this framework, I explored and developed new
strategies to determine scale corrections and resolutions in different muon
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momentum ranges, exploiting decays of J/ψ mesons and Z bosons. The
strategies were first developed on Monte Carlo samples and then applied
and optimised on collision data. In Chapter 4, these methods are described
and the results obtained on Monte Carlo simulations and data are reported
and compared. In the J/ψ case, I selected a large sample of muon pair candi-
dates from 2010 CMS data, which allowed for very detailed corrections. As
for the Z boson, the available statistics was obviously lower, so the momen-
tum scale and resolution had to be determined using simpler models. The
results of my studies were used in several CMS analyses, in particular for
the measurement of the production cross sections of J/ψ and Υ mesons and
Z boson [71][72][73]: the models found for scale and resolution were used to
apply momentum corrections and to determine the systematic uncertainties.

Finally, I worked on a prospective analysis for the search of the SM Higgs
boson in its “golden channel”, i.e. the four muon final state. This study has
been carried out for the last three years and is part of a more general analysis,
involving all the Higgs decays into four leptons (muons and/or electrons). I
contributed, in particular, to the four muon channel, in which I could make
use of the experience gained in my work on muons. At the beginning, the
analysis was developed considering an LHC centre-of-mass energy of 14 TeV,
which will be eventually reached in the next years, and a total integrated
luminosity of 1 fb−1. Then, following the LHC plans for the start-up and first
years of data taking, the same strategy was adapted to lower energies. In
the Monte Carlo study reported in Chapter 5, I used the actual conditions of
LHC in 2010: 7 TeV energy and 2 · 1032 cm−2 s−1 instantaneous luminosity.
I considered again an integrated luminosity of 1 fb−1, which will be likely
collected within 2011. Using Monte Carlo samples, I analysed the potential
of this strategy for the discovery or exclusion of a SM-like Higgs boson in
the four muon channel. The results show that no discovery is possible with
1 fb−1 at 7 TeV: for Higgs masses around 150 GeV and 200 GeV/c2, a
maximum significance of about 1 is reachable in the four muon channel,
slightly more than 2 if all the four lepton channels are combined together.
An exclusion at 95% C.L. is not possible either, for any mass value, but upper
limits on the cross sections can be fixed. In case of masses below 200 GeV/c2,
applying the selection described in Chapter 5, a Higgs signal would appear in
the four muon invariant mass spectrum, as narrow peak above the continuum
of the ZZ(∗) background. Finally, I applied the selection strategy to the 2010
CMS data and I found a good agreement with the simulated distributions.
The analysis selected one good four muon event, with two on shell Z boson
candidates and a four-muon invariant mass of about 200 GeV/c2.



Appendix A

Kalman Filter

The Kalman filter [45][74] is a recursive method for the fit of a discrete set
of data. This method is particularly suited for track fitting, since it allows
implementation of reconstruction code which is independent of the number
of measurements available.

The problem consists in the determination of an estimate of a generic
state vector x given a set of measurements mk, which are assumed to have
the form

mk = Hk xk, true + ǫk , (A.1)

where Hk is the transform matrix from the state space to the measurement
space and ǫk is the noise that affects the true state.

In the case of track reconstruction, the state vector is defined as the
position and momentum relative to a given surface (in the local coordinate
frame):

x =















q/p
tanφ
tan θ
x
y















, (A.2)

where q is the charge, p is the momentum and φ, θ, x and y identify the
track direction and position on the surface.

The first step consists in the seed generation. For muon tracks, the seed
can either be generated from the parameters of Level-1 candidates or from
an approximate state estimation based on the measurements themselves.

Each step is then decomposed into two parts: the prediction of the
state vector and of the error covariance matrix on the surface of the next
measurement to be included, and the update of the state, i.e. the inclusion of
the information from that measurement. They are encapsulated in two basic
components, called propagator and updator. The updator includes all the
algebra of the filter, so that the complexity of fitting is reduced to providing
an analytic or numeric algorithm to propagate tracks and their errors. The
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propagator used in the muon system is able to extrapolate a state vector and
its covariance matrix in a non-constant magnetic field, taking into account
the effect of energy loss and multiple scattering in the material traversed by
the track.

An external steering code is also needed to look for the measurements
to be included in the fit. The algorithm for the hits search in the muon
detectors is described in Section 3.3.2.

The result of a Kalman filter is a state on the surface of the last measure-
ment, which includes all the available information. However, the trajectory
parameters calculated at other points of the trajectory do not include the
information from all measurements. A special procedure is used to update
the parameters at every surface, referred to as smoothing.

Figure A.1 gives a pictorial view of the iterative process. xk−1, the
filtered state on the (k − 1)th layer, is propagated to the kth layer using the
formulae

xk−1
k = Fk−1 xk

Ck−1
k = Fk−1Ck−1 F

T
k−1 + Qk−1 ,

(A.3)

where xk−1
k is the estimated state on the kth layer, Fk−1 is the application

to propagate xk−1 to the next layer, Ck−1
k is the covariance matrix of the

predicted state on k − 1, and Qk−1 is the covariance matrix of the process
noise (which takes into account the energy loss and the multiple scattering
between detectors k − 1 and k).

On the kth layer, the pattern recognition is performed, usually based on
χ2 criteria, to select the most compatible measurement with the predicted
state. Once the best measurement mk has been identified, the trajectory
is updated with the new information. This task is accomplished by the
updator, using the equations

xk = xk−1
k + Kk (mk − Hk x

k−1
k )

Ck = (1 − KkHk)C
k−1
k ,

(A.4)

where
Kk = Ck−1

k HT
k (Vk + Hk C

k−1
k HT

k )

is the gain matrix and Vk is the covariance matrix of ǫk.
Once all measurements have been filtered, the smoothing step can be

performed. Like the filtering step, the smoothing process is iterative (Fig-
ure A.2):

xnk = xk + Ak (x
n
k+1 − xkk+1)

Cn
k = Ck + Ak (C

n
k+1 − Ck

k+1)A
T
k ,

(A.5)

where
Ak = Ck F

T
k (Ck

k+1)
−1
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Figure A.1: Schematic view of the propagation and update of the trajectory state.

and n > k.
The filtered estimate of the state vector is unbiased and has minimum

variance among all linear estimates using the same set of measurements. The
same holds true for the smoothed estimates. Therefore the Kalman filter
with a subsequent smoothing is equivalent to a global linear least-square fit
which takes into account all the correlations arising from the process noise.

Figure A.2: Schematic view of the Kalman filter applied to track fitting.
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Appendix B

Configurable Parameters of

the Stand-Alone

Reconstruction

Configuration of the Forward Filter

Parameter name Parameter description Default value

EnableDTMeasurement Use DT measurements true

EnableCSCMeasurement Use CSC measurements true

EnableRPCMeasurement Use RPC measurements true

Propagator
Track parameter propagator used be-
tween hits

SteppingHelix-
PropagatorAny

MaxChi2 (compatibility) Limit on the hit χ2 compatibility 1000

MaxChi2 (update) Max ∆χ2 to use the hit information 25

RescaleError
Whether to rescale the error prior to
the first update

false

RescaleErrorFactor Rescale factor used if above is true Not used

Granularity
Determines the dimension of RecHit
used to update the track parameters

0 (3D segments)

Table B.1: Configurable parameters for the forward pattern recognition.
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Configuration of the Backward Filter

Parameter name Parameter description Default value

EnableDTMeasurement Use DT measurements true

EnableCSCMeasurement Use CSC measurements true

EnableRPCMeasurement Use RPC measurements true

Propagator
Track parameter propagator used be-
tween hits

SteppingHelix-
PropagatorAny

MaxChi2 (compatibility) Limit on the hit χ2 compatibility 100

MaxChi2 (update) Max ∆χ2 to use the hit information 25

RescaleError
Whether to rescale the error prior to
the first update

false

RescaleErrorFactor Rescale factor used if above is true Not used

Granularity
Determines the dimension of RecHit
used to update the track parameters

2 (1D/2D hits)

Table B.2: Configurable parameters for the backward pattern recognition.

Configuration of the Final Fit

Parameter name Parameter description
Default
value

NumberOfIterations Number of times the filter-smoother is run 3

RescaleError
Factor by which the error matrix is rescaled
prior to the final fit

100

ForceAllIterations
Require all iterations to succeed to keep the
output

false

MaxFractionOfLostHits Fraction of lost hits allowed 0.05

Table B.3: Configurable parameters for the final fit.

Configuration of the Beam Spot Constraint

Parameter name Parameter description Default value

BeamSpotPosition Fixed position of the beam spot Not used

BeamSpotPositionErrors
Error assigned to the beam spot posi-
tion

[0.1, 0.1, 5.3] cm

MaxChi2
Maximum compatibility of update to
vertex

100000

Table B.4: Configurable parameters for the beam spot constraint.



Appendix C

The Tag-And-Probe Method

The tag-and-probe method is a generic technique that uses resonances, such
as Z or J/ψ, to measure from the data itself any sort of per-object efficiency
(reconstruction, trigger, etc.) in an almost unbiased way. A general expla-
nation of the method can be found in [48]. Here only a brief description is
provided, with particular focus on the applications described in Chapter 3.

A well known mass resonance is used to select particles of the desired type
– e.g., muons. In each event, a set of such particles is chosen with very tight
identification criteria: these objects are called tags and must have very high
purity. Another set of particles, known as probes, is generally chosen with
looser cuts. In principle, probes are not even required to be reconstructed
objects of the same type as the tags. In the applications of Chapter 3,
for example, tags are chosen as global muons with strict identification cuts,
while probes are simple tracker tracks with no muon identification, only
some quality requirements.

Resonances are reconstructed by pairing tags and probes, such that the
invariant mass of the combination falls in a predefined window around the
mass of the resonance. In addition to particle pairs from resonance decays,
the mass window will also contain combinatoric backgrounds.

Among all the probes, a subset of passing probes is defined according to
some selection criterion, whose efficiency is to be measured. The ratio of the
number of passing probes and the total number of probes is an estimate of
such efficiency, provided that the background has been correctly subtracted:
in this case, the “sideband” subtraction is chosen.

The tag-probe pairs are divided in two categories, depending on whether
the probe passes or fails the selection. For each category (“passing probes”,
“failing probes” and “all probes”), the tag-probe invariant mass spectrum
is fitted with some signal + background model (see Figure C.1). In the
applications of Chapter 3, e.g., the background is fitted using Chebyshev
polynomials of second degree, the J/ψ peak with a Crystal-Ball function,
and the Z peak with a Voigtian profile. The efficiency is computed from the
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ratio of the signal yields in the “passing probe” and “all probe” categories.
The fits can be performed constraining the ratio to be less than or equal to
1. If the event sample is sufficiently large, the efficiency can be measured
separately in different bins of any kinematic variable of the probe, thus
obtaining the dependence of the efficiency on the particle kinematics.
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Figure C.1: Examples of J/ψ line-shapes from CMS data, fitted with a Crystal-
Ball function plus a second degree Chebyshev polynomial, for the three cate-
gories: (a) passing probes, (b) failing probes and (c) all probes.
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