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Introduction

The Standard Model of Particle Physics is a relativistic quantum field
theory that describes the particles observed in nature and their interac-
tions, except for gravitation and, up to now, is one of the best tested
physics theories of modern Physics. The main motivation to build the
Large Hadron Collider (LHC) is to investigate the hidden sectors of the
Standard Model of particle physics. On 14 march 2013 the existence of the
Higgs boson in the mass region of about 125− 126 GeV/c2 has been con-
firmed by the ATLAS and the CMS collaborations. However, it remains an
open question, whether it is the Higgs boson of the Standard Model of par-
ticle physics, or possibly the lightest of several bosons predicted in some
theories that go beyond the Standard Model. These sectors of physics are
available only at a high energy scale and therefore the LHC was designed
to provide proton-proton collisions at a center of mass energy of 14 TeV.
The collider started operating at

√
s = 7 TeV in 2011 and

√
s = 8 TeV in

2012. Before its stop in December 2012 the integrated luminosity reached
in CMS was about 23 fb−1. The high luminosity and the high energy of
the colliding protons lead to challenging demands to the detector, such as
the precise measurement of the momentum and energy of the particles.
The work presented in this thesis has been carried out within the Torino
CMS group. It is devoted to the study of a method to calibrate the mo-
mentum scale of high energy muons measured in the CMS exeriment.
In Chapter 1 the LHC accelerator is introduced and a description of the
characteristics of the CMS experiment is presented, such as the esperi-
mental setup and the properties of the detectors. Chapter 2 contains an
overwiev on the methods used to reconstruct a track of a particle in CMS,
an introduction on the alignment algorithms and their goals, and a brief
description of the problematics encountered in reconstructing the reso-
nance of a massive boson in the inner part of the detector: the Tracker.
In Chapter 3 an algorithm used to calibrate the momentum of the muons,
the MuScleFit algorithm, is presented, and the results of the application of
such algorithm in the reconstruction of the Z boson are studied in Chapter
4. In this work will be used the natural units, i.e. h = c = 1.
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Introduzione

Il Modello Standard della fisica delle particelle è una teoria di campo
quantistica e relativistica che descrive le particelle osservate in natura e le
loro interazioni, fatta eccezione per la gravità e, attualmente, è una delle
teorie della fisica moderna più sottoposte ad indagine sperimentale. Il
Large Hadron Collider (LHC) è stato costruito principalmente per inda-
gare il Modello Standard e le questioni rimaste aperte legate ad esso. Il
14 marzo 2013 l’esistenza del bosone di Higgs nella una regione di massa
di circa 125− 126 GeV/c2 è stata confermata dagli esperimenti CMS e AT-
LAS. Tuttavia rimane da capire se il bosone di Higgs osservato è quello
del Modello Standard oppure rappresenta l’elemento più leggero di una
serie di bosoni predetti da alcune teorie che vanno oltre il Modello Stan-
dard. Questi settori della fisica possono essere esplorati solo nell’ambito
di esperimenti ad alta energia. Di conseguenza LHC fu progettato per
produrre collisioni protone-protone con energia nel centro di massa di 14
TeV. Il collisore è partito operando a

√
s = 7 TeV nel 2011 ed è stato portato

ad
√

s = 8 TeV nel 2012. Prima del suo arresto in vista di un futuro up-
grade nel dicembre 2012 la luminosità integrata raggiunta in CMS è stata
di circa 23 fb−1. L’alta luminosità e l’alta energia delle collisioni tra protoni
portano a richieste molto esigenti per un rivelatore, come la misurazione
precisa dell’impulso e dell’energia delle particelle.
Il lavoro presentato in questa tesi è stato effettuato nell’ambito del gruppo
CMS di Torino. E’ mirato allo studio di un metodo per calibrare la scala
dell’impulso dei muoni ad alta energia misurati nell’esperimento CMS.
Nel Capitolo 1 viene introdotto l’acceleratore LHC e descritto brevemente
l’esperimento CMS. Il capitolo 2 contiene una introduzione sui metodi us-
ati per ricostruire la traccia di una particella in CMS, una introduzione agli
algoritmi di allineamento, e una breve illustrazione delle problematiche
incontrate nel ricostruire la risonanza di un bosone massivo nella parte in-
terna del rivelatore: il Tracker. Nel capitolo 3 è presentato l’algoritmo
MuScleFit, un algoritmo usato per calibrare il momento dei muoni, e
i risultati dell’applicazione di questo algoritmo nella ricostruzione del
bosone Z sono studiati nel capitolo 4.
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Chapter 1

CMS and LHC

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the most powerful particle ac-
celerator ever built. It consists of a 27 km ring of superconducting mag-
nets with a number of accelerating structures to boost the energy of the
particles along the way. The ring realized by the European Organization
for Nuclear Research (CERN), and is installed on the bordeline between
France and Switzerland, 50-170 m underground. It is the latest addition of
the CERN complex of accelerators (see Figure 1.1), each accelerator boosts
the speed of a beam of particles, before injecting it into the next one in the
sequence. The LHC is designed to collide protons, as well as lead ions, at
an energy and rate never reached before, in order to address some of the
most fundamental questions of physics. The main design characteristics
of the machine are listed in Table 1.1. The beams travel in opposite di-
rections in separate cavities kept at ultrahigh vacuum, the beam pipes. The
bending power needed to keep the beam circulating is the limiting factor
to the achievable centre of mass energy. At the design energy of 14 TeV in
order to keep the proton beams in their orbit is necessary a magnetic field
of more than 8 T. This intensity of magnetic field is only achievable with
the use of superconducting electromagnets. The electromagnets are built
from coils of special electric cable that operates in a superconducting state,
efficiently conducting electricity without resistance or loss of energy. This
requires chilling the magnets to −271.3◦ C with the use of liquid helium.
The boosts are given by 400 MHz superconducting radio-frequency cavi-
ties with a voltage ranging between 8 and 16 MV. Despite the design center
of mass energy of the proton proton collisions was 14 TeV, in the first run
period in 2010 were reached only 3.5 TeV energy per beam, corresponding
to a centre of mass energy of 7 TeV. Only in 2012 the energy in the center of
mass was raised to 8 TeV. The beams collide in four points along the ring,
in correspondance of four experiments: CMS, ALICE, ATLAS and LHCb.

1



1.1 The Large Hadron Collider 2

Figure 1.1: CERN complex of accelerators.

Each one is specialised to study a particular area of particle physics.

• CMS (Compact Muon Solenoid) is a multi-purpose designed to in-
vestigate a wide range of physics phenomena. Currently the main
physics program of CMS includes the measurement of the properties
of the Higgs boson, the search for supersymmetric and dark matter
particles, the study of possible mechanism that generate the matter-
antimatter imbalance observed in the universe, and the search for
the existence of extra dimensions predicted by many theories. It has
a cylindrical geometry around the beam pipe. The charged parti-
cles are bended by a superconducting solenoid that provide a quite
uniform magnetic field of 3.8 T in the inner region.

• ATLAS (A large Toroidal Lhc ApparatuS) as well as CMS is a multi-
purpose detector. It is built with a cylindrical geometry around the
beam pipe. Here the particles are bended by two magnetic field, one
generated by a small superconducting solenoid in the inner part of
the detector, and the other generated by a three sets of toroids placed
in the outer part of the detector.

• LHCb (Large Hadron Collider beauty experiment) is designed to
study the decays of B mesons, in order to investigate the CP vio-
lation. LHCb physicists measure important CP violation properties
looking for new subatomic mechanisms for the matter-antimatter im-
balance.
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LHC design characteristics

Parameter pp Pb-Pb

Circumference [km] 26.659
Beam radius at interaction point [µm] 15
Dipole peak filed [T] 8.3
Centre-of-mass energy [TeV] 14 1148
Instantaneous luminosity [cm−2 s−1] 1034 2 · 1027

Luminosity lifetime [h] 10 4.2
Number of particles per bunch 1.1 · 1011 ≈ 8 · 107

Number of bunches 2808 608
Bunch lenght 53 75
Time between collisions [ns] 24.95 124.75 · 103

Bunch crossing rate [MHz] 40.08 0.008

Table 1.1: Large Hadron Collider design parameters for p-p and Pb-Pb.

• ALICE (A Large Ion Collider Experiment) is a heavy-ion dedicated
detector, it is designed to study the ultra-high energy regime of ion-
ion collisions. It has been conceived to study the physics of strongly
interacting matter at extreme energy densities, where the formation
of the quark-gluon plasma is expected. The existence of such a phase
and its properties are key issues in QCD for the understanding of
confinement and of chiral-symmetry restoration.

Furthermore two other experiments along the ring are active, they are
different from the others because in correspondence of these experiments
is not organized a collision between the beams circulating in the LHC.

• TOTEM (TOTal Elastic and diffractive cross section Measurement),
a detector that consists in eight vacuum chambers containing GEM
detectors and cathode strip chambers, placed in pairs in four differ-
ent points near the CMS detector. It monitors accurately the LHC
luminosity, by detecting particles very close to the beam line.

• LHCf (where ”f” stands for forward) is an experiment that consists
in two identical detectors placed on both sides of the ATLAS experi-
ment, it uses forward particles created inside the LHC as a source to
simulate ultra-high energy cosmic rays in laboratory conditions.

Two of the main experiments, ATLAS and CMS, are designed for a high
luminosity regime, in order to catch the rare events of their physics pro-
grams. Therefore the rate of the collisions is, as well as the energy of the
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centre of mass of the collisions, an important parameter for LHC. The lu-
minosity L of a collider machine is defined by the ratio of the rate R of a
process and its cross section σ:

L =
R
σ

L can be also expressed as:

L =
f N1N2nb

4σxσy
F (1.1)

where nb the number proton bunches per beam, f is the revolution fre-
quency, F is the geometric luminosity reduction factor (≈ 0.8− 0.9) due to
the crossing angle between the two beams at the interaction point, N1 and
N2 the number of protons in the bunches, σx and σy are the rms transverse
beam sizes in the directions perpendicular to the beam. The instantaneous
luminosity obtained in the 2011 and 2012 runs are substantially below the
design values. Every experiment keep track of both delivered and recorded
luminosity. Consider as example the case of CMS: the delivered luminos-
ity refers to the luminosity delivered to the CMS by the LHC. The recorded
luminosity includes only the luminosity actually logged by CMS. Ideally,
the amount of luminosity recorded should be the same as the amount de-
livered, but in some cases the CMS detector is unable to take data, either
because its data acquisition chain is busy or because one or more of its de-
tector subsystems is temporarily unavailable. The integrated luminosity
delivered to CMS by LHC during runs in 2010 (

√
s = 7 TeV), 2011 (

√
s = 7

TeV) and 2012 (
√

s = 8 TeV) are respectively 44.2 pb−1, 6.1 fb−1, 23.3 fb−1,
see Figure 1.2. A comparison between the luminosity delivered to and
recorded by CMS in 2012 is shown in Figure 1.3, the difference between
the recorded and delivered integrated luminosity is about 7%.
Currently the machine is in shut down for at least two years to technically

prepare for running at
√

s = 14 TeV. During this time the various detectors
installed at LHC may upgrade their subdetectors systems to improve their
performance in view of the higher-energy and higher-luminosity runs.



1.1 The Large Hadron Collider 5

Figure 1.2: Luminosity delivered by LHC to CMS in 2010, 2011 and 2012 runs.

Figure 1.3: Luminosity delivered to and recorded by CMS in 2012 runs.
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1.2 The Compact Muon Solenoid

Figure 1.4: View of the CMS experiment during its assembling.

The CMS (Compact Muon Solenoid) is a multi-purpose detector, cur-
rently the goals of its physics program are: the study of the Higgs boson,
the precise measurements of the Standard Model properties, the search
for physics Beyond the Standard Model (BSM), for example particles pre-
dicted by supersymmetric theoretical models, extra dimensions and dark-
matter candidates. Considering the LHC center-of-mass energy, the dis-
covery potential of CMS is very high since it will be possible to detect
new particles up to masses of 3-5 TeV. To achieve the goals of its physics
program the CMS Collaboration designed a very compact detector char-
acterized by a strong magnetic field generated by a 3.8 T superconducting
solenoid, an extremely precise tracking system for the measurements of
the momentum of the tracks both in the inner part (the Tracker) and in the
outer part (the muon system) of the detector, an excellent electromagnetic
calorimeter, and a hermetic hadronic calorimeter system capable of deliv-
ering good performance in missing transverse energy reconstruction. A
schematization of the detector is shown in Figure 1.5, its overall length is
21.6 m, its diameter 14.6 m and its total weight about 12500 tons. In what
follows is presented a general description of CMS and its parts.
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Figure 1.5: Schematization of the CMS experiment and its parts.



1.2 The Compact Muon Solenoid 8

1.2.1 Coordinate reference frame

The global coordinate system in CMS is defined as follows. The origin
is centered at the nominal collision point inside the experiment. The z-
axis points along the beam axis, the y-axis points upwards and the x-axis
points inwards to the center of the collider ring. Figure 1.6 shows the
situation. The azimuthal angle ϕ is measured from the x-axis in the x-y

Figure 1.6: Global cartesian coordinate system as defined in CMS.

plane and the polar angle θ is measured from the z-axis. Here, if px and
py are the components of the momentum of a particle along the x-axis and

y-axis, the quantity pT ≡
√

p2
x + p2

y is called transverse momentum. Instead
of θ it is often used the geometrical variable called pseudorapidity, defined
as:

η ≡ − ln
[

tan
(

θ

2

)]

1.2.2 The inner tracking system

The part of the detector closest to the collision point is the Tracker. It
consists in a cylinder of 5.4 m of length and 2.4 m of diameter that contains
several layers of silicon sensors and is used to reconstruct charged particle
tracks and primary and secondary interaction vertices. Inside the tracker
is present a magnetic field of about 3.8 T that bends charged particles
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allowing the measurement of their momentum. The tracker extends in the
region η < 2.5, r < 120 cm, |z| < 270 cm and is completely based on
semiconductor detectors made of silicon and covering a surface of about
200 m2. The tracker is designed to fulfill few basic properties:

Figure 1.7: Longitudinal section of a quarter of the inner tracking system.

• promptness in the response: mandatory, since collision events occurs
every 25 ns and in each of them up to tens of tracks are produced.

• low cell occupancy: obtained by high granularity detectors, mainly
those closest to the interaction point because they have to cope with
higher particle fluxes, and a fast primary charge collection.

• large hit redundancy: allows many measured points per track in
order to guarantee a high tracking efficiency and a low rate of fake
tracksi(1‰ or less). The CMS Tracker geometry has been designed
so as to provide typically 13 distinct high resolution measurement
planes for stiff tracks up to |η| ≈ 2.0, gradually falling to a minimum
of 8 planes at η ≈ 2.5.

In the central rapidity region the detectors are arranged in a barrel geom-
etry, while at higher values of rapidity they are deployed as disks, organ-
ised into end-caps (see Figure 1.7). Two types of detectors are used in the

ireconstructed tracks not corresponding to any real track.
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Tracker: silicon pixel detectors and silicon strip detectors. They identify
two regions of the Tracker, the pixel Tracker and the strip Tracker.

• The pixel Tracker: is the part of the detector closest to the interaction
vertex. It consists of three 53.3 cm long barrel layers (BPIX) placed at
radii of 4, 7 and 11 cm, and two endcap disks (FPIX) on each side of
the barrel section extending from 6 to 15 cm in radius, and placed at
z = ±35.5 cm and z = ±48.5 cm (see Figure 1.8). In order to achieve

Figure 1.8: 3D schematization of the pixel Tracker.

a fine 3D vertex reconstruction, it is composed of approximately 66
millions pixel cells, with size 100 × 150 µm2, that allow a precise
measurement of the hits both along rϕ and z directions. The sensor
are read-out analogically and a spatial resolution of ∼ 10 µm for the
rϕ coordinate and of ∼ 20 µm for the z is achieved interpolating
the charge induced in nearby pixels. The short distance of the pixel
detectors from the interaction point imposes special requirements on
radiation hardness and will probably require the substitution of the
pixel detector during the lifetime of the experiment.

• The strip Tracker: it is placed in the outer part of the Tracker, the
basic difference with the pixel Tracker is that here is used a silicon
strip technology for the detectors. Silicon strip sensors provide in-
formation on the position of the hit only along one direction. In the
global reference frame this direction is along rϕ. The strip Tracker
can be divided into six subdetectors. In the barrel region the inner
part of the strip Tracker is the Tracker Inner Barrel (TIB). It consists
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in four layers from r = 20 cm to r = 60 cm. The first two layers
are made with double sided modules, composed by two detectors
mounted back to back. Their strips are tilted by 100 mrad in order
to provides a measurement in the z coordinate too. The single point
resolution of the TIB modules is from 23 to 34 µm (varying with r)
along rϕ and, only for the double sided modules, 230 µm along z ; In
the outer part of the barrel region there are six layers of the Tracker
Outer Barrel (TOB), wich cover a range 60 < r < 120 cm. In this case
the resolution on the single hit along rϕ vary from 32 to 54 µm. As in
the TIB also the first two layers of the TOB provide a measurement
along z with the use of double sided modules, the single point reso-
lution along z is 530 µm. In the endcaps both for the forward and the
backward region of the tracker there are three layers of Tracker Inner
Disks (TID) and nine layers of Tracker End Cap (TEC), covering an
interval in pseudorapidity of 1.6 < |η| < 2.4.

1.2.3 The Electromagnetic CALorimeter

The Electromagnetic Calorimeter (ECAL) has the task to measure the
energy of the photons and electrons coming from the collision. Electrons
and photons interact with the material of the calorimeter until they lose
all their energy in a shower of particles. The energy of the shower is mea-
sured by the calorimeter with high precision. ECAL is composed of 75848
finely segmented lead tungstate (PbWO4 ) crystals positioned at r = 1.29
m. Lead tungstate is a fast, radiation-hard scintillator characterized by
a small Molière radius (21.9 mm) and a short radiation length (8.9 mm),
that allows a good shower containment in the limited space available for
the detector. These crystals are also characterized by a very short scintil-
lation decay time which allows to be used at a crossing rate of 40 MHz.
The calorimeter is divided into two parts, one in the barrel region that
covers the rapidity region |η| < 1.48, and the other in the endcap region,
covering a rapidity region up to |η| = 3. A pre-shower detector is in-
stalled in front of the endcaps, it is used to distinguish between showers
started from neutral pions and photons or charged pions and electrons.
Silicon Avalanche Photodiodes (APDs) and Vacuum Phototriodes (VPTs)
are used to collect the scintillation light in the barrel and in the endcaps
respectively. A schematic view of the ECAL is shown in Figure ??
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Figure 1.9: Schematic 3D view of the ECAL.

1.2.4 The Hadronic CALorimeter

The goal of the hadron calorimeter (HCAL) is to measure the direc-
tion and energy of jets, the total transverse energy and the imbalance in
the transverse energy, in order to detect the presence of high energy neu-
trinos. High hermeticity is required for this purpose, hence the HCAL
is divided into four regions which provide a full angular coverage up to
|η| = 5. The barrel hadronic calorimeter (HB) surrounds the electromag-
netic calorimeter and covers the pseudorapidity region |η| < 1.3, while
two endcap hadron calorimeters (HE) cover up to |η| = 3.0. They are
sampling calorimeters, whose active elements are plastic scintillators in-
terleaved with brass absorber plates and read out by wavelength-shifting
fibres Moreover two forward hadronic calorimeters (HF) cover the region
up to |η| = 5.0, they are positioned at a distance of about 11 m from the
interaction point and are needed for identification and reconstruction of
the very forward jets. Both barrel and endcap are read-out in towers with
a size of ∆η × ∆ϕ = 0.087× 0.087. In the barrel, a full shower contain-
ment is not possible within the magnet volume, and an additional layer
of scintillators is placed outside the magnet, the hadron outer (HO). The
projective depth in terms of nuclear absorption length goes from 5.15λ0 at
η = 0 to 9.1λ0 at |η| = 1.3, and is 10.5λ0 in the endcap.

1.2.5 The superconducting solenoid

The CMS magnet is the central device around which the experiment is
built, with his 14 m of diameter and 12000 tonnes of weight is the largest
superconducting magnet ever built. The intensity of its field of about
3.8 T is reachable only with a superconducting technology, therefore the
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magnet is constantly kept at −268.5◦ by liquid helium flows. A strong
magnetic field combined with the high-precision position measurements
in the tracker and muon detectors allows the measurement of the momenta
of extremely high-energy particles. An high precision in the knowledge of
the intensity of the magnetic field in the whole detector is mandatory for
any physics analyses. Two methods for mapping the magnetic field are a
fieldmapper made of sensors, and the cosmic rays. Measurements of the
magnetic field inside the solenoid is done with precision of 0.07%. While
outside the solenoid the precision decreases to 3% in the steel of the three
central barrel wheels, and to about 8% in the steel of the two outermost
barrel wheels. Figure 1.10 shows a map of the intensity of the magnetic
field in a longitudinal section of CMS.

Figure 1.10: Value of |B| (left) and field lines (right) predicted on a longitudinal section
of the CMS detector, for the underground model at a central magnetic flux density of
3.8 T. Each field line represents a magnetic flux increment of 6 Wb.

1.2.6 The muon system

The muon spectrometer has the purpose to provide a robust trigger
and an accurate measurement of the momentum and charge of the muons,
the only charged particles which are not absorbed by the calorimeters. The
minimum value of the muon transverse momentum required to reach the
system is ∼ 5 GeV. The muon spectrometer covers the pseudorapidity
region |η| < 2.4 and is divided into barrel and endcaps, both regions
are organized in four measuring stations, embedded in the iron of the
magnet return yoke, and use different technologies for the detectors. A
schematization of the positions of the detectors in the muon system is
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shown in Figure 1.11.

Figure 1.11: Longitudinal section of a quarter of CMS.

• Drift tube (DT) stations are used in the barrel region ( |η| < 1.2).
The basic detector element is a drift tube cell, its section is repre-
sented in Figure 1.12. The cathodes define the boundary of the cells

Figure 1.12: Section of a drift tube used in the barrel region of the muon system.

and serve as cathodes, the anode is a 50 µm stainless steel wire
placed in the centre of the cell The distance of the track from the
wire is measured by the drift time of the electrons produced by ion-
isation. The gas is a mixture of Ar (85%) and CO2 (15%), which
provides good quenching properties and a saturated drift velocity,
of about 5.4 cm/µs. Therefore the maximum drift time is about 390
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ns, i.e. 15 bunch crossings. A single cell has an efficiency of about
99.8% and a resolution of ∼ 180 µm. In the muon system are present
a total of 195000 drift tubes.

• Cathode Strip Chambers (CSC) are used in the endcap regions (0.9 <
|η| < 2.4) where the magnetic field is very intense and inhomoge-
neous and where the charged particle rate is high. . CSCs are mul-
tiwire proportional chambers, they have a maximum dimension of
3.5 m to 1.5 m and are filled with a mixture of 30% Ar, 50% CO2
and 20% CF4. The measurements of the coordinate ϕ of the track is
done by CSCs with a resolution of 50 µm. Simultaneously, the wire
signals are read out, directly, and used to measure the radial coordi-
nate with a coarse precision of approximately 0.5 cm. By combining
multiple layers of chambers is possible to reach an high time reso-
lution so that the correct bunch crossing can be assigned with over
99% efficiency.

• Resistive Plate Chambers (RPC) are present both in the barrel and
in the endcaps regions. The RPCs have a limited spatial resolution,
but an excellent time resolution (∼ 3 ns). This feature makes the
RPCs capable of triggering events with muons with high efficiency.
They are operated with a gas mixture of 95% C2 H2 F4 and 5% C4
H10.

1.2.7 The trigger system

The bunch crossing frequency at CMS interaction point is 40 MHz, but
technical difficulties in handling, storing and processing extremely large
amounts of data impose a limit of about 100 Hz on the rate of events
that can be written to permanent storage. The goal of the trigger is to
perform an on-line reduction of the data by a factor of 107. The trigger
must therefore be able to select events on the basis of their physics content,
in an extremely short time, given that the bunch crossing time is 25 ns. But
25 ns is a time interval too small even to read out all raw data from the
detector. The strategy used in CMS is to adopt a multi-level trigger design,
where each step of the selection uses only part of the available data. In
this way higher trigger levels have to process fewer events and have more
time available, so they can analyze the events in full details using more
refined algorithms. The CMS trigger is structured in two physical levels:
the Level-1 (L1) Trigger and the High Level Trigger (HLT).

• Level-1 Trigger: it consists of custom-designed and largely pro-
grammable electronics. It reduces the rate of selected events from
40 MHz to 100 kHz. The full data are stored in pipelines of pro-
cessing elements for a maximum time of 3.2 µs while waiting for the
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trigger decision. If an event is accepted the data are moved to the
HLT. The reconstruction algorithms of the tracker do not allow an
enough fast reconstruction of the event, hence only the readout from
the calorimeter and the muon system is employed.

• High Level Trigger: is a software system (implemented in a single
processor farm) which reduces the output rate from 100 kHz to 100
Hz. The strategy here is to perform a regional reconstruction of
the event, only objects in an interesting region are reconstructed, for
example in the proximity of a jet. The HLT has access to the high-
resolution data stored in pipelined memories by the L1 as well as
the information from the silicon tracker: it can therefore perform
complex calculations, such as track reconstruction.



Chapter 2

Muon Recostruction in CMS

In CMS the reconstruction of muon tracks is achieved using both the inner
(the silicon tracker) and the outer part (muon spectrometer) of the detec-
tor. Muons with enough energy (i.e. larger than 3.5 GeV) can pass trough
the calorimeters and the solenoid and leave a signal in the muon system.
The recostruction of a muon starts with the local reconstruction, that is a
method that combines few hits, calculate the path of the muon and propa-
gates the information to a fit of the whole track. Both in the muon system
and in the tracker starting from a series of hits a track or, if only two
hits are registered, a segment is reconstructed. In pp collisions, tracks are
firstly reconstructed independently in the silicon tracker and in the muon
spectrometer. To identify a track as a muon track a matching between a
track, or a segment, reconstructed in the muon system and a track recon-
structed in the tracker is performed. A cross-check for the identification
of a track as a muon track can be performed by checking the energy loss
in the electromagnetic (ECAL) and the hadronic calorimeter (HCAL). In
what follows is presented an overview on the muon track reconstruction
method used in CMS.

17
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2.1 Muons track reconstruction

In CMS different types of reconstruction of a muon track are avalaible:

• Global Muon reconstruction: starting from a track reconstructed
with the hits in the muon chambers (standalone muon) an algorithm
matches it with a compatible track in the silicon tracker, then a fit is
performed considering hits in both the inner tracker and the muon
system. At high transverse momentum (pT > 200 GeV) the global
muon reconstruction improves the resolution of the reconstructed
track compared with the tracker muon reconstruction

• Tracker Muon reconstruction: in this approach is considered as
muon candidate every track with pT > 0.5 GeV and p > 2.5 GeV.
The track is fitted using just the inner tracker hits information and
a map of the material budget in the detector. The reconstructed
track will be promoted to a tracker muon track if it matches at least
one segment reconstructed in the muon system. At low momentum
(p < 5 GeV) this approach is more efficient compared to a global
muon reconstruction, as the former needs just the reconstruction of
at least one segment in the muon chambers, the latter at least two.

Most of the muons with enough energy coming from collisions are recon-
structed as Global Muons or Tracker Muons or, very often, as both. How-
ever in the reconstruction could happen that both approaches fail and only
hits in the muon system are registered. In these cases it is convenient to
define a third category:

• Standalone Muon reconstruction: in this case a fit is performed
using just the informations collected in the muon system. Thanks
to a high reconstruction efficiency of the tracker, standalone muons
represent only about 1% of all muons from collisions reconstructed
in the detector.

The results of these three algorithms are merged into a single collec-
tion of muon candidates, each one containing information from the stan-
dalone, tracker, and, when available, the global fit. The expected reso-
lution for muons in the very central (0 < |η| < 0.2) and in the forward
(1.8 < |η| < 2.0) region of the tracker is shown in Figure 2.1. Here it is
important to notice how a global reconstruction approach improves the
resolution on the muon momentum at high p.
Candidates found both by the Tracker Muon and the Global Muon re-
construction that share the same tracker track are merged into a single
candidate. In a similar way standalone muon tracks not included in a
global muon are merged with a tracker muon if they share at least a muon
segment. The combination of different reconstruction methods leads to an
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Figure 2.1: Expected resolution on muon momentum for global muon reconstruction
(red), tracker muon reconstruction (green) and standalone muon reconstruction (blue).
[1].

efficient and robust muon reconstruction. A physics analysis can achieve
the desired balance between identification, efficiency and purity by apply-
ing a selection based on the muon identification variables (e.g. pT or p).
In this thesis only muons with the track reconstructed in the tracker will
be used.
In CMS many algorithms are avalaible for the reconstruction of a charged
particle track. In what follows is presented an overview on only two of
them, the first is used in the online reconstruction of tracks performed by
the HLT Trigger, the second is used internally in some alignment algo-
rithms.

• Kalman Filter: represents a fast, efficient and versatile algorithm for
the track fitting. It can take into account the multiple scattering effect
of the particle and its energy loss. The Kalman filter is based on the
progressive update of the trajectory of the particle from one hit to
the next. This strategy makes the algorithm very fast and optimal
for the online reconstruction of the tracks performed by the High
Level Trigger.

• Global Fit Algorithm: Every time a measurement (hit on a sensor)
is added to the set, the whole trajectory of the particle is refitted, this
strategy increases the computing-time necessary to fit the track with
respect to the Kalman filter. A global fit strategy is used in some
alignment algorithms, such as Millipede II(see Section 2.2).



2.1 Muons track reconstruction 20

It has been demonstrated with simulations that in CMS the accuracy and
the efficiency of track reconstruction with a global fit and with the Kalman
filter are equivalent, then the one used in the offline reconstruction of the
tracks is the latter. Since a track in the tracker is reconstructed combining
hits in the silicon sensors, the resolution on the momentum of the track
is significantly affected by the precision on the knowledge of the spatial
position of every sensor. In what follows is presented an overview of the
procedure to determine with high precision the spatial position of silicon
sensors in the tracker.
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2.2 Alignment

The procedure to determine the position of the silicon sensible ele-
ments inside the CMS detector is called alignment. After the detector as-
sembly, the positions of the silicon sensors of the CMS tracker are known
with a precision of O(100 µm). The uncertainty on the position of the sen-
sors in the tracker can be represented at different levels: the hierarchy of
levels for the pixel detector is represented in Figure 2.2a, and for the strip
detector the hierarchy up to the module level in Figure 2.2b. Each element

(a) Pixel Detector levels hierarchy (b) Strip Detector levels hierarchy

Figure 2.2: Hierarchy of the mechanical structures of the CMS tracker for the
Pixel Detector and the Strip Detector.

of the hierarchy is allowed to move along all its six degrees of freedom
and the movement of the parent structure is correctly propagated down
to the daughters and vice versa. In the Strip Tracker there are two types
of modules: those with a single silicon sensor and those with two silicon
sensors mounted on. Therefore in modules with two silicon sensors the
hierarchy at the module level split up again in two sensors. In the design
both sensors are exactly on the same plane. However in a real situation
small angles between their surfaces could exist. Referring to Figure 2.3,
if with α is denoted the angle between the surfaces, also called kink angle,
typical values for α are around 1 mrad. In CMS to every element of the
hierarchy level represented (sensors excluded) in Figure 2.2 are assigned
six geometrical parameters corresponding to rotations and translations.
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Figure 2.3: Angle between surfaces of two silicon sensors mounted on a module (kink).

Moreover for every module composed by two silicon sensors an additional
parameter takes into account the kink angle α. To every silicon sensor the
assigned geometrical parameters divided in three categories:

• Shift parameters: (u , v , w) represent the translations of the mod-
ule in three space directions. In these coordinates the silicon sur-
face of the sensor is taken as a reference frame. Usually u is the
coordinate in which the measurement of the hit has the highest pre-
cision, v the lowest precision and the coordinate w represents the
direction normal to the module surface, where no measurement in-
formation exists. For a silicon strip sensor in the barrel region of the
tracker, referring to the global reference frame in cylindrical coordi-
nates (rϕ , z , r), u is along rϕ, v is along z and w is in the r direction.
A sketch of these parameters is shown in Figure 2.4. On the other

Figure 2.4: Aligment shift and rotation parameters defined in the local reference frame of
a silicon strip sensor in the barrel region of the tracker

hand for a sensor in the endcap region u, v and w are defined re-
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spectively along rϕ, r and z. For a pixel sensor, the relation between
the local and the global reference frame coordinates is by convention
the same as a strip sensor.

• Rotation parameters: (α , β , γ): the first is the rotation around u
direction, the second around v and the third around w. For a silicon
strip sensor in the barrel region of the tracker the rotation parameters
are shown in Figure 2.4.

• Bow parameters: called ω20, ω02 and ω11. As is shown in Figure 2.5
the formers are respectively the bow in u and v directions, the latter
is the mixed term. BowS are second order shape corrections and can
be parametrized via second order polynomials.

Figure 2.5: Bow parameters parametrizing three possible deformation of the silicon sen-
sor surface.

The collection of the parameters of all the sensors of the tracker is a set of
more than 100 000 parameters and is called geometry of the tracker. Clearly
the quality of the reconstruction of a track inside the tracker depends on
the considered geometry, the finer is the knowledge of the geometry, the
more realistic is the reconstruction of the track. The knowledge of the ge-
ometry of the detector can be improved up to a few µm via an offline pro-
cedure called track-based aligment. The input to this procedure are simply
the tracks reconstructed by the detector itself. The track-based alignment
can be performed with different types of tracks:

• Cosmic tracks: muons coming from the high atmosphere can pass
trough tens of meters of dense material before being absorbed, hence
although CMS is situated about 100 m underground they can reach
the detector modules and leave a signal.

• Collision tracks: come from any particle produced in the pp colli-
sion that leave signals in the detectors.
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• Beam-halo tracks: generated from the interaction of the beam par-
ticles with residual gas nuclei on the beam pipe in the proximity of
the detector.

The basic idea of the track-based aligment procedure is to determine the
position and the deformation of every silicon sensor in the tracker by fit-
ting a track and comparing the result of the best fit with the position of
the hits. When a track is fully reconstructed, two types of informations
are avalaible: the fitted trajectory and the measured hits. Consider a track
with N measured hits, for every hit is built the so called residual:

~rk =~r f it
k −~r

hit
k for k = 1, ..., N (2.1)

where~r hit
k is the measured hit on the silicon sensor, and~r f it

k is the hit on
the sensor predicted by the fit of the track. The order of magnitude of
~rk is about 10 ÷ 100 µm for the strip sensors and few µm for the pixel
sensors. The goal of the track-based alignment procedure is to reduce the
bias and uncertainty of the fitted parameters of the tracks by correcting
the positions of the detector components. This typically strategy requires a
collection of millions of tracks. By denoting with j a track in the collection,
a global χ2 also called objective function could be written as:

χ2 = ∑
j

∑
k
~r T

j, k V~rj, k for k = 1, ..., N , j = 1, ..., M (2.2)

where V is a covariance matrix built with the track parameters. Mini-
mizing χ2 means minimizing the residuals associated with the hits of the
tracks. Residuals are strictly correlated to the position of the sensors and
there is always new set of geometrical parameters for the sensors that
makes~rk ≈ 0. This strategy reduces the bias and uncertainty of the fitted
track parameters and improve the χ2 of the track fit. Since the track-based
alignment is performed offline, it is almost free from computing time lim-
its. The algorithm currently used in CMS is the Millipede II algorithm [2]
and is based on a global fit of the track.
When the detector was designed, the parameters describing the position of
every silicon sensor was defined. The geometry represented by the collec-
tion of these parameters is called design geometry. Because of the fact that
the detector assembly cannot be performed with infinite precision, a set
of mechanical tolerances for the assembly of every component is defined.
When the detector is assembled information about the relative position of
the sensors within the supporting structures and of the large-level struc-
tures (such as TIB, TOB, etc.) within the Tracker is available from an optical
survey analysis made prior to or during the Tracker integration. This in-
cludes Coordinate Measuring Machine (CMM) data and photogrammetry.
These first survey procedures lead to the definition of a new geometry
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called survey geometry. According to the precision of the measurements of
the first surveys the survey geometry differs from the true geometry by
about O(100µm)i.
Given a set of tracks of charged particles, the track-based alignment algo-
rithm leads to the determination of a new geometry for the tracker, called
aligned geometry. If the algorithm is applied in a proper way the aligned
geometry describes the positions of the modules more realistically with
respect to the initial survey geometry. Quantitatively the aligned and the
true geometries differ from each other by about few µm. Despite the fact
that the track-based alignment algorithm is very reliable there are still
cases in which the aligned geometry can differ significantlyii from the true
geometry. These cases are treated in the following section.

iThis expression has to be intended in the following way: for every sensor or mechan-
ical element of the detector its position as described in the initial-survey geometry differs
from its true position by about O(100µm).

iiThe order of magnitude of these differences is not few µm but O(10µm) or even
O(100µm)
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2.3 Weak modes

In some cases a track based alignment process minimizes the global χ2

without finding the true positions of the sensors. A schematization of the
behaviour of the track-based alignment algorithm is shown in Figure 2.6.
The figure has the only purpose to show the behaviour of the track-based
alignment algorithm, the represented magnitude of the translations with
respect to the dimension of the sensors is not realistic. Both Figures 2.6a

(a) Incoherent shift of two sensors (b) Coherent shift of a group of the sensors

Figure 2.6: Behaviour of the alignment algorithm in case of incoherent and coherent
translations of groups of sensors. In every figure the left part represents the pre-
alignment situation, and the right part represents the positions of the modules, modified
according to the global χ2 minimization performed in track based alignment. The blue
line refers to the fitted track, the green line refers to the true track. Both tracks are from
charged particles and their curvature is induced by a magnetic field perpendicular to the
figure.

and 2.6b compare the true positions of silicon sensors with the positions of
the module assumed in the track fit. Assume that the alignment algorithm
is taking as reference geometry for the determination of the residuals the
survey geometry, the supposed positions of the sensors are then the po-
sitions described by the parameters of the survey geometry. Consider the
true and supposed positions of the sensors in Figure 2.6a. When the differ-
ence between the true and the supposed position of a certain sensor is not
coherent with the difference between the true and the supposed position
of another sensor, the algorithm, in the process of χ2 minimization, is able
to find new positions of the sensors that matches the true ones. On the
other hand in case that the difference between the true and the supposed
position is coherent among a group of modules, as shown in Figure 2.6b,
the χ2 of the track is not significantly improved by translating the sensors.
In this situation the positions of the sensors are not modified by the algo-
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rithm. The relevant thing for a physics analysis in a reconstructed track is
the set of parameters of the track. Consider for example the pT of the track,
refer to Figure 2.6a, the pT of the fitted track before applying the alignment
algorithm is very similar to the true oneiii. What surely changes after the
alignment process is the uncertainty on the pT measurement, because the
χ2 minimization reduces the uncertainty on the determination of the track
parameters. Consider now the case (Figure 2.6b) when the alignment al-
gorithm has not updated the positions of sensors and consequently both
the pT associated to the track and the uncertainty on its determination are
left unchanged. However is still present a significant difference between
the fitted pT (blue line) and the true pT (green line).
The example presented above represents the case in which the sensors are
translated, the same conclusions can be obtained by considering rotations
or deformations of the sensors. The coherent translations, rotations or de-
formations of groups of sensors that modify the parameters of the tracks,
are called weak modes. Weak modes do not degrade the fit of a track and
its χ2. Hence an hypotetical procedure that has the purpose to assign re-
alistic parameters to the track must not be based on the fit of tracks with
the same topology. Another important aspect is that weak modes could
be present in the geometry used to reconstruct real data and in the one
used to reconstruct simulated data. Often in this thesis work data and
simulation are compared. Since the simulation is a software in principle
the true geometry used could be known. However to make the simula-
tion realistic an uncertainty on the position of every sensor (or detector
mechanical element) is introduced. This uncertainty has the same order
of magnitude of the uncertainty on the positions of the sensors in a post
track-based alignment geometry. Then the track-based alignment process
determines an aligned geometry for the simulation too. Consequently de-
spite weak modes are not intentionally introduced in the simulation they
can be present anyway. This makes the simulation, as well as collected
data, eligible to be processed by procedures that have the purpose to reas-
sign realistic parameters to the tracks.

iiiIn fact in the picture they are so similar that appear superimposed and in the right
part of the figure only the green line is visible.
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2.4 Resonance reconstruction in the tracker

A possible approach that can reassign the true parameters to the tracks
is an approach based on the reconstruction of dimuon resonances. The
goal of this thesis is to find realistic parameters of the tracks with the use
of the MuScleFit algorithm. MuScleFit is an algorithm based on the recon-
struction of resonances. The basic idea of the following analysis is, start-
ing from the aligned geometry, to reconstruct a resonance and measure
its characteristics in the tracker. The measurement can be then compared
with what is known of that specific resonance from previous experiments
in order to detect possible systematic biases in the reconstruction. It is
important to choose well known resonances, and especially those whose
decaying products are well reconstructed in CMS. Hence muon-decaying
resonances play a fundamental role as muons at the energy scale of GeV,
for their characteristics of penetrating meters of dense material before be-
ing stopped, are in most of cases reconstructed with high efficiency and
a clean signal. Furthermore it is mandatory to reconstruct adequately the
chosen resonance, hence it is important to have good statistics and low
background for the collection of the decaying products. In the energy
regime of LHC there are some resonances that can be used to investigate
the weak modes of the detector, examples are: J/Ψ, Ψ′, Υ(1S), Υ(2S),
Υ(3S), Z. The candidate chosen for the analysis in this work is the Z bo-
son. Some of its characteristics can be found in Table 2.1.
Considering the luminosity reached in CMS in 2012, ≈ 21 fb−1, and that

Characteristics of Z

Charge 0
Spin 1

Mass 91.1876± 0.0021 GeV
Width 2.4952± 0.0023 GeV

BR(µ+µ−) 3.366± 0.007 %
BR(invisible) 20.00± 0.06 %
BR(hadrons) 69.91± 0.06 %

Table 2.1: Properties of Z boson from the Particle Data Group [3].

the predicted cross section σ(pp → ZX) × BR(Z → µµ) at
√

s = 7 TeV
and
√

s = 8 TeV is respectively 0.972± 0.042 nb and 1.13± 0.04 nb (NNLO
calculation), the branching ratio of Z boson in muons of about 3% is rea-
sonable for having enough statistics and perform an analysis based on it.
Let’s denote with physics objects all the tracks, particles, jets and groups
of them reconstructed in CMS. Consider now two samples of muon pairs
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from a selection described in Table 2.2, one collected in data taking and the
other simulated. In order to detect the possible presence of weak modes in

Muon selection for Z

pT > 20 GeV
|η| < 2.4
NHits Tracker ≥ 10

Table 2.2: Selection criteria for the muons in the samples that will be considered in the
MuScleFit analysis.

the considered samples it is convenient to reconstruct the invariant mass
of the muon pair in a region near the expected value of the Z mass, for
example in the interval [71, 111] GeV, and then extract a value for the mass
of the Z resonance by performing a fit on these distributions. Here three
factors contribute to the shape of the distributions of the invariant mass of
the dimuons:

• The signal: every dimuon event in which the hard scattering process
is related to the exchange of Z/γ∗.

• The background: represented both by dimuon events non related to
the exchange of Z/γ∗ in hard scattering processes and combinatorial
events.

• The resolution of the detector: muons are reconstructed in a detec-
tor that has a finite resolution. The effect on the tracks of the finite
resolution of the detector is to smear the measured parameters of
the tracks around their true values. The hypotesis for the fit of these
distributions is that this spread follows a distribution parametrized
by a Crystal Ball function (Equation 2.4) around the true value of the
parameter.

The fit should take into account these contributions. The choice in this case
is to fit with an exponential function that parametrizes the background
added to a convolution between a Breit-Wigner function and a Crystal
Ball function. Equation 2.3 shows the fit function f (m, ω) as a function of
the dimuon invariant mass m and of a set of unknown parameters ω.

f (m, ω) = fsig ·
(

(Γ/2)2

(m−MZ)2 + (Γ/2)2 ⊗ CB
)
+ (1− fsig) · eλ (2.3)

Here CB = CB(m, σ, α, µ = 0, n) is a Crystall Ball function defined:

CB(m) =


e−
(

m2

2σ2

)
for m

σ > −α(
n
|α|

)n
e

(
− |α|

2
2

)
·
(

n
|α| − |α| −

m
σ

)−n
for m

σ ≤ −α

(2.4)
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The reason for using a Crystal Ball function instead of a gaussian func-
tion is that the signal contribution is not adequately parametrized by the
Breit-Wigner function in the left-tail part of the distribution (m < MZ).
The Crystal Ball function provides two free parameters (α and n) that can
parametrize the shape of the left tail of the distribution. Therefore while
the gaussian core of the Crystall Ball still gives a reliable parametrization
of the resolution of the detector, no biases are introduced in the determina-
tion of MZ by incorrect parameterization of the left tail of the distribution.
In Figure 2.7 dimuons from pp collisions at

√
s = 7 TeV from data collec-

tion during 2011 and from a full detector simulation are considered. Since
different samples have in principle different background, the plots refer to
a situation in which the background is subtracted. The subtraction of the
background has been performed neglecting the fit statistical error on fsig
and λ since they are at least two order of magnitude smaller than their
values. By comparing data and simulation it is possible to appreciate a
difference between the shape of the dimuon invariant mass distributions.
More precisely the peak value and the width of the distributions are not
equal. The lower part of Figure 2.7 emphazises these differences with the
ratio between data and simulation. The results of the fit for the data and
the simulation are shown in Table 2.3. The difference between the fitted

Global results for aligned geometry

Sample Mass [GeV] Sigma [GeV]

data 91.109± 0.004 1.378± 0.005
simulation 91.240± 0.002 1.388± 0.003

Table 2.3: Fit results for the full sample at
√

s = 7 TeV.

mass of data and simulation is about 1‰ and the resolution is about 10
MeV lower in the data. By comparing these values of MZ with the nom-
inal value it appears that the differences between them are of about 1‰
both in data and in the simulation. Anyway these differences are enough
significant that can be the result of a muon reconstruction in presence of
weak modes, both in the data and simulation aligned geometry. The dis-
tributions considered are built by taking into account every dimuon in the
examined samples. Hence the values determined by the fits result from a
compensation of biases in the tracks parameters determination in differ-
ent geometrical regions of the tracker. It means that in some regions of the
tracker these biases could be higher. In order to determine the magnitude
of these biases it is convenient to reconstruct the Z resonance in different
kinematic regions of the muons, for example in different ϕ or η separately
for positive and negative muons. Using the collection of muons in the
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Figure 2.7: Top: dimuon invariant mass reconstructed in the region [75, 105] GeV for
both data (black) and simulation (red) at

√
s = 7 TeV, both histograms have the same

normalization, the error bars are proportional to the square root of number of events in
each bin. Bottom: ratio between the plots of data and simulation, errors, from the plots
at the top of the figure, are correctly propagated here.

data and in the simulation selected with the cuts described in Table 2.2 it
is possible to build the distribution of the dimuon invariant mass and ex-
tract MZ by performing a fit in different kinematical regions of the muon
of a specific charge. Each fit is performed with the function defined in
Equation 2.3, and the value of MZ in every η-bin or ϕ-bin is plotted as in
Figure 2.8. It clearly appears the presence of inhomogeneities between the
fitted value of MZ in different kinematic regions of the muon even inside
a single sample. These inhomogeneities can be caused by residual weak
modes in the aligned geometry, the magnitude of these biases is up to 1%
of MZ. In order to fully exploit the reconstruction potential and precision
of the CMS detector they must be taken into account in the physics analy-
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ses. The goal of this thesis is to reassign a new momentum to the muons
by taking into account these biases, with the purpose to make more ho-
mogeneous the response of the tracker to the reconstruction of the muons
and consequently of the resonances.
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(a) MZ vs η+

(b) MZ vs ϕ+

Figure 2.8: Value of the Z mass reconstructed from the dimuon invariant mass in dif-
ferent kinematic regions (positive muon). The error bar in each bin is smaller than the
marker, and refers to the statistical error of the fit.



Chapter 3

Muon Calibration with the
MuScleFit Algorithm

The MuScleFit package (acronym of Momentum Scale Fit) allows to
perform analysis and calibration (intended as computing momentum scale
corrections) of muons reconstructed in CMS. It consists in a series of C++
and python classes that can handle and modify the four-vectors of par-
ticles. The analysis in this thesis makes use of muons from a resonance
decay, hence the input for MuScleFit will be muon pairs. The basic idea
of the algorithm is to parameterize possible biases in the resonance re-
construction (see Chapter 2, Section 2.3) as a function of some kinematic
variables, such as ϕ, η, pT, by performing a multi-parameter likelihood fit,
and then recover these biases by applying corrections that depend on the
parameters found. During the data-taking of CMS, the algorithms used to
identify and reconstruct physics objects continuously evolved. Moreover
updates are very often made on the configuration of the trigger and the
hardware componentsi. At the same time alignment studies determine
new improved aligned geometries periodically. This continuous evolution
on the data processing environment in CMS is present during the whole
data collecting activity. Hence it is necessary, for each sample of recon-
structed physics objects, to keep track of the environment used to process
the data. A particular configuration of the data processing environment is
denoted as CMSSW release. The priority of physics analyses is not to use
samples processed within the latest CMSSW release but to know the con-
figuration of processing environment in which the samples have been pro-
cessed. Hence in CMS there are many CMSSW releases used by physics
analyses and the MuScleFit algorithm, in order to produce suitable cor-
rections for the muons reconstructed in each release must be robust and

iConfiguration of the hardware components could be for example the list of electric
channels inside the silicon modules, the threshold on the electrical noise etc.

34
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flexible.
In this thesis results obtained with two CMSSW releases will be presented:
CMSSW 4_2_X and CMSSW 5_3_X.

Conventionally in the label 4_2_X the number on the left indicates
the most important changes in the data processing environnment, such as
a substantial improvement of the reconstruction algorithm with respect to
the previous versions etc., and going from the left to the right the numbers
denote progressively less impotant changesii. The samples considered in
this thesis are four, two are samples of muons from collision data and two
are sample of simulated muons. Some of their characteristics are reported
in the Table 3.1. The kinematical cuts on the tracks of the muons in every
sample are the same listed in Table 2.2.

Samples for muon calibration

Sample CMSSW release year
√

s [TeV] N of dimuons

data 4_2_X 2011 7 1870667
simulation 4_2_X 2011 7 3779949

data 5_3_X 2012 8 7282227
simulation 5_3_X 2012 8 2946698

Table 3.1: Details of the samples considered in this thesis.

iiThe last number is indicated with X because denotes very minor changes in the data
processing environment which do not affect the quality of reconstructed muons in the
samples considered in this analysis
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3.1 The MuScleFit likelihood

In this section the approach used in the MuScleFit algorithm is pre-
sented. It is a statistical approach that uses the measured mass of dimuons
(mobs) as statistical observable. In this approach a probability is assigned
to each event k according to mobs , k and to the expected distribution of the
dimuon invariant mass in the region [71, 111] GeV. Then a likelihood de-
pending on these probabilities is built.
Let’s start with the case where in the samples are present only dimuons
from the resonance. If Nev denotes the number of dimuons in the sample
considered, the likelihood variable is simply:

ln L =
Nev

∑
k=1

ln
[
Psig
]

(3.1)

where Psig represents the probability for the event k to be a signal event.
The functional form of ln L chosen is:

ln L =
Nev

∑
k=1

ln
[

fsig Psig + (1− fsig) Pbgd
]

(3.2)

where the fraction of the signal fsig is an unknown parameter. Here also
the probability that an event is a background event Pbgd is present, and,
similarly to Psig, its parametrization is not trivial. While the functional
form of likelihood in Equation 3.2 is independent on which resonance is
chosen for the analysis, the explicit parametrizations of Psig and Pbgd are
not. In this work the resonance considered is Z, and the main topic of
the following sections is to find a suitable functional form for its signal
probability and background.
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3.2 Building of the signal probability

For a detector with a perfect response, that is when the resolution can
be neglected, Psig is given by:

Psig(mobs, m0) =
∫

dm δ(m− mobs) σ(m , m0) = σ(mobs , m0) (3.3)

Here σ(m , m0) (also called signal function or lineshape) represents the the-
oretical distribution of the dimuon invariant mass in the proximity of the
resonance m0; mobs is the observed invariant mass of the dimuon, which
depends on the kinematic variables of the muons and, in the form of a
function of a set of unknown parameters, contains the parametrization for
the scale of momentum of muons.
In order to extend the signal probability to a realistic case and to be able
to compare the expected and the reconstructed distributions, an hypote-
sis for the detector effects on the tracks reconstruction should be made.
A reasonable choice is to suppose that the effect of the detector on the
dimuon reconstruction is that the parameters of the track are distributed
around their true value according to a gaussian distribution. The stan-
dard deviation of this gaussian distribution is not a single value rather is a
function of kinematic variables, such as η, pT, and it depends on unknown
parameters that will be determined also by the likelihood maximization.
With this prescription Equation 3.3 becomes a convolution between the
gaussian resolution of the detector and σ(m , m0).

Psig(mobs, m0) ∝
∫

dm
σ(m , m0)

s
e−

1
2

(
m−mobs

s

)2

(3.4)

Here s is the expected mass resolution function, which depends on the
kinematics of the muons and, in the form of a function of a set of unknown
parameters, holds the parametrization of the resolution of the muons in
the tracker. Similarly mobs holds the parametrization of the momentum
scale of the muons in the tracker and depends on the kinematics of the
muon and on a set of unknown parameters. The fit procedure change the
values of the unknown parameters in order to find the maximum value for
ln L, this is the maximum likelihood method. In what follows a suitable
parametrization for the functions mobs, s and σ(m, m0) is investigated.

3.2.1 The signal function

The signal function σ(m, m0) represents the theoretical distribution of
the dimuon invariant mass m in the proximity of the considered resonance
m0 as it is predicted by the Standard Model. Since in this work the res-
onance considered is the Z boson, the distribution of m is defined in the
proximity of m0 = 91.188 GeV. The production of Z boson in pp collisions
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at
√

s = 7 or
√

s = 8 TeV is described in terms of partons interactions in
the hard scattering process, and its decay into muons can be treated within
the standard model with QCD, QED and electroweak corrections.

For this analysis an accurate prediction for the Z resonance decaying
into muons has been calculated taking into account NLO Feynman dia-
grams for QED and electroweak corrections, both for

√
s = 7 and

√
s = 8

TeV and with a systematic uncertainty under 1‰iii. The kinematic cuts on
final state muons follow those applied on the reconstructed objects, and
are |η| < 2.4 and pT > 18 GeV. For the purpose of calibration an interval
of invariant mass needs to be chosen: a too narrow interval near the peak
value of the resonance, i.e. ±5 GeV, will prevent the correct reconstruction
in those kinematic regions where the bias in the reconstructed dimuon
mass is larger, on the other hand if the interval is too large, for example
±40 GeV, the fit would be affected by the tails of the distribution where a
non-optimal parametrization can induce significant biases in the determi-
nation of the peak. As reference for the choice of a suitable interval, one
can observe in Figure 2.8 that sometimes the peak value is 1÷ 2 GeV away
from the nominal value. Keeping in mind that the resonance, which has
natural half-width of about 1.25 GeV, is extra-smeared by the resolution of
the detector, that is again 1÷ 2 GeV, and that a proper way to do the fit
is to consider few standard deviations from the peak, we choose for the
interval of the fit the window [71, 111] GeV. Figure 3.1a shows a superpo-
sition of the dimuon invariant mass distribution in the range [71, 111] GeV
for
√

s = 7 TeV and
√

s = 8 TeV, and of their ratio (Figure 3.1b): the differ-
ence between the curves at

√
s = 7 TeV and

√
s = 8 TeV is very small, and

in fact the use of two lineshapes, one for the 2011 samples at
√

s = 7 TeV
and the other for the 2012 samples at

√
s = 8 TeV, is pretty equivalent to

the use of only one of them.
The information contained in the theorethical lineshape is fed to MuScle-
Fit in a particular and efficient way. Equation 3.4 represents a convolution
between the theoretical lineshape and a gaussian with a standard devi-
ation σ function of the kinematics of the muons. During the fit process
σ change its value many times, and, if every time a convolution between
the gaussian associated to that σ and the theoretical lineshape should be
performed, the computing time for the maximization of the whole like-
lihood greatly increases, especially if the convolution, that is computed
numerically, is made with an high precision. The smart choice to keep
the computing time for the fit process reasonable and, at the same time,
to have an high precision numerical convolution is to provide the fit tab-
ulated values of the convolution. The choice made for this analysis is
to produce convolutions of the theoretical lineshape with gaussians with

iiiCalculations have been performed and systematic uncertainties were computed by
Prof. Stefan Dittmaier (University of Freiburg), [4].
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(a) Theoretical lineshapes for Z → µµ at
√

s = 7 TeV (red plot) and
√

s = 8 TeV (black
plot).

(b) Ratio of the
√

s = 8 TeV lineshape to the
√

s = 7 TeV lineshape.

Figure 3.1: Theorethical distribution of dimuon invariant mass in the region [71, 111]
GeV for both

√
s = 7 and

√
s = 8 TeV pp collisions. [ref. S. Dittmaier]
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Figure 3.2: Two dimensional distribution of the convolution of the theorethical lineshape
with 1000 gaussian functions of variable standard deviation ranging from 0 GeV to 50
GeV.

1000 different values for σ, from 0 GeV to σ = 50 GeV. The value of 50
GeV for the resolution is not typical of an analysis that uses the tracker,
but the MuScleFit algorithm has been developed for the calibration of ob-
jects reconstructed in every part of the detector. Standalone muons recon-
structed in the muon system could have resolutions of tens of GeV, and
other analyses with MuScleFit that use these types of muons can use on
the tabulated values for the convolution computed in this analysis. All
these informations can be easily stored in a two-dimensional histogram (a
TH2 in ROOT). For the variable m 1000 bins are chosen, such that every
bin is 40 MeV wide; with all above prescriptions the TH2 that is the di-
rect input for the fit process has a total of 106 bins. Figure 3.2 shows this
histogram.

3.2.2 The parametrization of the momentum scale correction

The observed reconstructed mass of the muon pair mobs is a function
of the muons kinematics and contains the parametrization of the scale of
the kinematic variables of the muons such as η, ϕ, pT, Q. It is known
from studies with simulated muons that the scale correction of the pT is
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at least one order of magnitude more important than the corrections of
the other kinematical variables. Therefore the choice for this thesis is to
introduce a scale correction only for the pT of the muon. The bias on the
reconstructed value of the mass shown in Figure 2.8 as a function of the
variables η and ϕ is then parameterized through a correction of the pT
scale of the muons. Actually the scale correction is computed as a func-
tion of the signed curvature, defined as κ ≡ Q/pT, where Q is the charge
of the muon, so the curvature can assume positive or negative values. The
reason for this choice has to be searched in the possible physical interpre-
tation of the weak modes, i.e. the global deformations on the geometry
of the tracker not corrected by the track based alignment. By building a
simplified model of the path of a charged particle in vacuum in presence
of a uniform magnetic field ~B (see Figure 3.3) it is possible to see how the
sagitta is related to the curvature by considering the following equations.
Let ρ be the radius of curvature of the track in the magnetic field, if B is
expressed in T, pT in GeV and ρ in m it is:

r =
pT

0.3 B
(3.5)

and for ρ� L the sagitta:

s = ρ− ρ cos(θ/2) ≈ ρ

[
1−

(
1− θ2

8

)]
= ρ

θ2

8
=

0.3BL2

8pT

Assuming that the primary effect of a global deformation is to introduce

Figure 3.3: Trajectory of a charged particle in a magnetic field perpendicular to the direc-
tion of motion

a bias in the measurement of the sagitta of the track, it turns out why it
is better to apply the correction to the curvature rather than to the pT: a
bias on the value of the sagitta is directly proportional to a bias on the
curvature:

∆s ∝ ∆κ.
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Hence the correction parameters used for the curvature are proportional
to the effect of deformation on the tracker and, in principle, independent
on the pT of the track.
The correction on the curvature of the track is written as an ansatz func-
tion applied to the measured curvature κ. The ansatz function is denoted
with F(~α,~x) and depends on kinematic variables ~x and on a vector of pa-
rameters ~α to be determined by the fit. In principle ~x should include all
the kinematic variables affecting the curvature of the muon, that are the
five helix track parameters, toghether with other environmental variables
like the instantaneous luminosity, the track isolation, the number of hits
of the track, the χ2/ndo f associated with the reconstruction of the track,
the type of track etc. However due to the fact that the number of tracks
avalaible for this analysis is limited, ~x is just composed by κ, η and φ of
the muon. The corrected curvature and the corresponding pT of the track
are:

κ corr = F(~α,~x) κ

p corr
T = Q/κ corr (3.6)

It is now possible to build the function m simply as the invariant mass
of a dimuon pair. Using the basis (pT, ϕ, cotϑ) the four-momentum of the
muon can be expressed in the following way:

pµ =
( √

p2
T (1 + cot2 ϑ) + m2

µ , pT cos ϕ , pT sin ϕ , pT cot ϑ
)

and then the invariant mass of the dimuon with the pT corrected according
to Equation 3.6 is:

m =
√

p2 corr
T− (1 + cot2 ϑ−) + m2

µ1

√
p2 corr

T+ (1 + cot2 ϑ+) + m2
µ2+

p corr
T− p corr

T+ ( cos(ϕ− − ϕ+) + cot ϑ− cot ϑ+ )

(3.7)

A smart choice for F(~α,~x) will result in a fit with robust and physically
acceptable parameters. As the correction is applied on the curvature, the
functional form of F(~α,~x) is, in principle, not depending on which reso-
nance is chosen for the calibration. The scale correction function used in
this analysis is continuous in η and parametrized in five bins in η. The
reason has to be searched in the detector structure, as the CMS tracker is
composed by different substructures. Hence for example muons recon-
structed in the barrel could present different biases with respect to those
reconstructed in the endcap. Considering the structure of the tracker as
shown in Figure 3.4, a convenient choice for the five η bins of the scale
function is [−2.4,−2.1], [−2.1,−1.5], [−1.5, 1.5], [1.5, 2.1], [2.1, 2.4]. These
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Figure 3.4: Longitudinal view of one quarter of the structure of the silicon tracker

bins will be referred to as Very Backward (VBWD), Backward (BWD), Bar-
rel (BAR), Forward (FWD) and Very Forward (VFWD) bin. The scale cor-
rection function used is defined as:

F(~α,~x) = (1 + p0)

(
1−

Cj(η, ϕ)

κ
− δ

2κ

)
(3.8)

where p0 and δ are constant in η and Cj(η, ϕ) is the η-binned term:

C1(η, ϕ) = a1,1 sin(ϕ + ϕ1,1) + a2,1 sin(2ϕ + ϕ2,1) + b1(η − η0,1) + b0,1 VBWD
C2(η, ϕ) = a1,2 sin(ϕ + ϕ1,2) + b2(η − η0,2) + b0,2 BWD
C3(η, ϕ) = a1,3 sin(ϕ + ϕ1,3) + b3(η − η0,3) + b0,3 BAR
C4(η, ϕ) = a1,4 sin(ϕ + ϕ1,4) + b4(η − η0,4) + b0,4 FWD
C5(η, ϕ) = a1,1 sin(ϕ + ϕ1,1) + a2,1 sin(2ϕ + ϕ2,1) + b5(η − η0,1) + b0,1 VFWD

here b0,3 is fixed to 0 and η0,j with j = 1, 2, 3, 4, 5 represents the boundaries
in η and are respectively equal to −2.4, −2.1, −1.5, 1.5, 2.1. The continuity
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of the scale function on these boundaries leads to four constraints:

b1(η − η0,1) + b0,1 = b2(η − η0,2) + b0,2 in η = −2.1
b2(η − η0,2) + b0,2 = b3(η − η0,3) + b0,3 in η = −1.5
b3(η − η0,3) + b0,3 = b4(η − η0,4) + b0,4 in η = 1.5
b4(η − η0,4) + b0,4 = b5(η − η0,5) + b0,5 in η = 2.1

According to the convention used for the names, the vector of un-
known parameters~α has 21 elements:

~α = (p0 , δ , a1 , a2 , ϕ1 , ϕ2 , b )

where the geometrical meaning of the parameters is:

a1 = (a1,1 , a1,2 , a1,3 , a1,4 , a1,5) 1st harmonic amplitude

a2 = (a2,1 , a2,2) 2nd harmonic amplitude

ϕ1 = (ϕ1,1 , ϕ1,2 , ϕ1,3 , ϕ1,4 , ϕ1,5) 1st harmonic phase

ϕ2 = (ϕ2,1 , ϕ2,2) 2nd harmonic phase
b = (b1 , b2 , b3 , b4 , b5) η slope

According to Equation 3.6 the corrected curvature of muons is finally
given by:

κ′ = (1 + p0)

(
κ − Cj(η, ϕ)− δ

2

)
(3.9)

and the invariant mass m is built with it. The functional form of Equation
3.9 leads to a possible physical interpretation for its parameters. For ex-
ample p0 could parametrize an incorrect description of the intensity of the
magnetic field in the barrel, or an incorrect estimation of the energy loss
of the muon in the trackeriv, and δ parametrize any bias in the measure-
ment of the curvature dependent on the charge of the muon. Moreover the
physical interpretation of the a1, a2, ϕ1, ϕ2 parameters will be discussed in
Chapter 4.

3.2.3 The parametrization of the momentum resolution

The s function represents the parametrization of the mass resolution of
the detector and is strictly connected to the scale function trough Equation
3.4. As explained before, Equation 3.4 contains the hypotesis that the effect

ivThe typical energy loss of a muon with pT > 20 GeV in the tracker is about 40 MeV.



3.2 Building of the signal probability 45

of the passage through matter of the particle and the reconstruction of the
track starting from the hits on the silicon modules is to change the track
parameters, for example the pT, around its true value with a gaussian
smearing. Therefore the effect on a reconstructed resonance manifests
itself as a gaussian widening of the invariant mass distribution. It is the
task of the likelihood to estimate the extent of this gaussian widening
in different regions of the tracker where the muon is reconstructed. The
resolution on the reconstructed mass in a general case can be written as:

s =

√(
∂m
∂κ

)2

σ 2
κ +

(
∂m
∂ϕ

)2

σ 2
ϕ +

(
∂m

∂cot ϑ

)2

σ 2
cot ϑ (3.10)

here σκ, σϕ, σcot ϑ depends in principle on every variable associated with
the muon reconstruction ~x, and on sets of unknown parameters ~β, ~γ, ~δ
that the fit has the task to determine:

σκ/κ = G(~β,~x)
σϕ = G(~γ,~x)

σcot ϑ = G(~δ,~x)

(3.11)

Previous studies with simulated muons showed that the uncertainty on
the determination of η and ϕ is at least one order of magnitude smaller
with respect to the uncertainty on the determination of the pT. Since the
number of tracks in the samples considered is limited, in this analysis
G(~γ,~x) and G(~δ,~x) are neglected, and the kinematic variables ~x used to
parametrized the smearing (resolution) are pT and η of the muon. In what
follows G(~β,~x) will be called resolution function and, for what concerns
the resolution, the fit is left with just one set of unknown parameters to
estimate: ~β.
Similarly to the scale function, G(~β,~x) is an ansatz function. An hypotesis
on its functional form is made, and by checking the convergence of the fit
and the effect on the calibration it is possible to either reject or accept it as
a good hypotesis. The choice of the functional form can be studied using
the muons in sample of simulated events. In the generated muons it is
avalaible, beside the reconstructed curvature (κreco) of the muons, the true
one (κgen), that is not affected by the reconstruction in the detector. In this
thesis κgen is the true curvature of the muon after the emission of the final
state radiation i.e. QED FSR. This information is obviously not present in
the samples containing real muons. In the hypotesis of gaussian resolution
of the detector an histogram with the variable (κreco− κgen)/κgen will result
in a gaussian distribution peaked in 0. Figure 3.5 shows an example of the
distribution of this variable and a fit with a gaussian function. By fitting
these distributions in η bins with a gaussian, it is possible estimate the
variable σκ/κ for the reconstructed events in that bin of η. The results
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Figure 3.5: Example of one distribution of (κreco − κgen)/κgen fitted with a gaussian
function

Figure 3.6: Distibution of the fitted values of σκ/κ in function of η+.

of this procedure for 24 bins in η is shown in Figure 3.6. The plot gives
some guidance on the decision of the functional form of the resolution
function G(~β,~x). Taking into account the generated information, a good
hypotesis for the functional form of G for the calibration with muons from
Z is Equation 3.12.

G(~β,~x) = q0 pt ⊕ qj in η-bin j (3.12)
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This parametrization is a piecewise function composed by constant func-
tions, as no condition about its continuity is imposed. The choice of 12
bins in η has been found optimal for taking into account the structure of
the tracker and the amount of tracks in the sample considered. The η bins
chosen for this analysis are (from j = 1 to j = 12):

[−2.4, −2.0], [−2.0, −1.8], [−1.8, −1.6], [−1.6, −1.2],
[−1.2, −0.8], [−0.8, 0], [0, 0.8], [0.8, 1.2],
[1.2, 1.6], [1.6, 1.8], [1.8, 2.0], [2.0, 2.4]

The total number of free parameters introduced by the resolution func-
tion is 13, then, considering 22 parameters of the scale function, with this
configuration the fit has to determine 35 free parameters.
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3.3 Building of background probability

In MuScleFit the background in its general meaning can denote differ-
ent kinds of phenomena, such as fake electronics signals, cosmic or beam
halo particles passing through the detector, or particles produced in pro-
cesses not interesting for the specific analysis. Here the background is
not represented by fake electronics signals rather than muons produced in
processes not interesting for the purpose of this analysis. In an event of
proton collision at the typical energies of LHC, thousands of particles are
produced but only a small amount of them are muons with the required
kinematical characteristics (see Table 3.1). A positive and a negative muon,
if present and coming from the same vertex, are then associated to the
same parent particle. In principle any process in QED, Electroweak and
QCD that can lead to dimuon in the selected window of invariant mass
could have produced the pair of muons.
At the typical Mµµ region of Z the events produced by other sources than
Z are a small percentage. These could be for example:

• Dibosons : two W mediate the interaction instead of the Z, for exam-
ple: qq→WW → νµνµµ+µ−.

• tt : can decay in leptons or leptons + jets.

At low invariant mass (i.e. about 5 GeV) the situation is different. Con-
sider the reconstruction of Mµµ in a region where nearby resonances are
present, for example the Υ(2S) region; here, other than QCD processes, the
contribution to the spectrum from the nearby resonances, such as Υ(1S)
and Υ(3S), is important and can be of the order of magnitude of the sig-
nal.
Beside the presence of muons not produced in the desired process, in the
sample can be recorded pairs of muons not originating from the same par-
ent particle, the so called combinatorial background events. These kind of
events occur when muons from different parent particles are associated to
the same vertex by the reconstruction algorithm (not necessarily a compu-
tational defect of the algorithm rather than the proximity of the vertexes
much smaller than the resolution of the detector). They occur more fre-
quently in low invariant mass, that for the LHC collision energies is below
10 GeV, and very rare in the region Mµµ ≈ 90 GeV that is the one interest-
ing in this analysis.
Goal of the selection on the muons is to restrict the kinematical regions in
order to make the muon pair more likely produced by the desired reso-
nance rather than another process. In this analysis the selection applied
on muons is optimal for the reconstruction of Z resonance.
In MuScleFit the probability for an event to be a background event is rep-
resented in Equation 3.2 by Pbgd. Given the fact that the free parameters
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to be determined by the fit are already 13 from the resolution and 21 from
the scale function it is not convenient to determine more parameters in
the fit itself. When a parameter is added to the set of the free parameters
the computing time required for the fit increases. In order to not intro-
duce more degrees of freedom in the fit, the background will be treated
in a different way with respect to the scale and resolution function. The
idea is to find a suitable parameterization for the background externally
to MuScleFit, and provide the fit with tabulated values of the parameters.
In what follows is presented a description of this strategy.

3.3.1 Parametrization of the background

Since the background is strongly dependent on the kinematic of the
muons any suitable parametrization for it should take into account the sit-
uation in which the muon is reconstructed. The choice for this work is to
reconstruct the invariant mass distribution in η bins of the muons. In Table
3.2 are listed the 16 kinematic bins in which the background is parameter-
ized. To quantitatively appreciate the different backgrounds it is possible

Background kinematic bins

Bin ID η− interval η+ interval

1 [−2.4 , −1.5 ] [−2.4 , −1.5 ]
2 [−2.4 , −1.5 ] [−1.5 , 0.0 ]
3 [−2.4 , −1.5 ] [ 0.0 , 1.5 ]
4 [−2.4 , −1.5 ] [ 1.5 , 2.4 ]
5 [−1.5 , 0.0 ] [−2.4 , −1.5 ]
6 [−1.5 , 0.0 ] [−1.5 , 0.0 ]
7 [−1.5 , 0.0 ] [ 0.0 , 1.5 ]
8 [−1.5 , 0.0 ] [ 1.5 , 2.4 ]
9 [ 0.0 , 1.5 ] [−2.4 , −1.5 ]
10 [ 0.0 , 1.5 ] [−1.5 , 0.0 ]
11 [ 0.0 , 1.5 ] [ 0.0 , 1.5 ]
12 [ 0.0 , 1.5 ] [ 1.5 , 2.4 ]
13 [ 1.5 , 2.4 ] [−2.4 , −1.5 ]
14 [ 1.5 , 2.4 ] [−1.5 , 0.0 ]
15 [ 1.5 , 2.4 ] [ 0.0 , 1.5 ]
16 [ 1.5 , 2.4 ] [ 1.5 , 2.4 ]

Table 3.2: Kinematic intervals used for the parametrization of the background: η− and
η+ are referred to negative and positive muons respectively.

to plot the dimuon invariant mass distribution in two kinematic regions
and perform a fit on it with an adequate function. In what follows the
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sample used is a sample of
√

s = 7 TeV data in 4_2_X. The fits for regions
with Bin ID = 1 both muons in the backward Endcap and Bin ID = 6 both
muons in the Barrel, are performed with the functional form described in
Equation 2.3. The results are shown in Figure 3.7, the interesting param-
eters here are the exponential constant, denoted as expC, and the fraction
of signal with respect to the background, denoted ad fSig. Note that in
the case the muons go both in the barrel, the exponential constant is 40%
lower, and the signal fraction 1% higher with respect to the other case.
This represents the main evidence of the fact that the parametrization of
the background should be differentiated in function of the kinematics of
the muons.
Taking into account these considerations it is now possible to build the
Pbgd probability: it depends on a set of parameters ~ε made by exponential
constants in different kinematical bins. Referring to Table 3.2, if with the
index i is denoted a specific bin with Bin ID = i then the probability for an
event of measured invariant mass mobs to be a background event is:

Pbgd(mobs,~ε) ∝ e εi mobs (3.13)

Finally the probability to observe a dimuon with a reconstructed invariant
mass mobs, coming either form signal or from background can be written
as:

Pevt = fsig, i · Psig(mobs,~α,~β) + (1− fsig, i) · Pbgd(mobs,~ε) (3.14)

where fsig, i denotes the signal fraction in the kinematical bin i of the
muons. Considering Equation 3.14 it is now possible to say that in this
analysis the likelihood maximization in MuScleFit is performed with 34
free parameters, 21 of the scale function and 13 of the resolution parametriza-
tion.
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(a) Fit for Mµµ distribution for Bin ID = 1.

(b) Fit for Mµµ distribution for Bin ID = 6.

Figure 3.7: Examples of the fit of signal (solid blue line) and background (dashed blue
line) for Mµµ distribution of a data sample in two bins (2011, CMSSW Release 4_2_X).
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3.4 Fit strategy

Given the large number of free parameters to be determined by MuS-
cleFits very important to define a good performing fit strategy. It could
happen that the parameters converge towards non physically acceptable
values or in the worst case the the fit does not converge.

Taking into account that the corrections applied to the curvature are
strictly correlated with the global deformations of the detector geometry,
any parameter has a physical meaning. In order to make the fit strat-
egy in MuScleFit more robust, a specific sequence for the fitting process
is defined. The basic idea is to avoid the simultaneous fit of all the pa-
rameters. Since sets of parameters fitted in different steps are considered
independent from each other, a non simultaneous fit of all the parameters
represents an approximation but reduces significantly the computing time
for the fit. The choice for this analysis is to perform the fit in different
steps,

Resolution =⇒ Scale ( p0 f ixed) =⇒ Scale ( p0 f ixed) =⇒ Resolution =⇒ p0

At first the 13 parameters of the resolution function are fitted, to estimate
the resolution of the tracker before any correction on the scale of the mo-
mentum of muons is applied. This step, combined with the last one, is
very important in evaluating the effect of the momentum correction on
the resolution of muons and can detect a possible bad parametrization of
the scale function. Indeed, if the scale function correctly takes into account
the weak modes in the geometry of the tracker, in principle the resolution
should not be degraded by the correction on the momentum of muons.
The fit of the 21 parameters of the scale function is performed in two steps,
the first finds the best value for the parameters and the second, starting
from these values, refine them in case they were still too imprecise. More-
over the second step in the fit of the scale function helps in understanding
if the fit is converging towards defined values of the parameters. The pa-
rameters of these two steps can be merged into a single set, see Appendix
A for details. Then a fit on the resolution is performed again, allowing to
know if the corrections on muons contributed to improve or degrade the
resolution of the reconstructed muon. In the last step only the p0 param-
eter of the scale correction is fitted. In the following chapter the results of
the muon calibration with MuScleFit are presented for some samples.



Chapter 4

Results of the Muon
Calibration

In this chapter a detailed study on the performance of MuScleFit is
presented. By reconstructing the Z before and after the calibration it is
possible to quantify the impact of the correction computed by MuScleFit.
The sets of the scale correction parameters found for the samples in 4_2_X
and 5_3_X are listed in Table 4.1 and Table 4.2. The effects of the MuScleFit
corrections are studied first by reconstructing the Z boson in different
kinematical regions of the muons, then by comparing data and simulation
samples processed with the same CMSSW release. In the last section of
this chapter a study of the resolution on the curvature of the muons will
be illustrated considering a sample of simulated muons. The effects on
the resolution of the MuScleFit correction will be studied for the sample
of simulated muons in 5_3_X. For this sample the list of the 26 parameters
is reported in Table 4.3.
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List of MuScleFit correction scale parameters for data samples at
√

s = 7 TeV

Parameter Data 4_2_X Simulation 4_2_X

p0 −0.00121± 0.00001 0.00017± 0.00001

a1,1 0.0014496± 4.6 · 10−6 0.0011158± 6.3 · 10−6

ϕ1,1 1.0037± 0.0029 −0.0083± 0.0054
a2,1 0.0005323± 5.0 · 10−6 0.0009131± 6.8 · 10−6

ϕ2,1 1.3251± 0.0077 −2.0000± 0.0072
b1 −0.00025± 0.00018 7.5 · 10−6 ± 3 · 10−7

a1,2 0.0003897± 3.0 · 10−6 0.0002103± 2.5 · 10−6

ϕ1,2 0.9717± 0.0086 −0.9432± 0.012
b2 −0.0004281± 6.4 · 10−6 0.0001756± 6.9 · 10−6

a1,3 0.0001477± 1.3 · 10−6 0.00018569± 7 · 10−7

ϕ1,3 −1.522± 0.012 −1.774± 0.0038
b3 −1.98 · 10−5 ± 2.6 · 10−6 2.25 · 10−6 ± 9.1 · 10−7

a1,4 7.48 · 10−5 ± 2.1 · 10−6 0.0003732± 2.9 · 10−6

ϕ1,4 1.293± 0.021 −1.2390± 0.0076
b4 −0.0005414± 4.7 · 10−6 8.10 · 10−6 ± 7.4 · 10−7

a1,5 0.0009579± 3.8 · 10−6 0.0008652± 6.7 · 10−6

ϕ1,5 1.5846± 0.0049 −1.4006± 0.0078
a2,5 0.0005257± 7.0 · 10−6 0.0008256± 7.0 · 10−6

ϕ2,5 −0.3300± 0.011 2.7090± 0.0080
b5 −0.000757± 1.7 · 10−5 −6.38 · 10−5 ± 3.4 · 10−6

δ 4.85 · 10−5 ± 3.8 · 10−6 4.25 · 10−5 ± 4.2 · 10−6

Table 4.1: Scale calibration parameters for samples at
√

s = 7 TeV. By referring to Equa-
tion 3.8 the parameters a1, a2, b and δ are expressed in GeV−1, the other parameters are
dimensionless. The errors on the parameters represent the statistical error of the fit.
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List of MuScleFit correction scale parameters for samples at
√

s = 8 TeV

Parameter Data 5_3_X simulation 5_3_X

p0 −0.00077± 0.00001 0.00038± 0.00001

a1,1 0.00054814± 4.9 · 10−7 0.00027280± 4.9 · 10−7

ϕ1,1 1.1074± 0.0020 0.1418± 0.0026
a2,1 0.00042828± 4.6 · 10−7 0.00023103± 4.6 · 10−7

ϕ2,1 1.7703± 0.0018 −1.7105± 0.0022
b1 −0.0001200± 1.0 · 10−6 −3.0 · 10−6 ± 1.3 · 10−6

a1,2 9.273 · 10−5 ± 2.4 · 10−7 1.413 · 10−5 ± 1.2 · 10−7

ϕ1,2 0.5290± 0.0021 −1.0402± 0.0025
b2 −0.00021218± 6.6 · 10−7 3.730 · 10−5 ± 8.4 · 10−7

a1,3 0.00020835± 3.1 · 10−7 6.647 · 10−5 ± 2.5 · 10−7

ϕ1,3 −1.3865± 0.0016 −1.6473± 0.0022
b3 2.559 · 10−5 ± 5.1 · 10−7 −1.30 · 10−6 ± 6.2 · 10−7

a1,4 1.646 · 10−6 ± 3.4e− 08 3.421 · 10−5 ± 1.9 · 10−7

ϕ1,4 −0.6650± 0.0021 −1.6841± 0.0023
b4 −0.00014906± 6.7 · 10−7 1.31 · 10−6 ± 8.4 · 10−7

a1,5 0.00038728± 4.5 · 10−7 0.00018439± 4.2 · 10−7

ϕ1,5 2.3260± 0.0014 −0.9479± 0.0025
a2,5 0.00023995± 3.7 · 10−7 0.00012101± 3.5 · 10−7

ϕ2,5 −1.1663± 0.0020 0.3860± 0.0027
b5 −0.0001845± 1.0 · 10−6 −1.7 · 10−6 ± 1.3 · 10−6

δ 4.3961 · 10−5 ± 9.8e− 08 4.661 · 10−5 ± 1.2 · 10−7

Table 4.2: Scale calibration parameters for samples at
√

s = 7 TeV. By referring to Equa-
tion 3.8 the parameters a1, a2, b and δ are expressed in GeV−1, the other parameters are
dimensionless. The errors on the parameters represent the statistical error of the fit.
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List of MuScleFit correction resolution parameters for simulation sample at
√

s = 8 TeV

Parameter Before correction After correction

q0 0.000210± 1.2 · 10−5 0.000189± 1.3 · 10−5

q1 0.02554± 0.00047 0.02501± 0.00044
q2 0.01491± 0.00051 0.01552± 0.00049
q3 0.01094± 0.00072 0.01161± 0.00049
q4 0.01167± 0.00046 0.01212± 0.00053
q5 0.00787± 0.00064 0.00851± 0.00062
q6 0.00304± 0.00074 0.00372± 0.00075
q7 0.00324± 0.00072 0.00389± 0.00073
q8 0.00818± 0.00064 0.00885± 0.00062
q9 0.01082± 0.00058 0.01124± 0.00055
q10 0.01113± 0.00069 0.01185± 0.00065
q11 0.01528± 0.00057 0.01572± 0.00054
q12 0.02631± 0.00047 0.02686± 0.00044

Table 4.3: Scale calibration parameters for the simulation sample at
√

s = 8 TeV. By
referring to Equation 3.12 q0 is expressed in GeV−1, the other parameters are dimension-
less. The errors on the parameters represent the statistical error of the fit.
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4.1 Local effects of the corrections

In what follows a study of the effects of the MuScleFit correction in
different kinematic regions of the muons is presented. The choice of the
different intervals in which the Z boson is reconstructed is based on con-
siderations about the number of events in each kinematic interval. The
bins in which the reconstruction of the resonance is performed are listed
below:

• η− : intervals in η for the negative muons are defined, while no
restrictions are present in any other kinematic variable both for the
negative and the positive muon. From η− = −2.4 to η− = 2.4 a total
of 12 bins of the same width are defined, hence every bin covers 0.4
units in η.

• ϕ− : intervals in ϕ for the negative muons are defined, while no re-
strictions are present in any kinematic variable both for the negative
and the positive muon. From ϕ− = −π to ϕ− = π a total of 16 bins
of the same width are defined, hence every bin covers π/16 units in
ϕ.

• η and ϕ : intervals in η and ϕ for the positive muons are defined,
while no restrictions are present in any other kinematic variable both
for the negative and the positive muon. Twenty bins are defined in
η from η = −2.4 to η = 2.4 and 16 in ϕ from ϕ = −π to ϕ = π, and
the total number of bins is 320.

The same kind of study is performed in bins of the positive muon too.

4.1.1 Calibration for samples at
√

s = 7 TeV

In what follows the results of the MuScleFit correction on muons for
the samples of data and simulation at

√
s = 7 TeV processed in CMSSW

release 4_2_X are presented. In order to appreciate the changes introduced
by the MuScleFit correction in the Z reconstruction in different kinematic
bins, in every plot the situation before and after the corrections are com-
pared. From now on the function used to perform the fits is the one de-
scribed in Equation 2.3. The plots for the sample of data are represented in
Figure 4.1. Here the improvement made by the correction is extremely sig-
nificant. The response of the detector to the reconstruction of the Z peak
has been made quite uniform in every kinematic bin examined. In partic-
ular in Figure 4.1b, while before the corrections the difference between the
reconstruction of Mz in the first and last η bins was about 1.1 GeV, after the
corrections it is reduced to 0.2 GeV. The same happens for the projections
along the ϕ angle of each muon. Moreover it is important to notice that is
visible a modulation of MZ, both in function of ϕ− and ϕ+. The sample
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(a) MZ vs η− (b) MZ vs η+

(c) MZ vs ϕ− (d) MZ vs ϕ+

Figure 4.1: Mass of the Z reconstructed from the dimuon invariant mass in different
regions of the tracker before (black) and after (red) the corrections for a data sample at√

s = 7 TeV

of data at
√

s = 7 TeV is not the only one in which this modulation is visi-
ble, and possible sources that can generate such modulation are examined
in Section 4.4. Another way to check the behaviour of the corrections is
to show how MZ is reconstructed in (η, ϕ) maps (see Figure 4.2). In this
kind of representation the nominal value of the mass, i.e. m0, corresponds
to the green color. A red bin indicates that the reconstructed mass has
an higher value with respect to m0, conversely the blue bins are associ-
ated with a lower value. Altough these maps cannot provide quantitative
informations about the value of MZ in each bin, they are a good tool to
evaluate qualitatively the behaviour of the correction. Also in this case the
correction has significantly flattened the reconstructed value of MZ, e.g.
Figure 4.2b is much more uniform in color with respect to 4.2a. A closer
inspection of the map before the correction shows that the modulation in
MZ when reconstructed only along η+ (see Figure 4.1d) comes from the
region |η+| < 1.5. The reason is that in the samples considered the most
populated bin is the central one, and when every value of η is considered,
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(a) MZ vs ϕ vs η before corrections (b) MZ vs ϕ vs η after MuScleFit corrections

Figure 4.2: Mass of the Z reconstructed from the dimuon invariant mass in different
regions of the tracker before and after the corrections

such as in Figure 4.1d, its weight is much sizable with respect to the other
η-bins, and its modulations in the reconstructed MZ prevails. In order to
verify the last assertion the number of events per η-bin is plotted in Figure
4.3a: here the first and last η-bins have the events of the central bins. For

(a) Number of events vs η+ (b) Number of events vs ϕ+

Figure 4.3: Distribution of events as a function of η+ or ϕ+ for the sample in data at√
s = 7 TeV.

completeness the distribution of events in the ϕ+ variable is shown too
(Figure 4.3b), and, as expected is, within the statistical precision, uniform.
Another observable that is possible to examine is the resolution on the
reconstructed Z. In principle the resolution could be significantly affected
by the correction on muons. In what follows σ is the standard deviation
of the gaussian core of the Crystal Ball of the fitting function and it rep-
resents the estimated resolution on the reconstruction of Z. To extract the
resolution in different kinematic regions, σ is plotted against η+ in Figure
4.4. The effect of the MuScleFit correction on the resolution is beneficial
everywhere, in the barrel region the correction decreases the parameter σ
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Figure 4.4: Resolution on the mass of the Z as a function of η+ for the sample in data at√
s = 7 TeV.

of about 0.1 GeV and even more in the endcap region decreases up to 0.3
GeV.

The results obtained by correcting muons in the sample at
√

s = 7 TeV
of simulated muons (CMSSW release 4_2_X) are shown in Figures 4.5, 4.6
and 4.7. In general the same considerations done for the sample in data at√

s = 7 TeV apply here. After the correction the bias on the reconstruction
of MZ is significantly recovered in every kinematic region examined, and
the fitted resolution on the Z reconstruction is improved. The modulation
observed in function of ϕ− and ϕ+ is recovered by the correction.
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(a) MZ vs η− (b) MZ vs η+

(c) MZ vs ϕ− (d) MZ vs ϕ+

Figure 4.5: Mass of the Z reconstructed from the dimuon invariant mass in different re-
gions of the tracker before (black) and after (red) the corrections for a sample of simulated
muons at

√
s = 7 TeV.

(a) MZ vs ϕ vs η before corrections (b) MZ vs ϕ vs η after MuScleFit corrections

Figure 4.6: Mass of the Z reconstructed from the dimuon invariant mass in different
regions of the tracker before and after the corrections for the sample of simulated muons
at
√

s = 7 TeV.
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Figure 4.7: Resolution on the mass of the Z as a function of η+ for the sample of simu-
lated muons at

√
s = 7 TeV.
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4.1.2 Calibration for samples at
√

s = 8 TeV

In the following the results of the correction for the samples of data
and simulation at

√
s = 8 TeV are presented, with both samples processed

in CMSSW release 5_3_X. The results for these samples are very similar
to those previously described: after the correction the reconstruction of
MZ is made quite uniform in every considered kinematic bin and the res-
olution is improved. Also here the modulation of MZ in function of ϕ−
and ϕ+ is significantly recovered. Although the general behaviour of the

(a) MZ vs η− (b) MZ vs η+

(c) MZ vs ϕ− (d) MZ vs ϕ+

Figure 4.8: Mass of the Z reconstructed from the dimuon invariant mass in different
regions of the tracker before (black) and after (red) the corrections for the sample in data
at
√

s = 8 TeV.

correction is the same as described for the samples at
√

s = 7 TeV, there
are still few differences that can be highlighted. Consider the case before
the correction in Figure 4.8a and Figure 4.8b, it is possible to notice that in
general the bias in MZ is slightly reduced with respect to the same plots of
the samples at

√
s = 7 TeV. The CMSSW release 5_3_X represents a newer

data processing environment with respect to the 4_2_X. Between the two
releases passed few months in which the alignment and calibration strate-
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gies and algorithms were continuously improved. It is clear then why the
biases in the samples in 5_3_X are less prominent with respect to those in
4_2_X.

(a) MZ vs ϕ vs η before corrections (b) MZ vs ϕ vs η after MuScleFit corrections

Figure 4.9: Mass of the Z reconstructed from the dimuon invariant mass in different
regions of the tracker before and after the corrections for the sample in data at

√
s = 8

TeV.

Figure 4.10: Resolution on the mass of the Z as a function of η+ for the sample in data
at
√

s = 8 TeV.
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(a) MZ vs η− (b) MZ vs η+

(c) MZ vs ϕ− (d) MZ vs ϕ+

Figure 4.11: Mass of the Z reconstructed from the dimuon invariant mass in different
regions of the tracker before (black) and after (red) the corrections for the sample of
simulated muons at

√
s = 8 TeV.

(a) MZ vs ϕ vs η before corrections (b) MZ vs ϕ vs η after MuScleFit corrections

Figure 4.12: Mass of the Z reconstructed from the dimuon invariant mass in different
regions of the tracker before and after the correction for the sample of simulated muons
at
√

s = 8 TeV.



4.1 Local effects of the corrections 66

Figure 4.13: Resolution on the mass of the Z as a function of η+ for the sample of simu-
lated muons at

√
s = 8 TeV.
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4.2 Extra smearing on simulated muons

In CMS most physics analyses make use of both real collision and sim-
ulated muons, with the collected data directly compared to a simulation.
Hence it is clear that physics objects like muons need to have equal char-
acteristics between data and simulation. Despite simulated muons are
produced as similar as possible to the true muons, due to the complexity
of the detector and the fact that the material map of CMS considered for
the simulations has a limited granularity, not always the characteristics of
the simulated muons match perfectly the characteristics of real muons. An
example could be the resolution of the detector: by referring to Figure 4.4
and Figure 4.7 it is possible to appreciate a slight difference between the
value of σ between data and MonteCarlo even after the correction. The
resolution of the simulated events in every region of η+ is better than the
resolution of the data events. After the momentum scale calibration, an
extra step called smearing is performed on simulated muons. The extra
smearing procedure consists in degrading the pT of the tracks of the sim-
ulated muons until the resolution on the meaurement of their momentum
(or curvature) matches the resolution on the measurement of the momen-
tum of real muons.
By denoting with k′ the curvature of the muon after the extra smearing
procedure and by identifying with j the bins in η of the positive muon, the
relation between the new and the original curvature can be written as:

κ′ = κ + |κ| · g(µ, σj) (4.1)

Here g(µ, σj) is a random gaussian number, with mean µ and standard
deviation σj. While it is always µ = 0, the value of σj is different in each
η-bin considered. The physical meaning of Equation 4.1 is that the value
of the curvature of the muon is shaken randomly around its original value
κ according to a gaussian distribution of standard deviation σj and mean
0. The recipe used to parametrize σj in each bin is:

σj = γ

√
σ 2

j ; data − σ 2
j ; MC

1/κ
(4.2)

Here σj ; data and σj ; MC are the values of the fitted resolution of the muons
in the η-bin j-th for data and MonteCarlo samples, and γ is an empirical
factor that is possible to tune in order to optimize the matching between
data and simulation. In this analysis the extent of σj ; data − σj ; MC will be
between 0 GeV and 0.3 GeV, and γ between 0.80 and 1. In what follows
the application of a smearing will be discussed for every pair of data and
simulation samples processed with the same CMSSW release.
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4.2.1 Smearing on the sample at
√

s = 7 TeV

By taking into account the correction shown in Figure 4.4 and Figure
4.7 and applying the smearing process to the muons in the simulation
sample, it is possible to see the effects of the smearing on the measured
resolution of the Z. This is shown in Figure 4.14: in every η-bin the effect
of the smearing is clear with the matching between data and simulation
greatly improved. The value of the tuning parameter used here is γ = 0.80.
While in the worst cases, i.e. the first and last bin, the difference between

Figure 4.14: Resolution on the mass of the Z as a function of η+ for the corrected muons
in the sample at

√
s = 7 TeV before and after the extra-smearing process, and compar-

ison with the corrected muons of sample in data at
√

s = 7 TeV.

the fitted resolution on data and simulation before the correction is about
0.2 GeV, after the smearing that difference appears reduced to about 0.05
GeV.

4.2.2 Smearing the sample at
√

s = 8 TeV

By proceeding in a similar way to the previous case the results of the
resolution after the MuScleFit correction are taken into account for data
at
√

s = 8 TeV (Figure 4.10) and simulation at
√

s = 8 TeV (Figure 4.13)
samples. The effect of the extra-smearing process on the muons of the sim-
ulation sample is shown in Figure 4.15. The value of the tuning parameter
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Figure 4.15: Resolution on the mass of the Z as a function of η+ for the corrected muons
in sample at

√
s = 8 TeV before and after the extra-smearing process, and comparison

with the corrected muons of sample in data at
√

s = 8 TeV.

used in this case is γ = 0.85. Here the situation is similar to the previous
case: after the smearing the difference between the fitted resolution on
data and simulation is lower than 0.05 GeV.
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4.3 Global effects of the corrections

After applying the smearing on the simulated muons it is interesting
to check the effects of the corrections on the whole collection of muons for
each sample. While the calibration makes the response of the detector to
a Z uniform in different kinematic regions, the goal of the smearing is to
improve the matching of the resolutionbetween data and the simulation.
Therefore to check the effects of the correction and smearing on the recon-
struction of Z, samples of data and simulation processed within the same
CMSSW release are compared.

4.3.1 Results at
√

s = 7 TeV

Referring to the samples at
√

s = 7 TeV, it is possible to show the
distribution of the dimuon invariant mass before having applied any cor-
rection. By performing a fit with the function described in Equation 2.3
it is possible to subtract the background. Since the fit statistical errors on
the determination of fsig and λ are negligible with respect to the values of
the parameters they are not taken into account in the background subtrac-
tion procedure. Figure 4.16 shows the distribution of the invariant mass
of the dimuon in the region [75, 105] GeV, where both distributions have
been rescaled such as their integral in the range [75, 105] GeV is equal to
1. The ratio between distributions emphasizes the differences between the
samples, as in the situation in which data and simulation match perfectly
their ratio should be equal to unity everywhere within the stochastic fluc-
tuations. In the case presented here neither the values of the peaks nor
the widths match. To quantify these differences, in Table 4.4 are listed the
results of the fit before and after the correction. The errors refer to the
statistical errors of the fit. The difference between the fitted peak values

Global fit before the correction on muons for samples at
√

s = 7 TeV

Sample Status Mass [GeV] Sigma [GeV]

DATA 4_2_X Before correction 91.109± 0.004 1.3779± 0.005
MC 4_2_X Before correction 91.240± 0.002 1.3878± 0.003

DATA 4_2_X After correction 91.217± 0.004 1.284± 0.004
MC 4_2_X After correction 91.224± 0.003 1.270± 0.003

Table 4.4: Fit results for the whole muon collection of the samples at
√

s = 7 TeV before
and after the correction.

before the correction is 1‰ and the resolution on data is about 10 MeV
better in the simulation. These values are the basis for a comparison with
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Figure 4.16: Top: dimuon invariant mass reconstructed in the region [75, 105] GeV for
both data (black) and simulation (red) at

√
s = 7 TeV before the correction, the error

bars are proportional to the square root of number of events in each bin. Bottom: ratio
between the plots of data and simulation, errors, from the plots at the top of the figure,
are correctly propagated here.

the corrected muons. By referring to the reference samples, the compari-
son between data and simulation after the MuScleFit correction is shown
in Figure 4.17. Here in both samples the background has been subtracted
and the histograms normalized to 1 in the range [75, 105] GeV. It is clear
that after the correction the differences between data and simulation are
significantly reduced. Given that the difference between the fitted peak
values is now 10−4 and that the good matching between the resolutions is
preserved, it is possible to say that the impact of the MuScleFit correction
is beneficial.
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Figure 4.17: Top: dimuon invariant mass reconstructed in the region [75, 105] GeV for
both data (black) and simulation (red) at

√
s = 7 TeV after the correction, the error

bars are proportional to the square root of number of events in each bin. Bottom: ratio
between the plots of data and simulation, errors, from the plots at the top of the figure,
are correctly propagated here.

4.3.2 Results at
√

s = 8 TeV

Similarly to the global analysis on samples at
√

s = 7 TeV also the
samples at

√
s = 8 TeV can be investigated. By taking into account the

data and simulation samples for 2012 listed in Table 3.1 it is possible to plot
their distribution of invariant mass normalized to 1 in the interval [75, 105]
GeV and with subtracted background. Also here the fit statistical errors
on the determination of fsig and λ are negligible. The cases before and
after the correction are plotted respectively in Figure 4.18 and in Figure
4.19. Here the situation before the correction is worse with respect to
that one shown for the samples at

√
s = 7 TeV, neither the peak value nor

the resolution matches. A quantitatitative estimation on the differences



4.3 Global effects of the corrections 73

Figure 4.18: Top: dimuon invariant mass reconstructed in the region [75, 105] GeV for
both data (black) and simulation (red) at

√
s = 8 TeV after the correction, the error

bars are proportional to the square root of number of events in each bin. Bottom: ratio
between the plots of data and simulation, errors, from the plots at the top of the figure,
are correctly propagated here.

between data and simulation before and after the correction comes from
the fit and is plotted in Table 4.5. The fit function is the same used for the
samples at

√
s = 7 TeV. While before the corrections the matching between

the fitted value of the peak in data and MC samples is about 2%m0, after
the MuScleFit corrections it is improved up to 10−4. An improvement is
also seen within the resolution parametrization.
In order to have an overview on the effects of the MuScleFit correction on
the global reconstruction of Z it is possible to gather all the fitted values
of peak and resolution (Table 4.6. The errors refer to the statistical errors
of the fit.
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Figure 4.19: Top: dimuon invariant mass reconstructed in the region [75, 105] GeV for
both data (black) and simulation (red) at

√
s = 8 TeV after the correction, the error

bars are proportional to the square root of number of events in each bin. Bottom: ratio
between the plots of data and simulation, errors, from the plots at the top of the figure,
are correctly propagated here.

Global fit before the correction on muons for samples at
√

s = 8 TeV

Sample Status Mass [GeV] Sigma [GeV]

DATA 5_3_X Before correction 91.078± 0.002 1.454± 0.002
MC 5_3_X Before correction 91.226± 0.003 1.191± 0.003

DATA 5_3_X After correction 91.184± 0.003 1.300± 0.003
MC 5_3_X After correction 91.192± 0.003 1.291± 0.002

Table 4.5: Fit results for the whole muon collection of the samples at
√

s = 8 TeV before
and after the corrections
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Improvements of the MuscleFit corrections on samples at
√

s = 7 TeV and
√

s = 8 TeV

Sample Mass matching Sigma improvement on data [MeV]

data vs simulation at
√

s = 7 TeV 1‰ → 10−4 ≈ 100
data vs simulation at

√
s = 8 TeV 2‰ → 10−4 ≈ 150

Table 4.6: Summary table with the global improvements in the data-simulation matching
after the MuScleFit corrections and smearing.
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4.4 Weak modes in the barrel

By considering how the mass is reconstructed as a function of ϕ− or
ϕ+, it is possible to notice a sinusoidal modulation on the value of Mz. The
origin of this modulation can be attributed to the presence of weak modes
in the barrel region of the tracker. To investigate if a weak mode with a
certain topology is able to produce such a modulation it is possible to set
up a toy model of the reconstruction of a track in the barrel. The consid-
ered coordinate reference system of the simulation is the same defined in
Chapter 1 for CMS. We consider a simplified layout with only two layers
of the barrel which are built in the transverse plane (i.e. the plane x-y).
The simulated tracks of the muons originate in (x = 0 , y = 0) and are
propagated through the layers where they leave a signal. The first layer
has a radius of 50 cm, the second of 100 cm and, in the initial setup, are
centered both in (0 , 0) µm. A magnetic field perpendicular to the trans-
verse plane and with an intensity of 3.8 T is simulated too, but no multiple
scattering or energy loss effects are considered.
It is possible to study the effect of translating progressively the center of
the layers along the y-axis. This deformation of the geometry is called
sagitta in the weak mode jargon. Figure 4.20 shows the situation: the in-
troduced translation is linearly dependent on the radius of the layer, such
that if the internal layer is translated by ε µm, the second is translated by
2ε µm. A realistic choice would be introduce a translation of 50 µm for
the internal layer and of 100 µm for the external layer. Then muons with
pT = 40 GeV which is the most probable value for the muons from Z,
and with starting directions from ϕ = 0 to ϕ = 2π are generated. Since
energy loss and multiple scattering of the muons are not taken into ac-
count the tracks are circles. A fit of the curvature is performed for each
track by considering the two hits on the translated layers and the point
where the track is originated, that is (0 , 0). By denoting with κgen the gen-
erated curvature of the muons (1/40 GeV−1) it is possible to compare it
with κreco in case the translation of the layers is introduced. The difference
κgen − κreco as a function of the generated ϕ of the track is shown in Figure
4.21. Here, keeping in mind that the translation on layers is always in the
direction of ϕ = π/2, it is possible to see the effect of the translation on
the reconstructed curvature for different ϕ of the tracks. The highest val-
ues for |κgen − κreco| are when the shift is perpendicular to the direction of
the track. In what follows the highest value of |κgen − κreco|, that is in the
considered example when ϕ = 0 or ϕ = π, is denoted with ∆k. The plot
in Figure 4.21 could be fitted with a sinusoidal function of ϕ, similarity to
the parametrization of scale correction used in MuScleFit. The parameter
a1,3 in Equation 3.8 represents the amplitude of an harmonic function of
ϕ for the correction of the curvature of the muon. By taking into account
every sample examined, both at

√
s = 7 TeV and

√
s = 8 TeV, it is possible
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Figure 4.20: Starting setup of the detector: two circular layers both centered in (0 , 0)
µm (solid black line) and the simulated track with generated curvature κgen (solid
red line). Setup after the translation: layer 1 is centered in (0 , 50 µm), layer 2 in
(0 , 100 µm) (dashed black line) and thesimulated track is reconstructed with curvature
κreco (dashed red line).

to say that if the weak mode that originates the bias in the curvature of
the muons has the same geometrical naturei as the one introduced in this
simple simulation, then a1,3 and ∆k represent the same observable. Under
this hypotesis it is possible to intrerpret the value of a1,3 in each sample in
terms of a shift of the most external layer. In Figure 4.22 the value of ∆k
in function of the shift of the external layer is shown. Here the estimated
values of ∆k are obtained with muons with pT = 40 GeV but, since ∆k is
strictly related to a geometrical deformation, in principle these values are
independent from the pT of the track. By comparing the values on the or-
dinate axis with those listed in Table 4.1 and Table 4.2 for a1,3 it is possible
to extract the value of the shift for the layers of CMS that originates the
weak mode in the aligned geometry. The layer with the radius r ≈ 100
cm is the fifth layer of the TOB, therefore the values of the shift found in
Figure 4.22 should be similar to its shift in the aligned geometry. The shift
that generates the weak mode is not only on the fifth layer of the TOB but

iGeometrical nature has to be intended in the following way: the weak mode in the
aligned geometries is a shift in the same direction of some layers of the barrel and every
layer is translated by a quantity proportional to its radius
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Figure 4.21: Difference between the generated and the reconstructed curvature as a func-
tion of the generated ϕ of the muon. Muons are generated with pT = 40 GeV. The shift
on the outer layer (r=100 cm) is 100 µm in the ϕ = 0 direction.

in every layer of the trackerii, with a shift in every layer proportional to
its radius. The resulting shifts for three layers in CMS are listed in Table
4.7. Due to the simplicity of the simulation built for this study the values
has to be intended as indicative of the order of magnitude of the shift. It
is important to notice that the resulting values of the shifts have the same
order of magnitude of the uncertainties present in an aligned geometry
affected by weak modes.
Every consideration made above applies to a muon with a negative cur-
vature. The only difference with respect to a positive muon is that the
sinusoidal plot in Figure 4.21 results with an opposite phase, but in pres-
ence of the same shifts on the layers the value of ∆k is the same as in the
case of the muon with positive curvature.
A bias in the measurement of the mass of a reconstructed resonance, for

iiIt represents a good approximation, because if a layer is not translated coherently
with the others the alignment algorithm in order to minimize the χ2 of the track correct
its position until it is.
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Figure 4.22: Values of ∆k as a function of the shift introduced on the external layer (L2).
The shift is introduced also in the internal layer proportionally to its radius.

example Z, is directly related to the bias in the measurement of the curva-
ture of the muons introduced by the deformations of the geometry. How-
ever there is an important additional detail, the bias on MZ is strictly
dependent on the topology of the event too, and in a sample of dimuons
there are millions of events with different topologies. Therefore the mod-
ulations observed in the reconstructed MZ in function of ϕ− or ϕ+ (see
for example Figures 4.1d and 4.1c) are related both to geometrical defor-
mations of the aligned-geometry and to the topologies of the events in the
considered sample.
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Indicative values of the shift on layers of the weak mode in the barrel

Sample BPIX L3 shift [µm] TIB L4 [µm] TOB L6 [µm]

data 4_2_X 10 40 80
simulation 4_2_X 10 50 100

data 5_3_X 10 60 110
simulation 5_3_X ≈ 0 15 30

Table 4.7: Shift on layers of CMS present in the aligned geometry extrapolated from the
simple model described in the test.
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4.5 Resolution on the curvature of the muons

A feature of the MuScleFit algorithm is that it provides an estimation
of the resolution on the curvature of the muons. Moreover, thanks to the
fit strategy used for the calibration process, two sets of parameters of the
resolution are avalaible, before and after the correction. A comparison be-
tween the resolution estimated by MuScleFit and the true resolution on the
curvature can be performed for the samples of simulated muons. In this
analysis the resolution of the detector is parameterized with a gaussian
function. In order to extract the true resolution on the curvature of the
tracks from a sample of simulated muons it is possible to plot the variable
(κreco − κgen)/κgen in bins of the relevant kinematic variable and perform
a gaussian fit on its distribution. The standard deviation resulting from
the fit represents the true resolution of the detector on the curvature of
the muonsiii. By referring to Equation 3.12 and to the parameters listed in
Table 4.3 it is possible to compare the resolution estimated by MuScleFit
before an after the correction with the true resolution of the detector. This
is shown for the sample of simulated muons in 5_3_X in Figure 4.23. Here

Figure 4.23: Comparison among the true resolution of the detector (blue dots), the reso-
lution estimated before the correction (black line) and the resolution estimated after the
correction (red line) for a sample of simulated muons at

√
s = 8 TeV.

in some bins, for example in 1.2 < |η| < 1.6, the fitted resolution before
the correction appear slightly higher than the true resolution. The situa-

iiiActually is the relative resolution on the curvature i.e. σ(κ)/κ.
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tion improves considering the resolution after the correction.
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4.6 Detailed validation of the corrections

In this section the correction on the curvature is applied to the muons
from the decay of three different resonances and an analysis on the effects
of the correction for each resonance is performed in kinematical bins of
the muons. The samples used are data and simulation at

√
s = 8 TeV pro-

cessed and the correction parameters have been calculated by performing
the calibration on the Z resonance. The chosen resonances are J/Ψ, Υ(1S)
and Z. A brief description of their properties is presented in Table 4.8 and
Table 4.9.

J/Ψ

Mass 3096.916± 0.011 MeV
Width 92.9± 2.8 KeV

BR(µ+µ−) 5.93± 0.06%

Table 4.8: Properties of J/Ψ from the Particle Data Group [3].

Υ(1S)

Mass 9460.30± 0.26 MeV
Width 54.02± 1.25 KeV

BR(µ+µ−) 2.48± 0.05%

Table 4.9: Properties of Υ(1S) from the Particle Data Group [3]

In order to enhance the signal we impose kinematic cuts on the muons
from the Υ(1S) and J/Ψ decay. In both samples the cut on pseudorapidity
of the muons is |η| < 2.4, and the cut on transverse momentum is pT > 5
GeV.
In what follows it is necessary to reconstruct J/Ψ, Υ(1S) and Z in different
kinematical bins of the muons before and after the correction. A fitting
strategy for the reconstruction of Z has already been defined in Chapter
2. The same fit strategy does not apply in the case of Υ(1S) and J/Ψ
because they are very narrow resonances. With a decay width of tens KeV
a reasonable parametrization of the resonance is a Dirac delta function.
On the other hand the reconstruction of these resonances is affected by the
finite resolution of the detector, parametrizable with a gaussian function.
For the J/Ψ the chosen fit strategy is to parametrize the distribution of the
dimuon invariant mass in the region [2.9 , 3.3] GeV both in the data and
simulation samples with a Crystal Ball function added on a background
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parametrized with a polynomial of degree 4. For the Υ the simulated
samples contain separately the Υ(1S), Υ(2S) and Υ(3S). For this reason
the fit is performed in a limited invariant mass window [8.8 , 9.8] GeV with
a Crystal Ball function added to a polynomial of degree 4. Differently
from the simulation the sample in data in the Υ invariant mass region
contains all the three resonances: Υ(1S), Υ(2S) and Υ(3S). The goal of
the fit is to find the characteristics of Υ(1S) in every kinematical bin. In
order to properly take into account the contribution of the background,
the fit is performed in an invariant mass region that contains all the three
resonances: [8.7, 11.0] GeV. For this region the choice is to fit with three
Crystal Ball functions added on a polynomial of degree 4. Examples of
the fit in the J/Ψ and Υ region of the dimuon invariant mass in the data
sample are represented respectively in Figure 4.24a and Figure 4.24b. The
figures refer both to a specific kinematical bin in which the positive muon
has cuts both on his pT and η, the same fitting strategy is applied in every
kinematical bin considered. Here b0, b1, b2, b3 and b4 denote the coefficients
of the polynomial function of grade 4 that parametrizes the background;
mean, sigma, n and alpha are the parameters of the Crystal Ball function
and fSig is the fraction of the signal with respect to the background. Since
in Figure 4.24b the signals are three, they are represented by three Crystal
Ball functions, here fCB1 and fCB2 represent respectively the the fraction of
the events in the signal of Υ(2S) and Υ(3S) with respect to the events in
the signal of Υ(1S).
The analysis is performed in bins of η and pT for the positive muon and
the notation used will be:

∆M =
Mdata −Msim

Mdata

∆Mdata =
Mdata −m0

m0

∆Msim =
Mdata −m0

m0

where Mdata and Msim represent respectively the fitted mass of the consid-
ered resonance in a data and in a simulation sample, and m0 is the nominal
value of the resonance. Figures 4.25 and 4.26 show the improvement on
the reconstruction of J/Ψ, Υ(1S) and Z after the correction on muons in
kinematical bins of |η| and pT of the positive muon. In every figure the
left part represents the situation before the correction and the right part
after the correction.

The improvement made by the correction is sigificant in most of the
plots. Consider for example the Figures 4.25a and 4.25b, all the markers
are shifted in the direction of ∆Mdata. On the other hand there are still
cases in which the correction does not improve significantly the situation,
as it is in Figures 4.25c and 4.25d, here the improvement is visible only
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looking at the fit results that included all the muons in a sample. However
in general, except for the values of Z when both muons have pT > 45 GeV
and the positive muon have |η| > 2iv , ∆Mdata is about 2‰. To conclude
in general the corrections found by a calibration that uses Z are beneficial,
for every resonance considered, however there is still room for further
improvements. Possible improvements that can be made to the calibration
procedure are anticipated here but are not discussed in this thesis. They
could be:

• modifications of the parametrization of the scale correction function,
especially at higher values of |η|.

• different parametrization of the resolution function, for example the
resolution could be parametrized with an higher number of bins in
η of the muon.

• the use of parametrizations of the signal functions in different kine-
matic bins of the muons, see Appendix B.1.

• the use of more resonances toghether in the process of calibration,
for example Υ(1s) and Z, etc.

ivHere the fit is influenced by the limited number of events.
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(a) Mµµ in the interval [2.9 , 3.3] GeV for a data sample at
√

s = 8 TeV.

(b) Mµµ in the interval [8.7 , 11.0] GeV for a data sample at
√

s = 8 TeV.

Figure 4.24: Fit of the Mµµ distribution in two regions, the solid blue line represents
the fit of background plus signal, and the dotted blue line is the fit of the background
contribution.
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(a) ∆Mdata before the correction (b) ∆Mdata after the correction

(c) ∆Msim before the correction (d) ∆Msim after the correction

(e) ∆M before the correction (f) ∆M after the correction

Figure 4.25: Comparison between the fitted value of the mass of J/Ψ, Υ(1S) and Z
in data and simulation with its nominal value (Figures 4.25a, 4.25b, 4.25c, 4.25d)
and comparison between data and simulation (Figures 4.25e, 4.25f). The kinematic
intervals indicated in the legend refer to restrictions imposed on both muons. The
markers of the J/Ψ resonance are three, their shapes are a red-filled triangle, and two
empty triangles. The empty triangles are artificially translated along the x-axis in
order to avoid visual superpositions, but their true value in x is the same of the red-
filled triangle. The markers showed in the right part of the plot represent the results of
fits performed without imposing kinematical cuts on the muons in every dataset.
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(a) ∆Mdata before the correction (b) ∆Mdata after the correction

(c) ∆Msim before the correction (d) ∆Msim after the correction

(e) ∆M before the correction (f) ∆M after the correction

Figure 4.26: Comparison between the fitted value of the mass of J/Ψ, Υ(1S) and Z
in data and simulation with its nominal value (Figures 4.26a, 4.26b, 4.26c, 4.26d)
and comparison between data and simulation (Figures 4.26e, 4.26f). The kinematic
intervals indicated in the legend refer to restrictions imposed on both muons. The
consideration made in the caption of Figure 4.25 for the markers of the J/Ψ apply here
too.



Conclusions

The presence of weak modes in the aligned geometry of the Tracker
leads to an incorrect determination of the momentum of the muons. Con-
sequently muon decaying resonances are reconstructed with incorrect prop-
erties. The mass of the Z boson has been reconstructed starting from
muons meaured in an aligned geometry of the Tracker, and biases in the
measured value of MZ with respect to the nominal value have been found
considering several kinematic intervals of the muons. This thesis has been
devoted to the calibration of the momentum scale of the muons in the
Tracker, in order to restore the bias present in the measurement of the mass
of the Z. The calibration has been performed with the use of the MuScle-
Fit algorithm, an algorithm developed within the Torino and Padova CMS
groups in 2010. Muons with corrected momentum led to an improvement
in the response of the Tracker to the reconstruction of Z in every kine-
matic interval of the muons considered. As well as the matching between
the measured MZ after the calibration and the nominal value of the mass
m0 is significantly improved, also the matching between the reconstructed
mass and resolution on Z in data and simulation samples processed in
the same CMSSW release is enhanced. Moreover an estimation on the
resolution on the momentum of the muons is provided before and after
the correction. The result is that the MuScleFit correction improves also
this observable. The calibration on the momentum scale of the muons has
been performed for several samples in two CMSSW releases, both with
simulated and real dimuons. The improvements on the reconstruction of
Z have been observed for every sample considered.
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Appendix A

Fit strategy

With the fit strategy described in Section 3.4 two sets of parameters for
the scale corrections are given by the fit. With thegoal of providing just
one set of parameters, so that the final user can apply the correction on
the muons once, the two sets of parameters are merged. Thanks to the
trigonometric properties of Equation 3.9, and that p0 is fitted only once, it
is possible to merge the corrections computed in two different iterations
without changing its functional form. Let’s denote with κ′ the curvature
corrected by the set of parameter found in the first fit of the scale function
(here p0 is fixed to p0 = 0), according to Equation 3.9:

κ′ =

(
κ − C′j(η, ϕ)− δ′

2

)
and the curvature after the second scale function fit and the fit of p0 is κ′′

with:

κ′′ = (1 + p0)

(
κ′ − C′′j (η, ϕ)− δ′′

2

)
where the double-primed parameters refer to those fitted by the second fit
of the scale function. In order to apply the correction of both fits on the
initial curvature κ of the muon it is possible to write:

κ′′ = (1 + p0)

(
κ −

(
C′′j (η, ϕ) + C′j(η, ϕ)

)
−
(

δ′′

2
+

δ′

2

))
here the term (C′j(η, ϕ) + Cj(η, ϕ)) have the same functional form. To
improve this consider the Barrel term of Cj and C′j:

C3(η, ϕ) = a1,3 sin(ϕ + ϕ1,3) + b3(η − η0,3) + b0,3

C′3(η, ϕ) = a′1,3 sin(ϕ′ + ϕ′1,3) + b′3(η − η0,3) + b′0,3
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The trigonometric relation sin(x + y) = sin(x) cos(y) + sin(y) cos(x) leads
to:

C′j(η, ϕ) + Cj(η, ϕ) = A1,3 sin(ϕ + Φ1,3) + B3(η − η0,3) + B0,3

where:

Φ1,3 = Arctg

(
a1,3 sin(ϕ1,3) + a′1,3 sin(ϕ′1,3)

a1,3 cos(ϕ1,3) + a′1,3 cos(ϕ′1,3

)

A1,3 =
a1,3 cos(ϕ1,3) + a′1,3 cos(ϕ′1,3)

cos(Φ1,3)

B3 = b3 + b′3
B0,3 = b0,3 + b′0,3

Similar considerations apply to every η-bin of Cj. The output of MuScleFit
is then a set of 47 parameters, 34 that hold the parameterization of the
scale and the resolution after the scale correction, and 13 that represent
the resolution before the scale correction.



Appendix B

Additional lineshapes

B.1 Building of the signal function of Z in kinematic
intervals of the muons

The signal function introduced in Chapter 3 represents the theoretical
distribution of the dimuon invariant mass m in the proximity of the mass
of Z as it is predicted by the Standard Model. However the use of only
one lineshape in MuScleFit represents an approximation as σ(m, m0) was
used for every muon with |η| < 2.4 while the lineshape could be different
in different kinematical regions of the muons. The goal of this section is to
show a method to provide a parametrization of the theoretical lineshape of
Z in various kinematic intevals for the muons. Since a theoretical calcula-
tion in different kinematic bins for the muons is not avalaible, the strategy
adopted here is to use simulated muons. Simulated muons are gener-
ated according to a distribution calculated within the Standard Model (see
Reference [8]) that takes into account the partons interactions in the hard
scattering process, and then are eventually propagated into the detector
and reconstructed as tracks. In a simulation both the true parameters and
the reconstructed parameters of the track of a muon are known. In or-
der to find a parametrization for the dimuon invariant mass in different
kinematical bins of the muons, it is possible to use the information on the
true parameters of the particle which are not affected by reconstruction
effects stored in the simulation sample. The sample used is the sample of
simulated muons at

√
s = 7 TeV and its characteristics are shown in Table

3.1. A comparison between the parametrizations of the dimuon invariant
mass distribution at

√
s = 7 TeV and

√
s = 8 TeV calculated within the

Standard Model has been performed in Chapter 3. No subtantial differ-
ence was found between the two curves.
The kinematic bins in which the lineshape of Z will be reconstructed are
listed in Table B.1. By using these kinematic bins for the muons it is pos-
sible to reconstruct the invariant mass distributions in the region [71, 111]
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Kinematic regions of muons

|η| boundaries of µ− and µ+ Color

|η−| ∈ [0, 1.5], |η+| ∈ [0, 1.5]
|η−| ∈ [1.5, 2.1], |η+| ∈ [0, 1.5] or |η−| ∈ [0, 1.5], |η+| ∈ [1.5, 2.1]
|η−| ∈ [2.1, 2.4], |η+| ∈ [0, 1.5] or |η−| ∈ [0, 1.5], |η+| ∈ [2.1, 2.4]
|η−| ∈ [1.5, 2.1], |η+| ∈ [1.5, 2.1]
|η−| ∈ [1.5, 2.1], |η+| ∈ [2.1, 2.4] or |η−| ∈ [2.1, 2.4], |η+| ∈ [1.5, 2.1]
|η−| ∈ [2.1, 2.4], |η+| ∈ [2.1, 2.4]

Table B.1: Kinematical bins chosen for the muons and color convention used in this
section.

GeV, see Figure B.1. Here each histogram has been normalized to unity
in the interval [71, 111] GeV. The poissonian error of each bin has been
properly rescaled after the normalization. Some differences among the
distributions are present, especially far from the peak. In principle these
distributions could be used instead of a single curve for every kinematical
bin of the muons. However they suffer, especially in the tail of the dis-
tributions, from the limited statistics of the sample. In order to produce
similar curves without statistical fluctuations it is possible to start from
the curve σ(m, m0) used in MuScleFit, and correct it according to the re-
lation between each distribution in a kinematic region of the muons and
the distribution of invariant mass obtained without imposing kinematic
restrictions on the muons, i.e. both muons taken in the interval |η| < 2.4.
The correction can be computed from a fit to the ratio of the distribution
with and without the kinematic cuts, see Figure B.2. The ratio is per-
formed for each distribution, the color convention defined in Table B.1 is
respected here. The color of the ratio plot is the same of the distribution
with certain restriction on the kinematic of the muons which is divided
by the distribution in which the kinematic restrictions on the muons are
not imposed. In order to extract a correction to apply to σ(m, m0) it is
possible to fit the ratios between the curves with a first order polinomial:
a0 + a1 ·m. In Table B.2 are listed the fit results. Then for each kinematic
restriction on muons considered, the parameters of the polynomial are
used to rescale each bin of the lineshape σ(m, m0). Finally six curves are
produced: σ(m, m0)i for i = 1, 2, 3, 4, 5, 6. They are shown in Figure B.3.

Preliminary results using these lineshapes indicate that no substantial
improvement with respect to the base line choice, i.e. one lineshape for all
the events, are found.
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Figure B.1: Comparison among lineshapes in different kinematic regions of the
muons.(From MC POWHEG).

Results of the fits at the ratios shown in Figure B.2

Color associated to the dividend curve a0 a1 [GeV1]

1.18± 0.01 −0.0020± 0.0002
0.67± 0.02 0.0037± 0.0002
0.38± 0.03 0.0069± 0.0003
1.52± 0.04 −0.0058± 0.0004
1.49± 0.02 −0.0054± 0.0005
1.53± 0.08 −0.0061± 0.0009

Table B.2: Results of the fit at the ratio of the distribution with and without the kinematic
cuts.
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Figure B.2: Ratios between distributions in different kinematic regions of the muons,
the errors are properly propagated here from the normalized histograms.(From MC
POWHEG).

Figure B.3: Lineshapes in six kinematic bins of the muons produced starting from
σ(m, m0). (Dittmaier + POWHEG)
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B.2 Building of the signal function for J/Ψ and Υ(1S)

One of the main characteristics of J/Ψ and Υ(1S) is that they are very
narrow resonances with respect to a GeV scale. Their widths are few tens
of KeV and then in this analysis they were represented width Dirac delta
funcions. However, on the distribution of the invariant mass of the dimuon
of those resonances there is a QED effect that influences the shape of the
distribution up to the scale of GeVs: the final state emission of radiation
(QED FSR) of the muons. This effect, in a tyical distribution of invariant
mass of the dimuons in proximity of the peak of a resonance, manifests
istelf as an enhancement of the number of dimuon events with invarant
mass lower than the invariant mass of the peak. The purpose of this sec-
tion is to show a method to create a model of signal function for J/Ψ and
Υ(1S) that takes into account the QED FSR of the muons. The strategy
used here is to set up a simulation with the software PYTHIA that gen-
erates J/Ψ or Υ(1S), and make them decay into dimuons by taking into
accont the effect of the QED FSR on the momentum of the muons. The
effect of the final state radiation is to reduce the momentum of the muons.
However, in order to prevent the computation of divergent integrals, the
software PYTHIA puts an infrared cut on the momentum of the emitted
photon. By plotting in an histogram the invariant mass of the dimuon in
proximity of the peak of the considered resonance it is possible to see the
effect of this infrared cut: in the left tail of the distribution few bins do
not have entries, they are the bins near the peak of the resonance. In order
to create the models for the signal functions these bins have to be filled
with the proper bin contents. To achieve this task, a fit on the left tail of
the distribution is performed and the empty bins are then filled with the
value of the fitted function in each bin. If with m is denoted the invariant
mass of the dimuon, and with M the nominal value of the peak of the
considerd resonance, the function used for the fit is:

f (m) ∝
1

(M−m)
[
1− β ·

(
M

(M−m)

) (
1− m2

M2

)] (B.1)

where

β =

√
1− 4 m2 M2

(m2 + M2)2 (B.2)

The fit is performed both for the distribution of invariant mass of the
dimuon in proximity of the J/Ψ and Υ(1S) peak vales. For the tail of
J/Ψ the fit is performed in the interval of the dimuon invariant mass
[2.9, 3.075], and for the tail of Υ(1S) is chosen [9.0, 9.405]. Figure B.4 shows
the situation for both resonances. Here the errors are poissonian and are
smaller than the marker. In order to assign a value t the empty bins, the
fitting function can be propagated until the peak value of the resonance.
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However, given the fact that the histograms in output from PYTHIA have
quite wide bins, it is convenient to create new histograms with the desired
number of bins that follow the trend of the fitting function. In order to
be coherent with the number of bins used for the signal function of the
Z also here the number of bin chosen is 1001, both for J/Ψ and Υ(1S).
The reason for building signal functions for J/Ψ and Υ(1S) is that they
can be used in MuScleFit to perform a calibration on the momentum of
the muons, as well as it is done in this thesis. As explained in Chapter
3 the input for MuScleFit is a set of tabulated values of the convolution
between the signal function and a gaussian function. The effect of this
convolution is to modify the shape of the signal, it lowers the number of
the events at the peak and raises the numer of the events in the tails of the
distribution. The number of events at m > M is raised as well as the numer
of events at m < M. For this reason the best choice for the boundaries of
the histogram of a signal function is to put them at the same distance from
the peak value. Hence the choice for the histogram of the signal function
of J/Ψ is the following: 1001 bins of width 0.6 MeV ranging from m = 2.8
GeV to m = 3.4006 GeV. For Υ(1S) the choice is 1001 bins of width 2.5
MeV ranging from m = 8.7 GeV to m = 11.2025 GeV. Figure B.5 shows the
final results of the construction of the signal function for J/Ψ and Υ(1S).
It is important to notice that these considerations could be applied to any
narrow resonance decaying into two muons, such as Ψ′, Υ(2S), Υ(3S) etc.
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(a) Fit on radiative tail of J/Ψ.

(b) Fit on radiative tail of Υ(1S).

Figure B.4: Fit on the radiative tail of the distribution of invariant mass of the dimuon
in proximity of the J/Ψ and the Υ(1S) peak value. The dimuons are generated by the
PYTHIA software.
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(a) Signal function for J/Ψ.

(b) Signal function for Υ(1S).

Figure B.5: Histograms of the signal functions for J/Ψ and Υ(1S) that serve as inputs
for MuScleFit.
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