Anomalies in Neutrino Oscillation experiments and its compatibility with Cosmology

Mario Andrés Acero Ortega

Università degli Studi di Torino, LAPTH - Université de Savoie

IDAPP's Two days 2008 APC Paris, France June 9th, 2008

Tutor: Carlo Giunti (INFN - Torino)

Co-Tutor: Julien Lesgourgues (LAPTH - Annecy)

1. Outline

- Neutrino oscillations
- Analysis of Neutrino Experimental Data
 - ▷ Gallium experiments
 - Reactor experiments
- Neutrino as CWDM
- Conclusions

2. Neutrinos oscillations

Quantum mechanical phenomenon \Rightarrow interference of different massive ν s.

Oscillations between active neutrino flavors

 \uparrow

they are **massive** and **mixed**. We can detect ν s through

- Charged- or neutral current processes $(\nu_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^- \text{ used in gallium experiments});$
- Elastic scattering $\nu + e^- \rightarrow \nu + e^-$.

Neutrinos in Cosmology \Rightarrow History of the Universe and Structure formation. Particular interest in Seterile Neutrinos and the oscillation between active and sterile neutrinos.

$$\nu_{\alpha} \to \nu_s, \qquad \alpha = e, \mu, \tau.$$

3. Analysis of Neutrino Experimental Data

There is experimental evidence of three-neutrino mixing from solar and atmospheric neutrino experiments:

 $\Delta m^2_{\rm sol} = (8.0^{+0.6}_{-0.4}) \times 10^{-5} {\rm eV}^2 \qquad \Delta m^2_{\rm atm} \simeq 2.74^{+0.44}_{-0.26} \times 10^{-3} {\rm eV}^2$

However... \rightarrow anomalies which can be interpreted as **ex**-otic neutrino mixing:

- LSND (but with MiniBOONE (low energy anomaly)...),

Possible explanation: disappearance of electron neutrinos due to neutrino oscillation ($\nu_e \rightarrow \nu_s$).

We perform the analysis of the Gallium experiment data and study the compatibility of the result with the data from other neutrino oscillation experiments: **Bugey** and **CHOOZ**

Two Neutrino Mixing framework.

 \downarrow

3.1 Ga experiments: GALLEX and SAGE

The Gallium radiactive source experiments were designed to test the GALLEX and SAGE solar neutrino detectors. Electron neutrinos come from the decay of ⁵¹Cr and ³⁷Ar radioactive (placed inside the detectors) sources which decay through electron capture emiting monoenergetic ν_e detected through the reaction

$$\nu_e + ^{71} \operatorname{Ga} \rightarrow ^{71} \operatorname{Ge} + \mathrm{e}^-.$$

	⁵¹ Cr				³⁷ Ar	
E(keV)	747	752	427	432	811	813
B.R. (%)	81.63	8.49	8.95	0.93	90.2	9.8

3.3 Ga experiments

The survival probability of electron (anti)neutrinos with energy E at a distance L from the source is

$$P_{\nu_e \to \nu_e}(L, E) = 1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 (\mathrm{eV}^2) L(\mathrm{m})}{E(\mathrm{MeV})}\right),$$

For the analysis we use the theoretical ratio, R_{th} , of the predicted ⁷¹Ge production rates with and without neutrino oscillations:

$$R_{\rm th} = \frac{\int dV L^{-2} \sum_i (B.R.)_i \sigma_i P_{\nu_e \to \nu_e}(L, E_i)}{\sum_i (B.R.)_i \sigma_i \int dV L^{-2}},$$

which is to be compared with the measured ratios.

3.4 Ga experiments

Individual analysis: 2σ allowed bands for GALLEX-Cr2 and SAGE ^{37}Ar , with $\Delta m^2 \gtrsim 1 \, eV^2$.

3.5 Ga experiments

10

ω

9

Combined least-squares analysis for the Gallium experiments. It shows a 1σ allowed region, and we find

sin²2ϑ

10

 $\Delta \chi^2$

4. Reactor experiments

Electron antineutrino detected through the inverse beta decay process

$$\bar{\nu}_e + p \to n + e^+$$

with the energy relation $E_{\nu} = E_{e^+} + 1.8$ MeV.

The **Bugey** experiment searches for $\bar{\nu}_e$ disappearance at the three distances $(L_j = 15, 40, 95 \text{ m})$ and collected $N_j = 25, 25, 10$ (for j = 1, 2, 3) energy bins (data).

4.1 Bugey analysis

We analize the data using the χ^2 function given by

$$\chi^{2} = \sum_{j=1}^{3} \left\{ \sum_{i=1}^{N_{j}} \frac{\left[(Aa_{j} + b(E_{ji} - E_{0}))R_{ji}^{\text{the}} - R_{ij}^{\text{exp}} \right]^{2}}{\sigma_{ji}^{2}} + \frac{(a_{j} - 1)^{2}}{\sigma_{a_{j}}^{2}} \right\} + \frac{(A - 1)^{2}}{\sigma_{A}^{2}} + \frac{b^{2}}{\sigma_{b}^{2}};$$

the coeficients $(Aa_j + b(E_{ji} - E_0))$ are introduced to take into account the systematic uncertainty of the positron energy calibration.

$$R_{ji}^{\text{the}} = \frac{\int dL L^{-2} \int_{E_{ji} - \Delta E_j/2}^{E_{ji} + \Delta E_j/2} dE \int_{-\infty}^{+\infty} dT_e F(E, T_e) P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_{\nu})}{\Delta E_j \int dL L^{-2}};$$

 $F(E, T_e)$ is the energy resolution function, considered as a Gaussian function with standard deviation $0.06\sqrt{4.2 E(\text{MeV})}$.

Anomalies in Neutrino Oscillation experiments and its compatibility with Cosmology - p. 12

Histogram relative to the best fit against the Bugey experimental data.

L = 40 m

4.4 Chooz

The ratio of the number of observed to the expected events (in absence of oscillations) is $R_{\text{Chooz}} = 1.01 \pm 0.04$.

$$P_{\nu_e \to \nu_e}(L, E) = 1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2(eV^2)L(m)}{E(MeV)}\right)$$

average to
 $\langle P_{\bar{\nu}_e \to \bar{\nu}_e} \rangle = 1 - \frac{1}{2} \sin^2 2\theta,$

2

Chooz Underground Neutrino Laboratory Ardennes. France

Experiment	L	E	Δm^2
Bugey (SBL)	\sim 10 m	\sim 1 MeV	\sim 0.1 eV 2
Chooz (LBL)	\sim 1 km	\sim 1 MeV	\sim 10 $^{-3}~ m eV^2$

Which is then combined with the previous analysis, excluding values of $\sin^2(2\theta) \gtrsim 0.1$ for $\Delta m^2 \lesssim 3 \times 10^{-2}$, where Bugey is not sensitive.

4.5 Combined Fit

The combined analisys confirms the weak indication in favor of neutrino oscillations with

$$\Delta {
m m^2} \simeq 1.85 {
m eV^2}$$

and

$$\mathbf{0.03} \lesssim \sin^{\mathbf{2}} \mathbf{2} \mathbf{ heta} \lesssim \mathbf{0.07}$$

Our Best Fit:

$$\chi^2_{\rm min} = 53.40,$$

 $\sin^2 2\theta = 0.05$ $\Delta m^2 = 1.85 \text{eV}^2$.

5. Sterile Neutrino from Cosmology

• Our results $\rightarrow \Delta m^2 \sim 1.8 {\rm ev}^2$

Results from analysis of LSND+Gallium experiments $\rightarrow \Delta m^2 = 20 - 30 \text{ev}^2$

- Scenarios in which cosmological bounds on neutrino parameters are evaded
 - \triangleright Low Reheating temperature (T_R) Universe

Light sterile neutrino in Cosmology: physical effects.

Analysis using cosmological experimental data with CosmoMC.

5.1 Sterile Neutrino: parameters

Parameters to study:

- ΔN_{eff} : contribution to the relativistic density,
- $\omega_s = \Omega_s h^2$: current energy density,
- $\langle v_s \rangle$: average velocity of the particles.

All of them depending on the form of the phase-space distribution function f(p).

6. Conclusions

- From Gallium experiments, we found a possible indication of $\nu_e \rightarrow \nu_s$ oscillation with $\sin^2 2\theta \gtrsim 0.03$ and $\Delta m^2 \gtrsim 0.1 \text{ eV}^2$.
- The Bugey data present a weak indication in favor of neutrino oscillations with $0.01 \leq \sin^2 2\theta \leq 0.07$ and $1.8 \leq \Delta m^2 \leq 1.9 \text{ eV}^2$.
- The combined analysis of the Gallium, Bugey and CHOOZ data, the weak indication persists, with compatible results with the Bugey and CHOOZ reactor experiments.

Work published:

M.A.A., C. Giunti, M. Laveder, *Limits on* ν_e and $\bar{\nu}_e$ disappearance from Gallium and reactor experiments, arXiv:0711.4222.

Future work

- Extending the data analysis including some other reactor experiments:
 - Chooz (complete analysis)
 - ▷ Savannah River Site (S.R.S.)
 - ▷ Institute Laue Langevin (I.L.L.)
 - Gösgen
- Concluding (and publishing) work on sterile neutrinos

Thanks!

Average over Energy Resolution of the Detector

