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*We are not able to solve QCD in non-perturbative regime

*Non-perturbative dynamics is encoded into universal functions, PDF or
fragmentation functions for the hadronization process

*We can use models to obtain this non-perturbative input

*Hadronization models: string, cluster, statistical



Historical prologue

Multiple hadron production proceeds from highly excited
regions (clusters or fireballs) emitting hadrons according to a
pure statistical law



In modern view, the statistical model is a model of hadronization, describing
the process of hadron formation at the scale where QCD is no longer perturbative




The fundamental brick of the SHM is the CLUSTER or FIREBALL.:
a massive_extended relativistic object with inner charges

P.C, M, 1, 1,Jd, A



Extension is the key property

Cluster ~ bag of the MIT model (relativistic extended massive object)

The statistical hadronization model can
be seen as an effective model for the
“formidable task” of calculating bag decays

A. Chodos et al., Phys. Rev. D 12 (3471) 1974

FIG. 1. A color-singlet bag attempting to fission into
two bags which are not color singlets. The flux lines
of the colored gluon field are shown explicitly.



The S

IM's urprinzip

Every localized multihadronic state within the cluster

compatible with conservation laws is equally likely

The word “localized” gives finite extension a crucial role



Localized vs asymptotic states

» |f>: |p170-1;p270-27°'°>

’hV> described by the occupation numbers of the
field in the box (see e.g. bag model)

The distinction is unimportant if the volume is sufficiently larger than
(cubic root of) Compton wavelenghts, but it is crucial if they are comparable



Example: one particle in non-relativistic Quantum Mechanics

— exp(ik - X) ifxeV K = an/LxW/i—l— ny/Ly/j+ an/LZR

_ 1 3., oi(P—K)-X

Quantum Field Theory: localized and asymptotic states differ for the numbers of quanta
|N>V — CV(),N|O> -+ (X17N|1> + ...+ O&N,N|N> + ...

‘OV> 7& ‘0> Casimir effect

One can write non-bijective (Bogoliubov) relations connecting creation operators for the
localized and full-space field problems

+ £ Ek — €
— [ #pF(k,p)=* =L gy + F(k, - 2P
ak /dp ( 7p)2 5k5p a/p‘l‘ ( ’ p)2 Ekgp CLp



ranslating the postulate into formulae

The cluster is described as a mixture of states

poc » Pilhy)(hy|P; = P;PyP;
hv

Pi is the projector onto initial cluster's quantum numbers

P. =Pp AP, Pr.1,Pq P 4-r:nomentum
J spin

A helicity

P, can be further factorized if worked out into the rest frame 7T parity
where P = (M,0) x GC-parity

X T+ 7TfI ) abelian charges

. 4 . 5

Ppiaxr=0 (P —P)Pjax I, I, isospin

2



Can define a probability of observing an asymptotic multi-particle state | f)

py o< (fIP:PvP;|f)

This is positive definite and fulfills symmetry requirements.

The microcanonical partition function is recovered summing over all final states

> vy o<y (fIPiPyPilf) octrtPyPi = (hy|Pilhy) =
f f

hyv



The simplest example: again one particle in non-relativistic
Quantum Mechanics with energy conservation

hy) = [K) = ﬁexp(ik-x) itxeV k:an/LxW/J\-‘Fny/LyIJ\—l-?Tnz/Lzﬁ
" 0 ifx ¢V

Therefore:

0= D(KIS(E — DIk = Z/dgp' o (25 )

1 :
Because of the completeness relation: Z v explik - (X —X')] = 6*(x —X’)
K

s V
> > IKIP) = fr

o= [ (- 30)




Mixture vs pure state

Proper quantum description of a cluster as a pure state superposition of localized states

[¥) = > _ cny Pilhv)

hyv

From the postulate: \Chv|2 independent of hy

W = 13RI e = @f dhv)P

+ Z (fIPilhv ) (hy P3| f)cny e,

hv #h!,

same p, as before

If coefficients ¢, have random phases, the interference term vanishes and

an effective mixture description is recovered



General formulae for a multi-particle channel

A

_ 54 .
Take Pz =0 (PO — P)on,Q

Without quantum statistics
VN (25, + 1)N
On = (27 )3 (H ) /d3p1---/d3pz\r 04 (Po —z;pi)<0|Pv|0>

With quantum statistics

H.
1) NitHi (27 + 1)Hi 3
Oy = [ a5 — P[] 3 TRV Tk eyl

. J
J {hnj} Hnjzl nJ h’I’LJ! lj:1

partitions of Nj
ng

1 .
Z nJ n; —N Z hnj —H ZNj =N Fnl = H (27.‘.)3 LdSX er-(pcl(il)—pil)

n;=1 n;=1 J =1

Cluster expansion of the microcanonical partition function



Relativistic invariance and dynamical content

VN 28; + 1)Ns . : 4
'y O<(27T)3N (1;[( Nj!) )/dpl,../de(s(PO_zi:pi)
= L (H (25 —|_ ) [H/d4pz T pz 3)9(171(,)) 54(P0 — Zp’b)

(27)3N :

Zourvele L = (ny, ”}/VV) M. Chaichian, R. Hagedorn, M. Hayashi, Nucl. Phys. B92 (1975) 445

Comparing with the well-known formula

1 1 d>pq d>pN
T — M. |262 — :
N X ZN (27)3N ( ; Nj!> / 261 / 2N [ Mi]=0%(Fo ;Pz)

1 N
|Mf’t‘2 HT Pi = NHPO‘pz‘
1=1




Finite volume and quantum correlations

H.
F1)NitHi (27 +1)H
F{Nj}OC/d3p1...d3pN ' Po—Pr) ] D ( )Nj (hn, ) 11 5.,

Corrected R,.(Q)

Terms beyond leading in the cluster expansion account for BE and FD correlations.

Vanishfor |V — o0

o
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These observations support the
idea of a finite volume in high
energy collisions

e+e- collisions at Vs = 91.2 GeV
ALEPH coll., Phys. Rep. 294 (1998) 1



Interactions: hadron-resonance gas

While asymptotic states can only be strongly stable hadrons the
energy-momentum projector must include interactions among them

A very nice and powerful theorem established by Dashen-Ma-Bernstein states
R. Dashen, S. K. Ma, H. Bernstein, Phys. Rev. 187 (1969) 345

s
I I 1 =
tr54<P—P):tr54(P—PO)—|—4—ZtI' 54<P—P0)8 18—E8

7

S s the reduced scattering matrix on the energy-momentum P shell

CAVEAT: Such a theorem requires the thermodynamic limit



It can be proved that retaining only the resonant part of the interaction (and neglecting
resonance interference) the microcanonical partition function reduces to that of a gas
of free hadrons and resonances with distributed mass

hadron-resonance gas

=2000F
% F Hadron mass spectrum The hadron gas is “the”
$1750F  PDG 2006 _
i system where this method
1500F applies owing to the very
1250k large number of resonances

1000f

Energy density (temperature)
should be large enough to
excite most resonances

750F
500F

250F




Non-symmetric diagrams are neglected.

They depend on unknown complex phases
(resonance interference parameters)

and might give an overall vanishing contribution

The hadron-resonance gas only includes
the contribution of symmetric diagrams
from the cluster decomposition of the
scattering matrix

=




The theorem states that the trace can be decomposed into two simple terms

but it has never been proved whether it applies to single trace terms

<>
1 A1 0 a4
trd4(P — P) = trd*(P — P, ~ tr |6 (P - P)S 1 =S
x5 (P — P) = tro* o>+mr{< )8
It is assumed
1 9
tr{Nj}54(P — P) = tI‘{Nj}54(P — Po) + 4_mtr{Nj} 54(P — PQ)S_la—ES

In the resonating approximation all above terms are positive

SUMMARY OF HYPOTHESES FOR HadResGas

*Thermodynamic limit
?Qverall vanishing contribution from non-symmetric diagrams
*Validity of DMB theorem for single channels



Summary

Statistical model in general requires calculating quantities in the microcanonical
ensemble(s) of the hadron-resonance gas

Take into account finite volume effect in a QFT framework.

Under many circumstances (that we will see), we can confine ourselves to the
more manageable canonical and grand-canonical ensembles

NEXT: how to go from microcanonical to grand-canonical ensembles and
calculation of inclusive multiplicities



