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Summary from Lecture 2

High-energy limit: Eikonal approximation

 Particle propagates in a straight line without energy loss

 Described by Wilson lines

Non-eikonal corrections 

 Allow for changes in the transverse position 

 Brownian motion in transverse plane 

Medium-induced gluon radiation

 Take parent as completely eikonal, and apply corrections to gluon

 Energy loss by radiation 
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The medium-induced gluon radiation

Numerical results
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Medium-induced radiation (sketch of  calculation)

We work in the approximation of a very highly energetic quark 
which radiates a soft gluon

 Eikonal propagators for quarks
 Non-eikonal corrections for gluons

Eq ! ω ! k⊥

“Recipe”: write 
 Quark propagation
 Gluon propagation
 Quark-gluon hard vertex 

Then include Fourier transforms, integrals, color traces, factors....

G(x⊥, x+;y⊥, y+)
W (x⊥, x+, y+)

i

k+
ε⊥ · ∂

∂y⊥
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Non-eikonal terms

To compute the medium-induced gluon radiation, we will take 
into account small departure from a straight line for the gluon
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Notice that for               the Wilson line is recoveredp+ →∞

Brownian motion
in transverse plane

q̂ ∼ µ2

λ
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Heuristic discussion I
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So, we can define a gluon formation time tform ∼
ω

k2
⊥

Recall the phases in the path integral

exp
{

i
k2
⊥

2ω
(xi − xi−1)

}

The gluon decoheres from the quark when the phase is order 1

 Totally incoherent limit when  tform ! L

 The radiation is suppressed when tform > L

〈k2
⊥〉 ∼ q̂ tform $

√
q̂ω

 The accumulated transverse momentum

or 〈k2
⊥〉 ∼ q̂ L for tform > L[ ]

[For an extended discussion, see the review, S. Peigne and A.V. Smilga, arxiv:0810.5702]
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The LPM suppression

tform !
2ω

k2
⊥

exp
{

i
k2
⊥

2p+
(xi+ − x(i+1)+

}

Radiation is suppressed due 
to formation time effects

〈k2
⊥〉 # q̂ tform # q̂

2ω

〈k2
⊥〉

〈k2
⊥〉 !

√
2ωq̂
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The LPM suppression II

Medium-induced radiation is infrared and collinear finite

ω
dI

dω
=

∫ ω

0
dk2
⊥ ω

dI

dωdk2
⊥
!

∫ ω

q̂L
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ω
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For               the radiation is, usingtform ! L 〈k2
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So, the average energy loss

grows quadratically with the lenght

Heuristic discussion II



Main predictions of the formalism

 Energy loss

 Jet broadening

11

∆E ! αsCR

2π
q̂L2

k2
⊥ ! q̂L ∝ ∆E

L

Torino, December 2008                                      Jets in heavy-ion collisions at RHIC and LHC  



Phenomenology I: Inclusive observables 

Implementation: Independent gluon emission

(Quenching Weights)
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Independent gluon emision

Vacuum and medum-induced gluon radiation treated separately
 Medium-radiation first 
 Medium produces only energy loss 

(no modification of the evolution)
 Independent gluon emission approximation - Poisson distribution
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Independent gluon emision

Vacuum and medum-induced gluon radiation treated separately
 Medium-radiation first 
 Medium produces only energy loss 

(no modification of the evolution)
 Independent gluon emission approximation - Poisson distribution

Hard Process
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Independent gluon emision

Vacuum and medum-induced gluon radiation treated separately
 Medium-radiation first 
 Medium produces only energy loss 

(no modification of the evolution)
 Independent gluon emission approximation - Poisson distribution

Medium-induced gluon radiation
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Independent gluon emision

Vacuum and medum-induced gluon radiation treated separately
 Medium-radiation first 
 Medium produces only energy loss 

(no modification of the evolution)
 Independent gluon emission approximation - Poisson distribution

DGLAP vacuum evolution and hadronization
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Poisson approximation

P (∆E) =
∞∑

n=0

1
n!

[
n∏

i=1

∫
dωi

dI(ωi)
dω

]
δ

(
∆E −

n∑

i=1

ωi

)
exp

[
−

∫ ∞

0
dω

dI

dω

]

Probability that an arbitrary number of medium-induced gluons 
carry away a fraction of the energy       of the fast quark/gluon∆E

P (∆E) = p0δ(∆E)− p(∆E)

Contains the probability that nothing happens (no E-loss)

[Baier, Dokshitzer, Mueller, Schiff 2001; Salgado, Wiedemann 2003]

p0 = exp
[
−

∫ ∞

0
dω

dI

dω

]
= e−〈Ng〉

This probability distribution is normally called Quenching Weights

Notice that the formation-time effects (LPM suppression) leads to a
 non-zero value for p0 ⇐⇒ 〈Ng〉 < ∞
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Energy loss

Remember for the first day the fragmentation function
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Energy loss

Remember for the first day the fragmentation function

P (∆E)

Medium-induced gluon radiation = energy loss
 Medium modifies the fragmentation functions
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Fragmentation functions

Let us assume that we know the FF in the vacuum
[de Florian, Sassot, Stratmann 2007; Albino, Kniehl, Kramer 2006; Hirai, Kumano, Nagai, Sudoh 2007..]

The one-particle inclusive cross section is

This allows to define a medium-modified fragmentation function as

dσ

dqT
=

∫
dz

∫
dε

∫
dpT f(pT ) P (ε) D(z, Q2) δ(qT − (1− ε)zpT )

=
∫

dε

1− ε

∫
dz′

z′ f
(qT

z′

)
P (ε) D

(
z′

1− ε
, Q2

)

Dmed(z, Q2) =
∫

dε

1− ε
P (ε) D

(
z

1− ε
, Q2

)

Here only energy loss is taken into account, no modification of Q2

[First proposed by Wang, Huang, Sarcevic 1996]
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Is this essential?

First attempts: Use the average energy loss ∆E

This is not good when distributions fall very fast (as in present case)
 Let us study two “models” with 

P1(ε) = δ

(
ε− 1

2

)
P2(ε) =

1
2

[
δ

(
ε− 1

4

)
+ δ

(
ε− 3

4

)]

The distribution of perturbatively produced partons 
 Ignoring hadronization (FF)

 This gives 0.015 for Model 1 and 0.09 for Model 2

f(pT ) ∼ 1
p7

T

dσ

dqT
=

∫
dε

∫
dpT P (ε) f(pt) δ(qT − (1− ε)pT ) "

∫
dε P (ε)(1− ε)6

A good knowledge of the distribution of energy loss is essential

∆E = 1/2
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Numerical results

Quenching weights in the multiple soft scattering approximation
 Two variables: 

[Salgado, Wiedemann, 2003]

 Energy loss for gluons is larger than for quarks due to color factor
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The inclusive cross section

So, everything together now

Use nuclear PDFs fA
i (x, Q2) = RA

i (x, Q2)fp
i (x, Q2)

dσAB→h

dp2
T dy

=
∑

i,j,k=q,q̄,g

∫
dx2

x2

∫
dz

z
x1f

A
i (x1, Q

2)x2f
B
j (x2, Q

2)
dσij→k

dt̂
Dmed

k→h(z, Q2)

With the medium-modified FF defined by

Dmed(z, Q2) =
∫

dε

1− ε
P (ε) D

(
z

1− ε
, Q2

)

QW depend on the in-medium length and the transport coefficient
 Length given by geometry (not a free parameter)
 Transport coefficient is the fitting parameter
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The benchmark first!

π0 in p+p, d+Au
M. Russcher

2005 p+p

STAR gearing up γ, π0 in p+p, d+Au

Good agreement with NLO pQCD and PHENIX

PHENIX, B. Sahlmüller

RdA centrality dependence

Measures Cronin, initial state effects
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d-Au from EPS08 nPDFs
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Vacuum and cold nuclear 
matter benchmarks under 

good enough control 
(experimental and theoretical)
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Fixed length

Average length for a cylinder of radius 

L1

L2

L4
L3

The hard process can be
produced at any point 
inside the medium

 Transverse plane:

R ! RA ! A1/3 ! 6fm

L ! 5.2 fm =⇒ q̂ ! 1 GeV2/fm
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What if  we do the other way round?

L1

L2

L4
L3

Compute the effect for
each path-length and then 
average

Does the average of lengths commute with the suppression?

The obtained transport coefficient is much larger in this case

Energy loss is very sensitive to implementation of the geometry

[Eskola, Honkanen, Salgado, Wiedemann, 2004]

q̂ ! 4÷ 14 GeV2/fm
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Inclusive high-pT hadrons are fragile
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Surface bias effects reduce the
sensitivity of RAA to changes in 
the medium parameters 
(transport coefficient)

[Muller 2002; Dainese, Loizides, Paic 2004; Eskola, Honkanen, Salgado, Wiedemann, 2004]

q̂ ! 4÷ 14 GeV2/fm
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More realistic medium 

profiles?

24

Hydrodynamics 

Torino, December 2008                                      Jets in heavy-ion collisions at RHIC and LHC  



25

Expanding medium

The hydrodynamical description of HIC tells us that the medium is
expanding longitudinally and transversely. 

 The energy density and temperature decrease. Bjorken formula:

ε(τ) ∼ ε0
τ4/3

T (τ) ∼ T0

τ1/3
n(τ) ∼ n0

τ1/3

So, the transport coefficient should also decrease with time

q̂ ∼ q̂0

τα
, α = 1 for particle density scaling and Bjorken expansion

This can be implemented in the path integral

K (r(x), x; r(x̄), x̄|ω) =
∫
Dr exp

[
i
ω

2

∫ x̄

x
dξ

(
ṙ2 + i

q̂(ξ)
2ω

r2

)]

2-dimensional harmonic oscillator with time-dependent frequency
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Static-expanding scaling law

Scaling for the spectra

q̂ ∼ q̂0

τα

α = 1.5, 1, 0.5, 0

Expanding medium

〈q̂〉 =
2
L2

∫
dξ (ξ − ξ0)

q̂0

ξα

[Salgado, Wiedemann, 2003]

Allows to perform 
calculations in an 

equivalent static scenario

R = ωc L
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Hydrodynamical model

Torino, December 2008                                      Jets in heavy-ion collisions at RHIC and LHC  

Hydro calculations one of the main activity in HICs
 We use the hydrodynamical fits by T. Hirano (code available)

Provides fields of energy density, T, etc... as a function of transverse 
position ant time
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Hydro meets jet quenching

Defining the length in a realistic medium is not trivial.
 We can use instead the scaling law and write

〈ωc〉(r,φ) =
1
2
〈q̂〉L2

eff =
∫ ∞

0
dξ ξ q̂(ξ); 〈q̂〉Leff =

∫ ∞

0
dξ q̂(ξ)

With the transport coefficient
defined by the hydrodynamical 
variables. Ex.:

0.1 1 10 100
0.01

0.1

1.0

10.0

 (GeV/fm3)

  
q 
(G
eV

2 /
fm
)

and c a free parameter to be
fitted to experimental data

 Estimate from a free QGP gas

[Baier 2002]

q̂(τ) = 2K ε3/4(τ)

K = 1
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Global fit to data using a hydrodynamical medium

A common fit of several observables to obtain the value of q̂

[Armesto, Cacciari, Hirano, Salgado, in preparation]
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Global fit to data using a hydrodynamical medium

[Armesto, Cacciari, Hirano, Salgado, in preparation]
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Global fit to data using a hydrodynamical medium

[Armesto, Cacciari, Hirano, Salgado, in preparation]
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Global fit to data using a hydrodynamical medium

[Armesto, Cacciari, Hirano, Salgado, in preparation]
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The hydro calculation provides the medium profiles for 

Some sensitivity appears. Main features unchanged.

 Use different extrapolations for times smaller than thermalization 

ξ > τ0

q̂(ξ) = 0 for ξ < τ0

q̂(ξ) = q̂(τ0) for ξ < τ0

q̂(ξ) =
q̂(τ0)
ξ3/4

for ξ < τ0
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The medium profiles probed

Different hydrodynamical profiles give different values of K = 2.3÷ 4.5

[Eskola, Renk 2006; also Bass, Gale, Nonaka, Qin, Ruppert, Turbide... ]
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Surface bias less important
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The medium profiles probed

Different hydrodynamical profiles give different values of K = 2.3÷ 4.5
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0 5 10 15 20
pT [GeV]

0

0.2

0.4

0.6

0.8

1

R A
A

PHENIX data
hydro evolution
hydro evolution, opacity x 1.5
hydro evolution, opacity x 2

K = 4.2

Sensitivity increases:
Surface bias less important

Torino, December 2008                                      Jets in heavy-ion collisions at RHIC and LHC  



Partial summary
 Energy loss distribution important (QW)

 Different medium profiles give different 

determinations of the medium properties

 Other observables

 Heavy quarks

 Jets (and particle correlations)
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Massive quarks

Gluon radiation is suppressed 
by mass terms in the heavy 
quark propagator.
Also true for the vacuum:

 Dead cone effect

For the medium case, we need to modify the quark Wilson line

z
dI

dzdk2
⊥
! 2αsCF

π

k2
⊥

(k2
⊥ −M2)2

These exponents recombine: only change, multiply the integrand by

exp
{

i
x2M2

k+
(x+ − x̄+)

}

[Exercise: check this]

∫
dp−

ei(x1+−x2+)k−

p2 −M2 + iε
= −Θ(x2+ − x1+)

2πi

2p+
exp

{
i
M2

p+
(x1+ − x2+)

}
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kT

θ

sin θDC = 1− β2 =
(

M

E

)2

Dead cone in vacuum
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Numerical results

Two opposite effects:
 Mass terms in the propagators suppress the radiation
 Formation time smaller for larger mass  LPM less effective

Net effect: less energy lost by massive quarks in the medium
 Less suppression of particles from heavy quarks

tform !
ω

M2 + k2
⊥

[Armesto, Salgado, Wiedemann 
2004; Dokshitzer, Kharzeev 

2001;Djordjevic, Gyulassy 2004; 
Zhang, Wang, Wang 2004]

massless

charm

bottom
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The single electron puzzle at RHIC
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Only non-photonic electrons measured 
 Do not distinguish between charm and bottom
 Large theoretical uncertainty in the c/b ratio

Measure charm and bottom separately

[Armesto, Cacciari, Dainese, 
Salgado, Wiedemann 2005]
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The single electrons in a hydro medium
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Charm + bottom contributions as given by FONLL
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The single electrons in a hydro medium

Torino, December 2008                                      Jets in heavy-ion collisions at RHIC and LHC  

 [GeV]
T

p
0 1 2 3 4 5 6 7 8 9

A
A

R

0

0.2

0.4

0.6

0.8

1

1.2 Non-photonic electrons
STAR
PHENIX

 [GeV]
T

p
0 1 2 3 4 5 6 7 8 9

A
A

R

0

0.2

0.4

0.6

0.8

1

1.2 Non-photonic electrons
STAR
PHENIX

[Armesto, Cacciari, Hirano, Salgado, in preparation]

Suppression with only charm contribution to non-photonic electrons



38

HQ at the LHC
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Determination of qhat
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Interpretation of  the value of q̂
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Fits to the data

q̂ > 5 q̂ideal gas

q̂ ! 4.2 q̂ideal gas

[Eskola et al. 2004]

[Renk et al. 2007; 
Armesto et al 2008]

[Baier and Schiff 2006]

Geometry plays a crucial role

Very large uncertainties in the 
perturbative estimate

[Baier 2003]

q̂ideal gas !
72
π

ξ(3)α2
sT

3 ! 2ε3/4
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Interpretation of  the value of q̂

Signals large cross sections (much larger than perturbative ones?)
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Jet studies in HIC
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[P. Jacobs, M. van Leeuwen 2005]

RHIC: two-particle correlations

Strong suppression of high-pt particles – large partonic energy loss

Reappearance of this energy as softer particles at large angle
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Jet studies in HIC
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Jets in HIC

Kyoto, November 2006 Hard Probes to QGP – p.17

Jets in HIC

Kyoto, November 2006 Hard Probes to QGP – p.17

Jets in HIC
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Jets in HIC

Kyoto, November 2006 Hard Probes to QGP – p.17

Jets in HIC

Kyoto, November 2006 Hard Probes to QGP – p.17

Jörn Putschke, Hard Probes 2008

Outlook: Di-jets above 20 GeV in 0-20% Au+Au

15

!

!

p
t 
p

e
r 

g
ri

d
 c

e
ll
 [

G
e
V

]

STAR preliminary
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Control over background essential

[Putschke HP08]

First results appeared in HP08!

Jets in HIC
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Summary for jet quenching

The implementation of the medium-induced gluon radiation needs 
of a treatment of the energy carried by an arbitrary number of gluons

 Not solved from first principles, independent gluon emission
approximation used: Quenching weights
 Only one-gluon inclusive distribution computed 

Inclusive suppressions very well reproduced
 Perturbative benchmark (pp) under good control
 A correct implementation of the geometry plays a crucial role
 Results with a hydro profile presented 

Mass effects predict less suppression for heavy quarks
 Benchmark needs to be improved
 Other effects could appear (specially for beauty)
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K = 3.5± 0.5


