ν_e and $\bar{\nu}_e$ disappearance in Gallium and Neutrino experiments

Mario Andrés Acero Ortega

Università degli Studi di Torino, LAPTH - Université de Savoie

ISAPP 2008 - ""Probing the Universe with Neutrinos

Valencia, Spain

16-26 July, 2008

Carlo Giunti (INFN - Torino) Marco Laveder (INFN - Padova) arXiv:0711.4222

Ga experiments: GALLEX and SAGE

The Gallium radioactive source experiments were designed to test the GALLEX and SAGE solar neutrino detectors. Electron neutrinos come from the decay of ⁵¹Cr and ³⁷Ar radioactive (placed inside the detectors) sources which decay through electron capture emitting monoenergetic ν_e detected through the reaction

$$\nu_e + {}^{71} \operatorname{Ga} \rightarrow {}^{71} \operatorname{Ge} + \operatorname{e}^-.$$

	⁵¹ Cr			³⁷ Ar			
E(keV)	747	752	427	432	811	813	
B.R. (%)	81.63	8.49	8.95	0.93	90.2	9.8	

Ga experiments

Individual analysis: 2σ allowed bands for GALLEX-Cr2 and SAGE 37 Ar, with $\Delta m^2 \gtrsim 1 \, eV^2$.

Ga experiments

Combined least-squares analysis for the Gallium experiments. It shows a 1σ allowed region, and we find

$$egin{aligned} \Delta m^2_{bf} &= 2.00 \, \mathrm{eV^2} \ && \sin^2(2 heta)_{bf} &= 0.23 \ && \mathrm{and} \ \mathrm{at} \ 1\sigma \ (68.27 \ \% \ \mathrm{C.L.}) \ && \Delta m^2 &> 0.90 \, \mathrm{eV^2} \ && \sin^2(2 heta)_{bf} &= 0.13 - 0.34 \end{aligned}$$

Reactor experiments

Electron antineutrino detected through the inverse beta decay process

$$\bar{\nu}_e + p \to n + e^+$$

with the energy relation $E_{\nu} = E_{e^+} + 1.8$ MeV.

The **Bugey** experiment searches for $\bar{\nu}_e$ disappearance at the three distances $(L_j = 15, 40, 95 \text{ m})$ and collected $N_j = 25, 25, 10$ (for j = 1, 2, 3) energy bins (data).

Bugey spectra

Histogram relative to the best fit against the Bugey experimental data.

Chooz

The ratio of the number of observed to the expected events (in absence of oscillations) is $R_{\text{Chooz}} = 1.01 \pm 0.04$.

$$\begin{split} P_{\nu_e \to \nu_e}(L,E) &= 1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2(eV^2)L(m)}{E(MeV)}\right) \\ \text{average to} \\ \left\langle P_{\bar{\nu}_e \to \bar{\nu}_e} \right\rangle &= 1 - \frac{1}{2} \sin^2 2\theta, \end{split}$$

Chooz Underground Neutrino Laboratory Ardennes, France

Experiment	L	E	Δm^2
Bugey (SBL)	\sim 10 m	\sim 1 MeV	\sim 0.1 eV 2
Chooz (LBL)	\sim 1 km	\sim 1 MeV	\sim 10 $^{-3}~ m eV^2$

Which is then combined with the previous analysis, excluding values of $\sin^2(2\theta) \gtrsim 0.1$ for $\Delta m^2 \lesssim 3 \times 10^{-2}$, where Bugey is not sensitive.

Combined Fit

The combined analysis confirms the weak indication in favor of neutrino oscillations with

$${f \Delta m^2}\simeq 1.85 {
m eV}^2$$

and

$$\mathbf{0.03} \lesssim \sin^{\mathbf{2}} \mathbf{2} heta \lesssim \mathbf{0.07}$$

Our Best Fit:

$$\chi^2_{\rm min} = 53.40,$$

$$\sin^2 2\theta = 0.05$$
 $\Delta m^2 = 1.85 \text{eV}^2$.

Conclusions

- From Gallium experiments, we found a possible indication of $\nu_e \rightarrow \nu_s$ oscillation with $\sin^2 2\theta \gtrsim 0.03$ and $\Delta m^2 \gtrsim 0.1 \text{ eV}^2$.
- The Bugey data present a weak indication in favor of neutrino oscillations with $0.01 \leq \sin^2 2\theta \leq 0.07$ and $1.8 \leq \Delta m^2 \leq 1.9$ eV².
- The combined analysis of the Gallium, Bugey and CHOOZ data, the weak indication persists, with compatible results with the Bugey and CHOOZ reactor experiments.

M.A.A., C. Giunti, M. Laveder, *Limits on* ν_e and $\bar{\nu}_e$ disappearance from Gallium and reactor experiments, arXiv:0711.4222.