Hard Probes in A-A collisions: jet-quenching

Andrea Beraudo

Physics Department - Theory Unit - CERN

Quark-Gluon Plasma and heavy-ion collisions: past, present and future, 9-13 July 2013, Siena

・ロト ・聞ト ・ヨト ・ヨト

- 32

Outline

- The QCD lagrangian
- QCD in elementary collisions: soft-gluon radiation
- QCD in A-A collisions: medium-induced gluon radiation and jet-quenching

The QCD Lagrangian: construction

Let us start from the free quark Lagrangian (diagonal in flavor!)

$$\mathcal{L}_q^{\mathrm{free}} = \overline{q}_f(x)[i\partial - m_f]q_f(x).$$

The quark field is actually a vector in color space $(N_c=3)$:

e.g. for an up quark $u^{T}(x) = [u_{r}(x), u_{g}(x), u_{b}(x)]$

The QCD Lagrangian: construction

Let us start from the free quark Lagrangian (diagonal in flavor!)

$$\mathcal{L}_q^{\mathrm{free}} = \overline{q}_f(x)[i\partial - m_f]q_f(x).$$

The quark field is actually a vector in color space $(N_c=3)$:

e.g. for an up quark $u^{T}(x) = [u_{r}(x), u_{g}(x), u_{b}(x)]$

The free quark Lagrangian is invariant under global SU(3) (i.e. $V^{\dagger}V=1$ and det(V)=1) color transformations, namely:

$$q(x) \longrightarrow V q(x) \text{ and } \overline{q}(x) \longrightarrow \overline{q}(x) V^{\dagger},$$

with

$$V = \exp\left[i\theta^{a}t^{a}\right] \quad \text{and} \quad \left[t^{a}, t^{b}\right] = if^{abc}t^{c} \quad (a=1, \dots, N_{c}^{2}-1).$$

 f^{abc} : real, antisymmetric structure constants of the su(3) algebra.

The QCD Lagrangian: construction

Let us start from the free quark Lagrangian (diagonal in flavor!)

$$\mathcal{L}_q^{\mathrm{free}} = \overline{q}_f(x)[i\partial - m_f]q_f(x).$$

The quark field is actually a vector in color space $(N_c=3)$:

e.g. for an up quark $u^{T}(x) = [u_{r}(x), u_{g}(x), u_{b}(x)]$

The free quark Lagrangian is invariant under global SU(3) (i.e. $V^{\dagger}V=1$ and det(V)=1) color transformations, namely:

$$q(x) \longrightarrow V q(x) \text{ and } \overline{q}(x) \longrightarrow \overline{q}(x) V^{\dagger},$$

with

$$V = \exp\left[i\theta^a t^a\right] \quad \text{and} \quad \left[t^a, t^b\right] = i\,f^{abc}t^c \quad (a = 1, \dots, N_c^2 - 1).$$

 f^{abc} : real, antisymmetric *structure constants* of the *su*(3) algebra. We want to build a lagrangian invariant under *local color transformations*:

$$q(x) \longrightarrow V(x) q(x) \quad \overline{q}(x) \longrightarrow \overline{q}(x) V^{\dagger}(x),$$

where now $V(x) = \exp[i\theta^a(x)t^a]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Due to the derivative term, $\mathcal{L}_q^{\rm free}$ is not invariant under local $SU(N_c)$ transformations:

$$\mathcal{L}_{q}^{\text{free}} \longrightarrow \mathcal{L}_{q}^{\prime \text{free}} = \mathcal{L}_{q}^{\text{free}} + \overline{q}(x) V^{\dagger}(x) \left[i \partial V(x) \right] q(x) \tag{1}$$

Due to the derivative term, $\mathcal{L}_q^{\rm free}$ is not invariant under local $SU(N_c)$ transformations:

$$\mathcal{L}_{q}^{\text{free}} \longrightarrow \mathcal{L}_{q}^{\prime \text{free}} = \mathcal{L}_{q}^{\text{free}} + \overline{q}(x) V^{\dagger}(x) \left[i \partial V(x) \right] q(x) \tag{1}$$

4 / 59

The solution is to couple the quarks to the gauge field $A_{\mu} \equiv A_{\mu}^{a} t^{a}$ through the *covariant derivative*

$$\partial_{\mu} \longrightarrow \mathcal{D}_{\mu}(\mathbf{x}) \equiv \partial_{\mu} - igA_{\mu}(\mathbf{x}),$$

getting:

$$\mathcal{L}_q = \overline{q}(x)[i\mathcal{D}(x) - m]q(x) = \mathcal{L}_q^{\text{free}} + g\overline{q}(x)A(x)q(x).$$

Due to the derivative term, $\mathcal{L}_q^{\rm free}$ is not invariant under local $SU(N_c)$ transformations:

$$\mathcal{L}_{q}^{\text{free}} \longrightarrow \mathcal{L}_{q}^{\prime \text{free}} = \mathcal{L}_{q}^{\text{free}} + \overline{q}(x) V^{\dagger}(x) \left[i \partial V(x) \right] q(x) \tag{1}$$

The solution is to couple the quarks to the gauge field $A_{\mu} \equiv A_{\mu}^{a} t^{a}$ through the *covariant derivative*

$$\partial_{\mu} \longrightarrow \mathcal{D}_{\mu}(\mathbf{x}) \equiv \partial_{\mu} - igA_{\mu}(\mathbf{x}),$$

getting:

$$\mathcal{L}_q = \overline{q}(x)[i\mathcal{D}(x) - m]q(x) = \mathcal{L}_q^{\text{free}} + g\overline{q}(x)A(x)q(x).$$

The transformation of A_{μ} under local $SU(N_c)$ must be such to compensate the extra term in Eq. (1):

$$A_{\mu} \longrightarrow A'_{\mu} = V A_{\mu} V^{\dagger} - \frac{i}{g} (\partial_{\mu} V) V^{\dagger}.$$

Exercise: verify that \mathcal{L}_q is now invariant under local $SU(N_c)$ transformations. In particular:

$$\mathcal{D}_{\mu}q \longrightarrow \mathcal{V}\mathcal{D}_{\mu}q \implies \mathcal{D}_{\mu} \longrightarrow \mathcal{V}\mathcal{D}_{\mu}\mathcal{V}^{\dagger}$$
 (2)

4 / 59

イロト 不得 とくきとくきとう きょう

Due to the derivative term, $\mathcal{L}_q^{\rm free}$ is not invariant under local $SU(N_c)$ transformations:

$$\mathcal{L}_{q}^{\text{free}} \longrightarrow \mathcal{L}_{q}^{\prime \text{free}} = \mathcal{L}_{q}^{\text{free}} + \overline{q}(x) V^{\dagger}(x) \left[i \partial V(x) \right] q(x) \tag{1}$$

The solution is to couple the quarks to the gauge field $A_{\mu} \equiv A_{\mu}^{a} t^{a}$ through the *covariant derivative*

$$\partial_{\mu} \longrightarrow \mathcal{D}_{\mu}(\mathbf{x}) \equiv \partial_{\mu} - igA_{\mu}(\mathbf{x}),$$

getting:

$$\mathcal{L}_q = \overline{q}(x)[i\mathcal{D}(x) - m]q(x) = \mathcal{L}_q^{\text{free}} + g\overline{q}(x)A(x)q(x).$$

The transformation of A_{μ} under local $SU(N_c)$ must be such to compensate the extra term in Eq. (1):

$$A_{\mu} \longrightarrow A'_{\mu} = V A_{\mu} V^{\dagger} - \frac{i}{g} (\partial_{\mu} V) V^{\dagger}.$$

Exercise: verify that \mathcal{L}_q is now invariant under local $SU(N_c)$ transformations. In particular:

$$\mathcal{D}_{\mu}q \longrightarrow \mathcal{V}\mathcal{D}_{\mu}q \implies \mathcal{D}_{\mu} \longrightarrow \mathcal{V}\mathcal{D}_{\mu}\mathcal{V}^{\dagger}$$
 (2)

Remember the (U(1) invariant) QED lagrangian of the e.m. field

$$\mathcal{L}_{ ext{gauge}}^{QED} = -rac{1}{4}F_{\mu
u}F^{\mu
u} \quad ext{with} \quad F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu}.$$

The field-strength $F_{\mu
u}$ can be expressed through the covariant derivative

$$\mathcal{D}_{\mu} \equiv \partial_{\mu} + ieA_{\mu} \longrightarrow F_{\mu\nu} = \frac{-i}{e} [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Remember the (U(1) invariant) QED lagrangian of the e.m. field

$$\mathcal{L}_{ ext{gauge}}^{QED} = -rac{1}{4}F_{\mu
u}F^{\mu
u} \quad ext{with} \quad F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu}.$$

The field-strength $F_{\mu\nu}$ can be expressed through the covariant derivative

$$\mathcal{D}_{\mu} \equiv \partial_{\mu} + ieA_{\mu} \longrightarrow F_{\mu\nu} = \frac{-i}{e} [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]$$

The generalization to QCD is now straightforward:

$$F_{\mu\nu} = \frac{i}{g} \left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu} \right] \longrightarrow F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig \left[A_{\mu}, A_{\nu} \right]$$
$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu} \quad (\text{verify!})$$

イロト イポト イヨト イヨト 二日

Remember the (U(1) invariant) QED lagrangian of the e.m. field

$$\mathcal{L}_{ ext{gauge}}^{QED} = -rac{1}{4}F_{\mu
u}F^{\mu
u} \quad ext{with} \quad F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu}.$$

The field-strength $F_{\mu
u}$ can be expressed through the covariant derivative

$$\mathcal{D}_{\mu} \equiv \partial_{\mu} + ieA_{\mu} \longrightarrow F_{\mu\nu} = \frac{-i}{e} [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]$$

The generalization to QCD is now straightforward:

$$F_{\mu\nu} = \frac{i}{g} \left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu} \right] \longrightarrow F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig \left[A_{\mu}, A_{\nu} \right].$$

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu} \quad (\text{verify!})$$

From the transformation of the covariant derivative in Eq. (2) one has

$$F_{\mu\nu} \longrightarrow V F_{\mu\nu} V^{\dagger}$$
, not invariant!

so that the proper $SU(N_c)$ -invariant generation of the QED lagrangian is

$$\mathcal{L}_{ ext{gauge}}^{QCD} = -rac{1}{2} ext{Tr}(F_{\mu
u}F^{\mu
u}) = -rac{1}{4}F^{a}_{\mu
u}F^{\mu
u\,a}$$

where we have used $\operatorname{Tr}(t^a t^b) = (1/2)\delta^{ab}$.

The QCD Lagrangian and Feynman rules

The final form of the QCD Lagrangian is then

$$\mathcal{L}^{QCD} = \sum_{f} \overline{q}_{f} [i\mathcal{D} - m_{f}] q_{f} - \frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu a},$$

leading to the following Feynman rules (ex: derive them!)

Some color algebra...

Quark rotation in color-space is described by the $N_c \times N_c$ matrices t^a in the fundamental representation of $SU(N_c)$.

Some color algebra...

Quark rotation in color-space is described by the $N_c \times N_c$ matrices t^a in the fundamental representation of $SU(N_c)$. Color rotation of gluons is described by the $(N_c^2-1) \times (N_c^2-1)$ matrices T^a of the adjoint representation

• Matrix elements of the adjoint representation are given by the structure constants of the algebra:

$$(T^a)_{cd} = if^{cad}$$

Some color algebra...

Quark rotation in color-space is described by the $N_c \times N_c$ matrices t^a in the fundamental representation of $SU(N_c)$. Color rotation of gluons is described by the $(N_c^2-1) \times (N_c^2-1)$ matrices T^a of the adjoint representation

• Matrix elements of the adjoint representation are given by the structure constants of the algebra:

$$(T^a)_{cd} = if^{cad}$$

• One can verify (try!) that this choice satisfies the su(3) algebra $[T^a, T^b]_{ce} = if^{abd}(T^d)_{ce}$

Suggestion: exploit the relation among the structure constants

$$f^{abd}f^{dce} + f^{bcd}f^{dae} + f^{cad}f^{dbe} = 0,$$

coming from the (trivial) Jacobi identity

$$[[t^{a}, t^{b}], t^{c}] + [[t^{b}, t^{c}], t^{a}] + [[t^{c}, t^{a}], t^{b}] = 0$$

Some color algebra...

Quark rotation in color-space is described by the $N_c \times N_c$ matrices t^a in the fundamental representation of $SU(N_c)$. Color rotation of gluons is described by the $(N_c^2-1) \times (N_c^2-1)$ matrices T^a of the adjoint representation

• Matrix elements of the adjoint representation are given by the structure constants of the algebra:

$$(T^a)_{cd} = if^{cad}$$

• This allows us to reinterpret the $g \rightarrow gg$ Feynman diagram

Color-flow in QCD processes

Graphical shortcuts (exact in the *large-N_c limit*) allows one to follow the color-flow in QCD processes and to evaluate color factors:

Color-flow in QCD processes

Graphical shortcuts (exact in the *large-N_c limit*) allows one to follow the color-flow in QCD processes and to evaluate color factors:

• Quark and gluons are represented as

Color-flow in QCD processes

Graphical shortcuts (exact in the *large-N_c limit*) allows one to follow the color-flow in QCD processes and to evaluate color factors:

• Quark and gluons are represented as

Color-flow in QCD processes

Graphical shortcuts (exact in the *large-N_c limit*) allows one to follow the color-flow in QCD processes and to evaluate color factors:

• Quark and gluons are represented as

QCD in elementary collisions

In elementary collisions (e^+e^- , pp, $p\overline{p}$...) QCD allows one

- to calculate the hard-process (qg → qg, gg → qqg...) in which high-p_T partons are produced;
- to resum the (mostly soft and collinear) gluons radiated by the accelerated color charges.

We will focus on the last item, which – in a second stage – we will generalize to deal with the additional radiation induced by the presence of a medium

Notation

It will convenient, depending on the cases, to employ different coordinate systems:

• Minkowski coordinates (more transparent physical meaning)

$$a = (a^0, \vec{a}), \quad b = (b^0, \vec{b}), \quad \text{with} \quad a \cdot b = a^0 b^0 - \vec{a} \cdot \vec{b}$$

• Light-cone coordinates (calculations ~10 times easier)

 $a = [a^+, a^-, \vec{a}_\perp], \quad b = [b^+, b^-, \vec{b}_\perp], \quad \text{with} \quad a \cdot b = a^+ b^- + a^- b^+ - \vec{a}_\perp \cdot \vec{b}_\perp$ where $a^\pm \equiv [a^0 \pm a^z]/\sqrt{2}$ (verify the consistency!).

Soft gluon radiation off hard partons

A hard parton with $p_i \equiv [p^+, Q^2/2p^+, \mathbf{0}]$ loses its virtuality Q through gluon-radiation. In *light-cone coordinates*, with $p^{\pm} \equiv [E \pm p_z]/\sqrt{2}$:

Soft gluon radiation off hard partons

A hard parton with $p_i \equiv [p^+, Q^2/2p^+, \mathbf{0}]$ loses its virtuality Q through gluon-radiation. In *light-cone coordinates*, with $p^{\pm} \equiv [E \pm p_z]/\sqrt{2}$:

$$\mathbf{k} \equiv \left[x p^{+}, \frac{\mathbf{k}^{2}}{2xp^{+}}, \mathbf{k} \right] \quad \epsilon_{g} = \left[0, \frac{\epsilon_{g} \cdot \mathbf{k}}{xp^{+}}, \epsilon_{g} \right]$$

$$\underbrace{k_{\perp}}_{P^{+}} \quad \rho_{f} = \left[(1-x)p^{+}, \frac{\mathbf{k}^{2}}{2(1-x)p^{+}}, -\mathbf{k} \right]$$

Let us evaluate the radiation amplitude (notice that $\epsilon_g \cdot k \,{=}\, 0)$

$$\mathcal{M}^{\mathrm{rad}} = \overline{u}(p_f)(igt^a) \notin_g \frac{i(\not p_f + \not k)}{(p_f + k)^2} \mathcal{M}^{\mathrm{hard}} \underset{\mathrm{soft}}{\approx} \overline{u}(p_f)(igt^a) \notin_g \frac{i\not p_f}{2p_f \cdot k} \mathcal{M}^{\mathrm{hard}}$$
$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \longrightarrow \notin_g \not p_f = 2p_f \cdot \epsilon_g - \not p_f \notin_g = 2p_f \cdot \epsilon_g \quad (\mathrm{since} \ \overline{u}(p_f) \not p_f = 0)$$

Soft gluon radiation off hard partons

A hard parton with $p_i \equiv [p^+, Q^2/2p^+, \mathbf{0}]$ loses its virtuality Q through gluon-radiation. In *light-cone coordinates*, with $p^{\pm} \equiv [E \pm p_z]/\sqrt{2}$:

$$\mathbf{k} \equiv \left[x p^{+}, \frac{\mathbf{k}^{2}}{2xp^{+}}, \mathbf{k} \right] \quad \epsilon_{g} = \left[0, \frac{\epsilon_{g} \cdot \mathbf{k}}{xp^{+}}, \epsilon_{g} \right]$$

$$\stackrel{\overrightarrow{k_{\perp}} \quad \alpha}{\longrightarrow} \quad p_{f} = \left[(1-x)p^{+}, \frac{\mathbf{k}^{2}}{2(1-x)p^{+}}, -\mathbf{k} \right]$$

Let us evaluate the radiation amplitude (notice that $\epsilon_g \cdot k \,{=}\, 0)$

$$\mathcal{M}^{\mathrm{rad}} = \overline{u}(p_f)(igt^a) \notin_g \frac{i(\not{p}_f + \not{k})}{(p_f + k)^2} \mathcal{M}^{\mathrm{hard}} \underset{\mathrm{soft}}{\approx} \overline{u}(p_f)(igt^a) \notin_g \frac{i\not{p}_f}{2p_f \cdot k} \mathcal{M}^{\mathrm{hard}}$$
$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \longrightarrow \notin_g \not{p}_f = 2p_f \cdot \epsilon_g - \not{p}_f \notin_g = 2p_f \cdot \epsilon_g \quad (\text{since } \overline{u}(p_f) \not{p}_f = 0)$$
The amplitude for soft $(x \ll 1)$ gluon radiation reads then

• Notice that the soft-gluon radiation amplitude

$$\mathcal{M}^{\mathrm{rad}} \underset{x \ll 1}{\sim} g\left(rac{p_f \cdot \epsilon_g}{p_f \cdot k}
ight) t^{*} \mathcal{M}^{\mathrm{hard}}$$

does not depend on the spin of the radiator, but only on its color charge (in the case of a gluon $t^a \longrightarrow T^a$)

• Notice that the soft-gluon radiation amplitude

$$\mathcal{M}^{\mathrm{rad}} \underset{x \ll 1}{\sim} g\left(\frac{p_{f} \cdot \epsilon_{g}}{p_{f} \cdot k}\right) t^{a} \mathcal{M}^{\mathrm{hard}}$$

does not depend on the spin of the radiator, but only on its color charge (in the case of a gluon $t^a \longrightarrow T^a$)

• One can derive *effective radiation vertexes* treating the quarks as complex scalar fields, getting rid of the Dirac algebra:

$$\mathcal{L}_{SQCD} = (\mathcal{D}_\mu \Phi)^* (\mathcal{D}^\mu \Phi) - rac{1}{4} F^a_{\mu
u} F^{\mu
u\,a}.$$

From $\epsilon_g \cdot k = 0$ (radiated gluons are transverse!) one gets (verify!)

All soft-gluon radiation amplitudes (both in-vacuum and in-medium) can be derived within this approximation!

One gets (verify!)

Squaring and summing over the polarizations of the gluon $(\sum_{pol} \epsilon_g^i \epsilon_g^j = \delta^{ij})$ one gets the soft radiation cross-section:

$$d\sigma_{\rm vac}^{\rm rad} \underset{x \to 0}{\sim} d\sigma^{\rm hard} \frac{\alpha_s}{\pi^2} C_F \frac{dk^+}{k^+} \frac{dk}{k^2}$$

ヘロト 人間 ト 人 ヨト 人 ヨトー

One gets (verify!)

Squaring and summing over the polarizations of the gluon $(\sum_{pol} \epsilon_g^i \epsilon_g^j = \delta^{ij})$ one gets the soft radiation cross-section:

$$d\sigma_{\rm vac}^{\rm rad} \underset{x \to 0}{\sim} d\sigma^{\rm hard} \frac{\alpha_s}{\pi^2} C_F \frac{dk^+}{k^+} \frac{d\mathbf{k}}{\mathbf{k}^2}$$

- Radiation spectrum (our benchmark): IR and collinear divergent!
- k_{\perp} vs virtuality: $\mathbf{k}^2 = x(1-x)Q^2$;
- Time-scale (formation time) for gluon radiation:

$$\Delta t_{
m rad} \sim Q^{-1}(E/Q) \sim 2\omega/{f k}^2 ~~(x pprox \omega/E)$$

Formation times will become important in the presence of a medium, whose thickness L will provide a scale to compare with!

Soft-gluon emission: color coherence

We have seen how the radiation of soft (i.e. *long wavelength*) gluon is not sensitive to short-distance details (e.g. *the spin* of the radiator), but only to the the color-charge of the emitter: *this will have deep consequences on the angular distribution of the radiation*.

Soft-gluon emission: color coherence

We have seen how the radiation of soft (i.e. *long wavelength*) gluon is not sensitive to short-distance details (e.g. *the spin* of the radiator), but only to the the color-charge of the emitter: *this will have deep consequences on the angular distribution of the radiation.* Let us consider the decay of a color-singlet (γ^* , Z, W, H) into a $q\overline{q}$ pair: the suddenly accelerated color-charges can radiate gluons

Employing the effective soft-gluon vertexes one gets:

$$\mathcal{M}^{\mathrm{rad}} pprox gt_{ij}^{a}\left(rac{p\cdot\epsilon_{g}}{p\cdot k} - rac{\overline{p}\cdot\epsilon_{g}}{\overline{p}\cdot k}
ight) \mathcal{M}^{\mathrm{Born}}_{<\ \Box \ b \ a \ \overline{D} \ b \ a \ \overline{D} \ b \ a \ \overline{D} \ b \ \overline{D} \ \overline$$

one

In order to evaluate the radiation cross-section one must square the amplitude and integrate over the gluon phase-space. From the sum over the gluon polarizations (in Feynman gauge)

$$\sum_{\text{pol}} \epsilon_{\mu} \epsilon_{\nu}^{\star} = -g_{\mu\nu}$$
gets, for $k = (\omega, \vec{k})$,
$$d\sigma^{\text{rad}} = d\sigma^{\text{Born}} g^2 C_F \frac{d\vec{k}}{(2\pi)^3} \frac{1}{2\omega} \frac{2(p \cdot \overline{p})}{(p \cdot k)(\overline{p} \cdot k)}$$

$$= d\sigma^{\text{Born}} \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{d\phi}{2\pi} \underbrace{\frac{1 - \cos\theta_{ij}}{(1 - \cos\theta_{ik})(1 - \cos\theta_{jk})}}_{W_{[ij]}} d\cos\theta$$

In order to evaluate the radiation cross-section one must square the amplitude and integrate over the gluon phase-space. From the sum over the gluon polarizations (in Feynman gauge)

$$\sum_{\text{pol}} \epsilon_{\mu} \epsilon_{\nu}^{\star} = -g_{\mu\nu}$$
one gets, for $k = (\omega, \vec{k})$,
$$d\sigma^{\text{rad}} = d\sigma^{\text{Born}} g^2 C_F \frac{d\vec{k}}{(2\pi)^3} \frac{1}{2\omega} \frac{2(p \cdot \overline{p})}{(p \cdot k)(\overline{p} \cdot k)}$$

$$= d\sigma^{\text{Born}} \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{d\phi}{2\pi} \underbrace{\frac{1 - \cos\theta_{ij}}{(1 - \cos\theta_{ik})(1 - \cos\theta_{jk})}}_{W_{iil}} d\cos\theta$$

One would like to obtain a *probabilistic interpretation*, possibly to insert into an Monte-Carlo setup. Non trivial request, since (in Feynman gauge) $d\sigma^{\rm rad}$ comes entirely from the interference term! However...

$$W_{[ij]} = \frac{1}{2} \left[\frac{\cos \theta_{ik} - \cos \theta_{ij}}{(1 - \cos \theta_{ik})(1 - \cos \theta_{jk})} + \frac{1}{1 - \cos \theta_{ik}} \right] + \frac{1}{2} [i \leftrightarrow j] \equiv W_{[i]} + W_{[j]}.$$

This will help to achieve our goal!

$$W_{[i]} = rac{1}{2} \left[rac{\cos heta_{ik} - \cos heta_{ij}}{(1 - \cos heta_{ik})(1 - \cos heta_{jk})} + rac{1}{1 - \cos heta_{ik}}
ight]$$

allows one to give a probabilistic interpretation. In fact:

 $W_{[i]} \underset{\theta_{ik} \to 0}{\sim} \frac{1}{1 - \cos \theta_{ik}} \quad \text{and} \quad W_{[i]} \underset{\theta_{jk} \to 0}{\sim} \text{finite}$

and analogously for $W_{[j]}$.

• After azimuthal average:

$$\int_0^{2\pi} \frac{d\phi}{2\pi} W_{[i]} = \frac{\Theta(\theta_{ij} - \theta_{ik})}{1 - \cos \theta_{ik}} \quad \text{and} \quad \int_0^{2\pi} \frac{d\phi}{2\pi} W_{[j]} = \frac{\Theta(\theta_{ij} - \theta_{jk})}{1 - \cos \theta_{jk}}$$

The quark can radiate a gluon within the cone of opening angle θ_{ij} obtained rotating the antiquark and vice versa.

One gets:

٢

$$d\sigma^{\mathrm{rad}} = d\sigma^{\mathrm{Born}} \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \left[\Theta(\theta_{ij} - \theta_{ik}) \frac{d\cos\theta_{ik}}{1 - \cos\theta_{ik}} + \Theta(\theta_{ij} - \theta_{jk}) \frac{d\cos\theta_{jk}}{1 - \cos\theta_{jk}} \right]$$

Angular ordering: physical interpretation

Radiation pattern of a $q\overline{q}$ antenna in the vacuum

- Formation-time required for gluon radiation: $t_f = 2\omega/k_{\perp}^2 \sim 1/\omega\theta_{ga}^2$
- Transverse wave-length of the gluon $\lambda_{\perp} \sim 1/k_{\perp} \sim 1/\omega \theta_{gq}$...
- ... must be sufficient to *resolve* the transverse separation $d_{\perp} = t_f \theta_{q\bar{q}}$ reached meanwhile by the pair:

$$1/\omega heta_{gq} \sim \lambda_{\perp} < d_{\perp} \sim heta_{q\overline{q}}/\omega heta_{gq}^2$$

• Gluon forced to be radiated within the cone $\theta_{gq} < \theta_{q\overline{q}}$
Angular ordering in parton branching: jet production

Angular ordering of QCD radiation in the vacuum *at the basis of the development of collimated jets*

19 / 59

Angular ordering: Hump-backed Plateau

• In order to resolve the color charges of the antenna

$$\lambda_{\perp} < d_{\perp} = t_f \, \theta_{q\overline{q}} \quad \longrightarrow \quad 1/k_{\perp} < (2\omega/k_{\perp}^2) \, \theta_{q\overline{q}}$$

• The request $k_{\perp} > \Lambda_{\rm QCD}$ leads to the constraint $\omega > \Lambda_{\rm QCD}/\theta_{q\bar{q}}$

Angular ordering: Hump-backed Plateau

• In order to resolve the color charges of the antenna

$$\lambda_{\perp} < d_{\perp} = t_f \, \theta_{q\overline{q}} \quad \longrightarrow \quad 1/k_{\perp} < (2\omega/k_{\perp}^2) \, \theta_{q\overline{q}}$$

• The request $k_{\perp} > \Lambda_{\rm QCD}$ leads to the constraint $\omega > \Lambda_{\rm QCD}/\theta_{q\overline{q}}$

$$\xi \equiv -\ln\left({{{
m \textit{p}}}^{h}}/{{
m E}^{
m jet}}
ight)$$

(OPAL collab. - EPJC 27 (2003), 467)

Angular ordering responsible for the *suppression of soft-hadron production* in jet-fragmentation in the vacuum

20 / 59

Color-coherence in QCD: the string effect in e^+e^-

Color-coherence in QCD: the string effect in e^+e^-

Color-coherence in QCD: the string effect in e^+e^-

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Color-coherence in QCD: the string effect in e^+e^-

Depletion vs enhancement of particle production within the $q - \overline{q}$ angle

NB Alternative (complementary, still based on *color-flow*!) interpretation in terms of different string-breaking pattern when going from partonic to hadronic d.o.f. in the two cases

A first lesson

- We have illustrated some aspects of soft-gluon radiation (in particular angular-ordering and color-flow) essential to describe *basic qualitative predictions of QCD* in elementary collisions:
 - Development of collimated jets (the experimentally accessible observable closest to quarks and gluons);
 - *Intra-jet* coherence (soft-hadron suppression inside the jet-cone: Hump-backed Plateau);
 - *Inter-jet* coherence (angular pattern of soft particles outside the jets: string effect)

Without explaining the above effects could QCD have been promoted to be THE theory of strong interactions?

A first lesson

- We have illustrated some aspects of soft-gluon radiation (in particular angular-ordering and color-flow) essential to describe *basic qualitative predictions of QCD* in elementary collisions:
 - Development of collimated jets (the experimentally accessible observable closest to quarks and gluons);
 - *Intra-jet* coherence (soft-hadron suppression inside the jet-cone: Hump-backed Plateau);
 - *Inter-jet* coherence (angular pattern of soft particles outside the jets: string effect)

Without explaining the above effects could QCD have been promoted to be THE theory of strong interactions?

• Hence the interest in studying how the above picture gets modified due to the interaction (i.e. *color-exchange*) with a medium

Ubi maior minor cessat: some references...

- R.K. Ellis, W.J. Stirling and B.R. Webber, *QCD and Collider Physics*, Cambridge University Press;
- G. Dissertori, I.G. Knowles and M. Schmelling, *Quantum Chromodynamics: High Energy Experiments and Theory*, Oxford University Press;
- Michelangelo Mangano, *QCD Lectures*, 1998 European School of High Energy Physics, St Andrews, Scotland;
- Yuri Dokshitzer, *Perturbative QCD for beginners*, Cargese NATO school 2001.

QCD radiation in A-A collisions

We have seen how suddenly accelerated color-charges can radiate soft gluons. In A-A collisions the presence of a medium where high-energy partons can scatter (changing *momentum* and *color*) can enhance the probability of gluon radiation.

QCD radiation in A-A collisions

We have seen how suddenly accelerated color-charges can radiate soft gluons. In A-A collisions the presence of a medium where high-energy partons can scatter (changing *momentum* and *color*) can enhance the probability of gluon radiation.

The elementary brick to consider will be the radiation due to a single elastic scattering in the medium

QCD radiation in A-A collisions

We have seen how suddenly accelerated color-charges can radiate soft gluons. In A-A collisions the presence of a medium where high-energy partons can scatter (changing *momentum* and *color*) can enhance the probability of gluon radiation.

The elementary brick to consider will be the radiation due to a single elastic scattering in the medium

<ロ > < 部 > < 書 > < 書 > 差 う < 25 / 59

QCD radiation in A-A collisions

We have seen how suddenly accelerated color-charges can radiate soft gluons. In A-A collisions the presence of a medium where high-energy partons can scatter (changing *momentum* and *color*) can enhance the probability of gluon radiation.

The elementary brick to consider will be the radiation due to a single elastic scattering in the medium

The modelling of the medium (I)

The modelling of the medium in radiative energy-loss studies is usually quite elementary. It is just given by a color-field $A^{\mu}(x)$ arising from a collection of scattering centers, mimicking the elastic collisions suffered by the high-energy parton with the color-charges present in the medium. In the axial gauge $A^+ = 0$ one has:

$$A^{-}(x) \equiv \sum_{n=1}^{N} \int \frac{d\mathbf{q}}{(2\pi)^{2}} e^{i\mathbf{q}\cdot(\mathbf{x}-\mathbf{x}_{n})} \mathcal{A}(\mathbf{q}) \ \delta(x^{+}-x_{n}^{+}) \ T^{a_{n}}_{(n)} \otimes T^{a_{n}}_{(R)}$$

- $T_{(n)}^{a_n}$ describes the color rotation of the n^{th} scattering center in the representation n;
- $T_{(R)}^{a_n}$ describes the color rotation of high-energy projectile, in the representation R;
- A(q) is a generic interaction potential responsible for the transverse-momentum transfer q. Its specific form in not important, what matters is that the medium is able to provide a momentum kick and to exchange color with the projectile.

The modelling of the medium (II)

• It will be convenient to express the color-field in Fourier space:

$$A^{-}(x) \equiv \sum_{n=1}^{N} (2\pi) \delta(q^{+}) e^{iq^{-}x^{+}} e^{-i\mathbf{q}\cdot\mathbf{x}_{n}} \mathcal{A}(\mathbf{q}) \ T^{a_{n}}_{(n)} \otimes T^{a_{n}}_{(R)}$$

 $\mathcal{A}(\mathbf{q})$ is often taken as Debye-screened potential $\mathcal{A}(\mathbf{q}) = \frac{g^2}{\mathbf{q}^2 + \mu_D^2}$:in this case μ_D^2 ($\sim \alpha_s T^2$ in weak-coupling) will represent the typical \mathbf{q}^2 -transfer from the medium.

The modelling of the medium (II)

It will be convenient to express the color-field in Fourier space:

$$A^{-}(x) \equiv \sum_{n=1}^{N} (2\pi)\delta(q^{+})e^{iq^{-}x^{+}}e^{-i\mathbf{q}\cdot\mathbf{x}_{n}}\mathcal{A}(\mathbf{q}) \ T^{a_{n}}_{(n)} \otimes T^{a_{n}}_{(R)}$$

 $\mathcal{A}(\mathbf{q})$ is often taken as Debye-screened potential $\mathcal{A}(\mathbf{q}) = \frac{g^2}{\mathbf{q}^2 + \mu_D^2}$:in this case μ_D^2 ($\sim \alpha_s T^2$ in weak-coupling) will represent the typical \mathbf{q}^2 -transfer from the medium.

- In squaring the amplitudes one will have to evaluate the traces $\operatorname{Tr}\left(T_{(n)}^{a_{1}}T_{(n')}^{a_{2}}\right) = \delta_{nn'}\delta^{a_{1}a_{2}}C(n) \quad (C(\operatorname{fund}) = 1/2 \text{ and } C(\operatorname{adj}) = N_{c})$ and (averaging over the d_{R} and d_{n} colors of proj. R and targ. n) $\frac{1}{d_{R}d_{n}}\operatorname{Tr}\left(T_{R}^{a_{1}}T_{R}^{a_{2}}\right)\left(T_{n}^{a_{1}}T_{n}^{a_{2}}\right) = \frac{C_{R}C(n)}{d_{n}} \longrightarrow \frac{d\sigma^{\operatorname{el}}(R,n)}{d\mathbf{q}} = \frac{C_{R}C(n)}{d_{n}}\frac{\mathcal{A}(\mathbf{q})}{(2\pi)^{2}}$
 - 27 / 59

Medium-induced gluon radiation: projectile from $-\infty$

We consider the radiation off a on-shell high-E parton $p_i = [p^+, 0, 0]$, induced by a single elastic scattering (N = 1 opacity expansion)

$$p_f = \left[(1-x)p^+, \frac{(\mathbf{q}-\mathbf{k})^2}{2(1-x)p^+}, \mathbf{q}-\mathbf{k} \right], \quad k = \left[xp^+, \frac{\mathbf{k}^2}{2xp^+}, \mathbf{k} \right], \quad \epsilon_g = \left[0, \frac{\epsilon_g \cdot \mathbf{k}}{xp^+}, \epsilon_g \right]$$

$$i\mathcal{M}_{(a)} = -ig\left(t^{a}t^{a_{1}}\right)\sum_{n}\left(\frac{p_{f}\cdot\epsilon_{g}}{p_{f}\cdot k}\right)(2p^{+})\mathcal{A}(\mathbf{q})\,e^{iq\cdot\mathbf{x}_{n}}\,T_{(n)}^{a_{1}}$$

$$= -ig\left(t^{a}t^{a_{1}}\right)\sum_{n}2(1-x)\underbrace{\frac{\epsilon_{g}\cdot(\mathbf{k}-x\mathbf{q})}{(\mathbf{k}-x\mathbf{q})^{2}}(2p^{+})\mathcal{A}(\mathbf{q})\,e^{iq\cdot\mathbf{x}_{n}}\,T_{(n)}^{a_{1}}$$

$$\underbrace{\epsilon_{g}\cdot(\mathbf{k}-x\mathbf{q})}_{\sim\vec{\theta}-\vec{\theta}_{q}}(2p^{+})\mathcal{A}(\mathbf{q})\,e^{iq\cdot\mathbf{x}_{n}}\,T_{(n)}^{a_{1}}$$

The three different amplitudes reads (verify!)

$$i\mathcal{M}_{(a)} = -ig(t^{a}t^{a_{1}})\sum_{n} 2(1-x)\frac{\epsilon_{g}\cdot(\mathbf{k}-x\mathbf{q})}{(\mathbf{k}-x\mathbf{q})^{2}}(2p^{+})\mathcal{A}(\mathbf{q})e^{iq\cdot x_{n}}T_{(n)}^{a_{1}}$$

$$i\mathcal{M}_{(b)} = ig(t^{a_1}t^a)\sum_n 2(1-x)\frac{\epsilon_g \cdot \mathbf{k}}{\mathbf{k}^2}(2p^+)\mathcal{A}(\mathbf{q})e^{iq\cdot x_n}T^{a_1}_{(n)}$$

$$i\mathcal{M}_{(c)} = ig[t^a, t^{a_1}] \sum_n 2(1-x) \frac{\epsilon_g \cdot (\mathbf{k}-\mathbf{q})}{(\mathbf{k}-\mathbf{q})^2} (2p^+) \mathcal{A}(\mathbf{q}) e^{iq \cdot x_n} T^{a_1}_{(n)}$$

The three different amplitudes reads (verify!)

$$i\mathcal{M}_{(a)} = -ig\left(t^{a}t^{a_{1}}\right)\sum_{n}2(1-x)\frac{\epsilon_{g}\cdot(\mathbf{k}-x\mathbf{q})}{(\mathbf{k}-x\mathbf{q})^{2}}(2p^{+})\mathcal{A}(\mathbf{q})e^{iq\cdot x_{n}}T^{a_{1}}_{(n)}$$

$$i\mathcal{M}_{(b)} = ig(t^{a_1}t^a)\sum_n 2(1-x)\frac{\epsilon_g \cdot \mathbf{k}}{\mathbf{k}^2}(2p^+)\mathcal{A}(\mathbf{q})e^{iq\cdot x_n}T^{a_1}_{(n)}$$

$$i\mathcal{M}_{(c)} = ig[t^a, t^{a_1}] \sum_n 2(1-x) \frac{\epsilon_g \cdot (\mathbf{k}-\mathbf{q})}{(\mathbf{k}-\mathbf{q})^2} (2p^+) \mathcal{A}(\mathbf{q}) e^{iq \cdot x_n} T^{a_1}_{(n)}.$$

Neglecting $\mathcal{O}(x)$ corrections in (a) one gets the compact expression:

$$i\mathcal{M}^{\mathrm{rad}} = -2ig\left[t^{\mathfrak{s}}, t^{\mathfrak{s}_{1}}\right] \sum_{n} \left[\frac{\epsilon_{g} \cdot \mathbf{k}}{\mathbf{k}^{2}} - \frac{\epsilon_{g} \cdot (\mathbf{k} - \mathbf{q})}{(\mathbf{k} - \mathbf{q})^{2}}\right] (2p^{+})\mathcal{A}(\mathbf{q}) e^{iq \cdot x_{n}} T^{\mathfrak{s}_{1}}_{(n)}$$

leading to the *Gunion-Bertsch* spectrum:

$$k^{+}\frac{dN_{g}}{d\mathbf{k}d\mathbf{k}^{+}} \equiv \frac{1}{\sigma^{\mathrm{el}}}k^{+}\frac{d\sigma^{\mathrm{rad}}}{d\mathbf{k}dk^{+}} = C_{A}\frac{\alpha_{s}}{\pi^{2}}\left\langle [\mathbf{K}_{0} - \mathbf{K}_{1}]^{2} \right\rangle = C_{A}\frac{\alpha_{s}}{\pi^{2}}\left\langle \frac{\mathbf{q}^{2}}{\mathbf{k}^{2}(\mathbf{k} - \mathbf{q})^{2}} \right\rangle$$

where $\mathbf{K}_{0} \equiv \frac{\mathbf{k}}{\mathbf{k}^{2}}, \quad \mathbf{K}_{1} \equiv \frac{\mathbf{k} - \mathbf{q}}{(\mathbf{k} - \mathbf{q})^{2}} \text{ and } \langle \ldots \rangle \equiv \int_{\mathbf{k}} d\mathbf{q} \frac{1}{\sigma^{\mathrm{el}}} \frac{d\sigma^{\mathrm{el}}}{d\mathbf{q}}$

Medium-induced radiation: the QED case

In the case of QED-radiation one would have just 2 amplitudes to sum:

$$\mathcal{M}_{(a)} \sim -g \sum_{n} 2 \frac{\boldsymbol{\epsilon}_{\gamma} \cdot (\mathbf{k} - x \mathbf{q})}{(\mathbf{k} - x \mathbf{q})^2} \mathcal{A}(\mathbf{q}) e^{i q \cdot x_n}, \quad \mathcal{M}_{(b)} \sim g \sum_{n} 2 \frac{\boldsymbol{\epsilon}_{\gamma} \cdot \mathbf{k}}{\mathbf{k}^2} \mathcal{A}(\mathbf{q}) e^{i q \cdot x_n}$$

getting the Bethe-Heitler spectrum

$$k^{+}\frac{dN_{\gamma}}{d\mathbf{k}d\mathbf{k}^{+}} = \frac{\alpha_{\text{QED}}}{\pi^{2}} \left\langle \frac{x^{2}\mathbf{q}^{2}}{\mathbf{k}^{2}(\mathbf{k}-x\mathbf{q})^{2}} \right\rangle.$$

(日) (圖) (E) (E) (E)

30 / 59

Medium-induced radiation: the QED case

In the case of QED-radiation one would have just 2 amplitudes to sum:

$$\mathcal{M}_{(a)} \sim -g \sum_{n} 2 \, rac{\epsilon_{\gamma} \cdot (\mathbf{k} - x \mathbf{q})}{(\mathbf{k} - x \mathbf{q})^2} \mathcal{A}(\mathbf{q}) \, e^{i q \cdot x_n}, \quad \mathcal{M}_{(b)} \sim g \, \sum_{n} 2 \, rac{\epsilon_{\gamma} \cdot \mathbf{k}}{\mathbf{k}^2} \mathcal{A}(\mathbf{q}) \, e^{i q \cdot x_n}$$

getting the Bethe-Heitler spectrum

$$k^{+}\frac{dN_{\gamma}}{d\mathbf{k}d\mathbf{k}^{+}} = \frac{\alpha_{\text{QED}}}{\pi^{2}} \left\langle \frac{x^{2}\mathbf{q}^{2}}{\mathbf{k}^{2}(\mathbf{k}-x\mathbf{q})^{2}} \right\rangle.$$

• Notice that the photon radiation is suppressed in the $x \to 0$ limit, in which $\mathbf{k} - x\mathbf{q} \approx \mathbf{k}$. This corresponds to $\vec{\theta} - \vec{\theta}_q \approx \vec{\theta}$, neglecting the recoil angle of the quark (it cannot radiate photons if it doesn't change direction!);

Medium-induced radiation: the QED case

In the case of QED-radiation one would have just 2 amplitudes to sum:

$$\mathcal{M}_{(a)} \sim -g \sum_{n} 2 \frac{\boldsymbol{\epsilon}_{\gamma} \cdot (\mathbf{k} - x \mathbf{q})}{(\mathbf{k} - x \mathbf{q})^2} \mathcal{A}(\mathbf{q}) e^{i q \cdot x_n}, \quad \mathcal{M}_{(b)} \sim g \sum_{n} 2 \frac{\boldsymbol{\epsilon}_{\gamma} \cdot \mathbf{k}}{\mathbf{k}^2} \mathcal{A}(\mathbf{q}) e^{i q \cdot x_n}$$

getting the Bethe-Heitler spectrum

$$k^{+}\frac{dN_{\gamma}}{d\mathbf{k}d\mathbf{k}^{+}} = \frac{\alpha_{\text{QED}}}{\pi^{2}} \left\langle \frac{x^{2}\mathbf{q}^{2}}{\mathbf{k}^{2}(\mathbf{k}-x\mathbf{q})^{2}} \right\rangle.$$

- Notice that the photon radiation is suppressed in the $x \to 0$ limit, in which $\mathbf{k} x\mathbf{q} \approx \mathbf{k}$. This corresponds to $\vec{\theta} \vec{\theta}_q \approx \vec{\theta}$, neglecting the recoil angle of the quark (it cannot radiate photons if it doesn't change direction!);
- However in QCD, even neglecting the recoil (i.e. the quark goes on propagating straight-line), the quark rotates in color and hence can radiate gluons, yielding a non-vanishing spectrum even in the strict $x \rightarrow 0$ limit.

Medium-induced radiation: color flow

The 3-gluon amplitude $\mathcal{M}_{(c)}$ has the color structure $[t^a, t^{a_1}]$, which can be decomposed as $t^a t^{a_1} - t^{a_1} t^a$, corresponding to the two color flows

The relevant color channels to consider are then just two:

The radiation amplitude can be decomposed in the two color channels

$$\mathcal{M}^{\mathrm{rad}} = \mathcal{M}^{aa_1} + \mathcal{M}^{a_1a}$$

In squaring the amplitude interference terms between the two color channels are suppressed by $\mathcal{O}(1/N_c^2)$, since (verify!)

$$\operatorname{Tr}(t^{\mathfrak{a}}t^{\mathfrak{a}_1}t^{\mathfrak{a}_1}t^{\mathfrak{a}_1}t) = C_F^2 N_c \quad \text{and} \quad \operatorname{Tr}(t^{\mathfrak{a}}t^{\mathfrak{a}_1}t^{\mathfrak{a}_1}t) = -(1/2N_c)C_F N_c.$$

The radiation spectrum in the two color channels reads then:

$$k^{+} \frac{dN_{g}}{d\mathbf{k}dk^{+}} \bigg|_{aa_{1}} = \frac{N_{c}}{2} \frac{\alpha_{s}}{\pi^{2}} \left\langle \left[\overline{\mathbf{K}}_{0} - \mathbf{K}_{1} \right]^{2} \right\rangle, \quad k^{+} \frac{dN_{g}}{d\mathbf{k}dk^{+}} \bigg|_{a_{1}a} = \frac{N_{c}}{2} \frac{\alpha_{s}}{\pi^{2}} \left\langle \left[\mathbf{K}_{0} - \mathbf{K}_{1} \right]^{2} \right\rangle$$
where $\overline{\mathbf{K}}_{0} \equiv \frac{\mathbf{k} - x\mathbf{q}}{(\mathbf{k} - x\mathbf{q})^{2}}$. Notice that, in the soft $x \to 0$ limit, the two channel contributes equally to the spectrum.

The radiation amplitude can be decomposed in the two color channels

$$\mathcal{M}^{\mathrm{rad}} = \mathcal{M}^{aa_1} + \mathcal{M}^{a_1a}$$

In squaring the amplitude interference terms between the two color channels are suppressed by $\mathcal{O}(1/N_c^2)$, since (verify!)

$$\operatorname{Tr}(t^{\mathfrak{a}}t^{\mathfrak{a}_1}t^{\mathfrak{a}_1}t^{\mathfrak{a}_1}t) = C_F^2 N_c \quad \text{and} \quad \operatorname{Tr}(t^{\mathfrak{a}}t^{\mathfrak{a}_1}t^{\mathfrak{a}_1}t) = -(1/2N_c)C_F N_c.$$

The radiation spectrum in the two color channels reads then:

$$k^{+} \frac{dN_{g}}{d\mathbf{k}dk^{+}} \bigg|_{aa_{1}} = \frac{N_{c}}{2} \frac{\alpha_{s}}{\pi^{2}} \left\langle \left[\overline{\mathbf{K}}_{0} - \mathbf{K}_{1} \right]^{2} \right\rangle, \quad k^{+} \frac{dN_{g}}{d\mathbf{k}dk^{+}} \bigg|_{a_{1}a} = \frac{N_{c}}{2} \frac{\alpha_{s}}{\pi^{2}} \left\langle \left[\mathbf{K}_{0} - \mathbf{K}_{1} \right]^{2} \right\rangle$$
where $\overline{\mathbf{K}}_{0} \equiv \frac{\mathbf{k} - x\mathbf{q}}{(\mathbf{k} - x\mathbf{q})^{2}}$. Notice that, in the soft $x \to 0$ limit, the two channel contributes equally to the spectrum.
In the soft limit the sum returns the inclusive Gunion Bertsch spectrum
$$k^{+} \frac{dN_{g}}{d\mathbf{k}dk^{+}} \bigg|_{aa_{1}} + k^{+} \frac{dN_{g}}{d\mathbf{k}dk^{+}} \bigg|_{a_{1}a} \approx C_{A} \frac{\alpha_{s}}{\pi^{2}} \left\langle \frac{\mathbf{q}^{2}}{\mathbf{k}^{2}(\mathbf{k} - \mathbf{q})^{2}} \right\rangle$$

Radiation off a parton produced in the medium

• If the production of the hard parton occurs *inside the medium* the radiation spectrum is given by:

$$d\sigma^{\rm rad} = d\sigma^{\rm vac} + d\sigma^{\rm ind}$$

33 / 59

Radiation off a parton produced in the medium

• If the production of the hard parton occurs *inside the medium* the radiation spectrum is given by:

$$d\sigma^{\rm rad} = d\sigma^{\rm vac} + d\sigma^{\rm ind}$$

(日) (圖) (E) (E) (E)

33 / 59

The hard parton would radiate (losing its virtuality) also in the vacuum:

Radiation off a parton produced in the medium

• If the production of the hard parton occurs *inside the medium* the radiation spectrum is given by:

$$d\sigma^{\rm rad} = d\sigma^{\rm vac} + d\sigma^{\rm ind}$$

The hard parton would radiate (losing its virtuality) also in the vacuum: only the *medium-induced radiation* contributes to the energy-loss!

↓ □ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @

Radiation off a parton produced in the medium

• If the production of the hard parton occurs *inside the medium* the radiation spectrum is given by:

$$d\sigma^{\rm rad} = d\sigma^{\rm vac} + d\sigma^{\rm ind}$$

The hard parton would radiate (losing its virtuality) also in the vacuum: only the *medium-induced radiation* contributes to the energy-loss!

• The medium length L introduces a scale to compare with the gluon formation-time $t_{\text{form}} \longrightarrow$ non-trivial interference effects! In the vacuum (no other scale!) $t_{\text{form}}^{\text{vac}} \equiv 2\omega/\mathbf{k}^2$ played no role.

Calculating the spectrum: opacity expansion

Gluon-spectrum $d\sigma^{\rm rad}$ written as an expansion in powers of $(L/\lambda^{\rm el})$

Calculating the spectrum: opacity expansion

Gluon-spectrum $d\sigma^{
m rad}$ written as an expansion in powers of $(L/\lambda^{
m el})$

• For the amplitude one has (*i*: number of elastic interactions)

$$\mathcal{M}^{\mathrm{rad}} = \mathcal{M}_0 + \mathcal{M}_1 + \mathcal{M}_2 + \dots$$

Calculating the spectrum: opacity expansion

Gluon-spectrum $d\sigma^{
m rad}$ written as an expansion in powers of $(L/\lambda^{
m el})$

• For the amplitude one has (i: number of elastic interactions)

$$\mathcal{M}^{\mathrm{rad}} = \mathcal{M}_0 + \mathcal{M}_1 + \mathcal{M}_2 + \dots$$

• Squaring and taking a medium average one has (at N=1 order):

 $\langle |\mathcal{M}^{\rm rad}|^2 \rangle = |\mathcal{M}_0|^2 + \langle |\mathcal{M}_1|^2 \rangle + 2 {\rm Re} \langle \mathcal{M}_2^{\rm virt} \rangle \mathcal{M}_0^* + \dots$

Calculating the spectrum: opacity expansion

Gluon-spectrum $d\sigma^{
m rad}$ written as an expansion in powers of $(L/\lambda^{
m el})$

• For the amplitude one has (i: number of elastic interactions)

$$\mathcal{M}^{\mathrm{rad}} = \mathcal{M}_0 + \mathcal{M}_1 + \mathcal{M}_2 + \dots$$

• Squaring and taking a medium average one has (at N=1 order):

$$\langle |\mathcal{M}^{\mathrm{rad}}|^2 \rangle = |\mathcal{M}_0|^2 + \langle |\mathcal{M}_1|^2 \rangle + 2\mathrm{Re} \langle \mathcal{M}_2^{\mathrm{virt}} \rangle \mathcal{M}_0^* + \dots$$

• Physical interpretation:

<u>Calculating</u> the spectrum: opacity expansion

Gluon-spectrum $d\sigma^{\rm rad}$ written as an expansion in powers of $(L/\lambda^{\rm el})$

• For the amplitude one has (*i*: number of elastic interactions)

$$\mathcal{M}^{\mathrm{rad}} = \mathcal{M}_0 + \mathcal{M}_1 + \mathcal{M}_2 + \dots$$

- Squaring and taking a medium average one has (at N=1 order): $\langle |\mathcal{M}^{\mathrm{rad}}|^2 \rangle = |\mathcal{M}_0|^2 + \langle |\mathcal{M}_1|^2 \rangle + 2\mathrm{Re} \langle \mathcal{M}_2^{\mathrm{virt}} \rangle \mathcal{M}_0^* + \dots$
- Physical interpretation:

 $\langle |\mathcal{M}_1|^2 \rangle$: contribution to the radiation spectrum involving color-exchange with the medium

Calculating the spectrum: opacity expansion

Gluon-spectrum $d\sigma^{
m rad}$ written as an expansion in powers of $(L/\lambda^{
m el})$

• For the amplitude one has (*i*: number of elastic interactions)

$$\mathcal{M}^{\mathrm{rad}} = \mathcal{M}_0 + \mathcal{M}_1 + \mathcal{M}_2 + \dots$$

- Squaring and taking a medium average one has (at N=1 order): $\langle |\mathcal{M}^{\mathrm{rad}}|^2 \rangle = |\mathcal{M}_0|^2 + \langle |\mathcal{M}_1|^2 \rangle + 2\mathrm{Re} \langle \mathcal{M}_2^{\mathrm{virt}} \rangle \mathcal{M}_0^* + \dots$
- Physical interpretation:

 $2\operatorname{Re}\langle \mathcal{M}_2^{\operatorname{virt}} \rangle \mathcal{M}_0^*$: reducing the contribution to the spectrum by vacuum radiation, involving *no color-exchange* with the medium

34 / 59
The medium-induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

The medium-induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

• Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$

イロト イロト イヨト イヨト 三日

The medium-induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

• Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$

イロト 不得下 イヨト イヨト 二日

35 / 59

• Incoherent regime ($\omega_1 L \gg 1$): $d\sigma^{\text{ind}} \sim \langle (\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \rangle$

The medium-induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

- Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$
- Incoherent regime $(\omega_1 L \gg 1)$: $d\sigma^{\text{ind}} \sim \langle (\mathbf{K}_0 \mathbf{K}_1)^2 + \mathbf{K}_1^2 \mathbf{K}_0^2 \rangle$ The full radiation spectrum can be organized as

$$d\sigma^{\rm rad} = d\sigma^{\rm GB} + d\sigma^{\rm vac}_{\rm gain} + d\sigma^{\rm vac}_{\rm loss}$$

where

(for

$$d\sigma^{\rm GB} = d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \left(L/\lambda_g^{\rm el} \right) \left\langle \left(\mathbf{K}_0 - \mathbf{K}_1 \right)^2 \right\rangle \left(d\omega d\mathbf{k}/\omega \right)$$

$$d\sigma^{\rm vac}_{\rm gain} = d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \left(L/\lambda_g^{\rm el} \right) \left\langle \mathbf{K}_1^2 \right\rangle \left(d\omega d\mathbf{k}/\omega \right)$$

$$d\sigma^{\rm vac}_{\rm loss} = \left(1 - L/\lambda_g^{\rm el} \right) d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \mathbf{K}_0^2 \left(d\omega d\mathbf{k}/\omega \right)$$

a detailed derivation see e.g. JHEP 1207 (2012) 144)

In-medium gluon formation time

Behavior of the induced spectrum depending on the gluon formation-time

$$t_{
m form}\equiv\omega_1^{-1}=2\omega/({f k}-{f q})^2$$

differing from the vacuum result $t_{\text{form}}^{\text{vac}} \equiv 2\omega/\mathbf{k}^2$, due to the transverse **q**-kick received from the medium. Why such an expression?

In-medium gluon formation time

Behavior of the induced spectrum depending on the gluon formation-time

$$t_{
m form}\equiv\omega_1^{-1}=2\omega/({f k}-{f q})^2$$

differing from the vacuum result $t_{\rm form}^{\rm vac} \equiv 2\omega/\mathbf{k}^2$, due to the transverse **q**-kick received from the medium. Why such an expression? Consider for instance the $\langle \mathbf{K}_1^2 \rangle$ contribution, with the hard parton produced off-shell $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ and radiating an on-shell gluon, which then scatters in the medium

(日本本語を本語を本語を、語、ののの)

In-medium gluon formation time

Behavior of the induced spectrum depending on the gluon formation-time

$$t_{
m form}\equiv\omega_1^{-1}=2\omega/({f k}-{f q})^2$$

differing from the vacuum result $t_{\rm form}^{\rm vac} \equiv 2\omega/\mathbf{k}^2$, due to the transverse **q**-kick received from the medium. Why such an expression? Consider for instance the $\langle \mathbf{K}_1^2 \rangle$ contribution, with the hard parton produced off-shell $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ and radiating an on-shell gluon, which then scatters in the medium

$$\begin{array}{c} \bullet \stackrel{\text{of -shell}}{\underset{k_{\perp}-q_{\perp}}{\overset{\text{on -shell}}{\underset{q_{\perp}-q_{\perp}}{\overset{\text{op}}{\overset{\text{op}}{\underset{q_{\perp}}}}}}}{\overset{\text{on -shell}}{\underset{p_{\ell}-q_{\perp}}{\overset{\text{op}}{\underset{q_{\perp}-q_{\perp}}{\overset{\text{op}}{\underset{q_{\perp}}}}}}} & k_{g} \equiv \left[xp_{+}, \frac{(\mathbf{k}-\mathbf{q})^{2}}{2xp_{+}}, \mathbf{k}-\mathbf{q} \right] \\ \bullet & p_{f} = \left[(1-x)p_{+}, \frac{(\mathbf{k}-\mathbf{q})^{2}}{2(1-x)p_{+}}, \mathbf{q}-\mathbf{k} \right] \end{array}$$

The radiation will occur in a time set by the uncertainty principle:

$$t_{
m form} \sim Q^{-1}(E/Q) \sim 2\omega/({f k}-{f q})^2$$

 \longrightarrow if $t_{\text{form}} \gtrsim L$ the process is suppressed!

36 / 59

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Medium-induced radiation spectrum: numerical results

At variance with vacuum-radiation, medium induced spectrum

- Infrared safe (vanishing as $\omega \rightarrow 0$);
- Collinear safe (vanishing as $\theta \rightarrow 0$).

Depletion of gluon spectrum at small angles due to their rescattering in the medium!

Medium-induced radiation spectrum: numerical results

At variance with vacuum-radiation, medium induced spectrum

- Infrared safe (vanishing as $\omega \rightarrow 0$);
- Collinear safe (vanishing as $\theta \rightarrow 0$).

In general $\langle N \rangle > 1$, so that addressing multiple gluon emission becomes mandatory

Average energy-loss: analytic estimate

Integrating the lost energy ω over the inclusive gluon spectrum one gets, for an extremely energetic parton,

$$\langle \Delta E \rangle = \int d\omega \int d\mathbf{k} \; \omega \frac{dN_{g}^{\text{ind}}}{d\omega d\mathbf{k}} \sim \frac{C_{R} \alpha_{s}}{L \ll \sqrt{E/\hat{q}}} \left(\frac{\mu_{D}^{2}}{4} \left(\frac{\mu_{D}^{2}}{\lambda_{g}^{\text{el}}} \right) L^{2} \right)$$

- L² dependence on the medium-length (as long as the medium is sufficiently thin);
- In the same limit $\langle \Delta E \rangle$ independent on the parton energy;
- μ_D: Debye screening mass of color interaction ~ typical momentum exchanged in a collision;
- $\mu_D^2/\lambda_g^{\rm el}$ often replaced by the *transport coefficient* \hat{q} , so that

$$\langle \Delta E \rangle \sim \alpha_s \hat{q} L^2$$

 \hat{q} : average q_{\perp}^2 acquired per unit length

Inclusive hadron spectra: the nuclear modification factor

Historically, the first "jet-quenching" observable

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{
m coll}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

Inclusive hadron spectra: the nuclear modification factor

Historically, the first "jet-quenching" observable

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{\mathrm{coll}}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

4 ロ ト 4 緑 ト 4 差 ト 4 差 ト 差 の Q (や 39 / 59

Inclusive hadron spectra: the nuclear modification factor

Historically, the first "jet-quenching" observable

$$R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll}\right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$$

(日) (同) (三) (三)

Hard-photon $R_{AA} pprox 1$

- supports the Glauber picture (binary-collision scaling);
- entails that quenching of inclusive hadron spectra is a *final state effect* due to in-medium energy loss.

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha-1} D_{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!).

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D_{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!). Dim (verify!):

$$\frac{dN^{h}}{dp_{T}} = \sum_{f} \int_{0}^{1} dz \int dp'_{T} D_{f \to h}(z) \,\delta(p_{T} - zp'_{T}) \frac{dN^{q}}{dp'_{T}}$$

$$= \sum_{f} \int_{0}^{1} dz \int dp'_{T} D_{f \to h}(z) \frac{1}{z} \delta(p'_{T} - p_{T}/z) \frac{1}{(p'_{T})^{\alpha}}$$

$$= \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D_{f \to h}(z)$$

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha-1} D_{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!).

In the AA case one can express (neglecting medium-modifications of hadronization) the final spectrum as the convolution of a vacuum-FF with an energy-loss probability distribution (ε=ΔE/E)

$$\mathcal{D}_{f o h}^{ ext{med}}(z) = \int_0^1 d\epsilon \, \mathcal{P}(\epsilon) \int_0^1 dz' \, \delta[z - (1 - \epsilon)z'] \, \mathcal{D}_{f o h}^{ ext{vac}}(z')$$

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha-1} D_{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!).

In the AA case one can express (neglecting medium-modifications of hadronization) the final spectrum as the convolution of a vacuum-FF with an energy-loss probability distribution (ε=ΔE/E)

$$D_{f \to h}^{\mathrm{med}}(z) = \int_{0}^{1-z} \frac{d\epsilon}{1-\epsilon} P(\epsilon) D_{f \to h}^{\mathrm{vac}}\left(\frac{z}{1-\epsilon}\right)$$

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha-1} D_{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!).

 In the AA case one can express (neglecting medium-modifications of hadronization) the final spectrum as the convolution of a vacuum-FF with an energy-loss probability distribution (ε=ΔE/E)

$$D_{f \to h}^{\mathrm{med}}(z) = \int_{0}^{1-z} \frac{d\epsilon}{1-\epsilon} P(\epsilon) D_{f \to h}^{\mathrm{vac}}\left(\frac{z}{1-\epsilon}\right)$$

• Final spectrum sensitive to small energy losses $\epsilon \ll 1$

$$\frac{dN^{h}}{dp_{T}} = \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha-1} \int_{0}^{1-z} \frac{d\epsilon}{1-\epsilon} P(\epsilon) \, D_{f \to h}^{\text{vac}} \left(\frac{z}{1-\epsilon}\right)$$

Surface bias:

Quenched spectrum does not reflect $\langle L_{\rm QGP} \rangle$ crossed by partons distributed in the transverse plane according to $n_{\rm coll}(\mathbf{x})$ scaling, but *due to its steeply falling shape* is biased by the enhanced contribution of the ones *produced close to the surface and losing a small amount of energy*!

From theory to experiment...

We have seen that

- \$\langle N \rangle > 1\$ makes mandatory to deal with multiple gluon radiation;
- ⟨ΔE⟩ is not sufficient to characterize the quenching of the spectra, but one needs the full P(ΔE), in particular for ΔE ≪ E.

In case of *uncorrelated gluon radiation* (strong assumption! it's not the case for vacuum-radiation)

$$P(\Delta E) = \sum_{n=0}^{\infty} \frac{e^{-\langle N_g \rangle}}{n!} \prod_{i=1}^{n} \left[\int d\omega_i \frac{dN_g}{d\omega_i} \right] \\ \times \delta \left(\Delta E - \sum_{i=1}^{n} \omega_i \right),$$

(日) (四) (日) (日) (日)

Some heuristic estimates

In general the projectile system (high-E parton + rad. gluon) can interact several times with the medium. One can then estimate the gluon formation-length as

$$I_{\rm f} \sim \frac{\omega}{(\mathbf{k} - \mathbf{q})^2} \longrightarrow I_{\rm f} \sim \frac{\omega}{(\mathbf{k} - \sum_n \mathbf{q}_n)^2} \approx \frac{\omega}{N_{\rm scatt} \langle \mathbf{q}_n^2 \rangle} = \frac{\omega}{I_{\rm f} \langle \mathbf{q}_n^2 \rangle / \lambda_{\rm mfp}}$$

Hence, one can identify $l_{\rm f} \equiv \sqrt{\omega/\hat{q}}$: soft gluon are formed earlier!

From $1 = \hbar c = 0.1973 \,\mathrm{GeV} \cdot \mathrm{fm} \longrightarrow 1 \,\mathrm{GeV} \cdot \mathrm{fm} \approx 5...$

Gluon radiation is suppressed if *l*_{form}(ω)>L, which occurs above the critical frequency ω_c. Medium induces radiation of gluons with

$$I_{
m form}(\omega) = \sqrt{\omega/\hat{q}} < L \quad \longrightarrow \quad \omega < \omega_c \equiv \hat{q}L^2$$

For $\hat{q} \approx 1$ GeV²/fm and $L \approx 5$ fm one gets $\omega_c \approx 125$ GeV.

• One can estimate the *typical* angle at which gluons are radiated:

$$\langle \mathbf{k}^2
angle pprox \hat{q} l_{
m form}(\omega) = \sqrt{\hat{q}\omega} \longrightarrow \langle \theta^2
angle = rac{\langle \mathbf{k}^2
angle}{\omega^2} = \sqrt{rac{\hat{q}}{\omega^3}} \longrightarrow \overline{\theta} = \left(rac{\hat{q}}{\omega^3}
ight)^{1/4}$$

For a typical $\hat{q} \approx 1$ GeV²/fm one has (verify!):

$$\omega = 2 \text{ GeV} \longrightarrow \overline{\theta} \approx 0.4 \qquad \omega = 5 \text{ GeV} \longrightarrow \overline{\theta} \approx 0.2$$

Soft gluons radiated at larger angles!

 Below the Bethe-Heitler frequency ω_{BH} one has l_{form}(ω) < λ_{mfp} and coherence effects are no longer important:

Energy-loss: heuristic derivation

Let us estimate the spectrum of radiated gluons in the coherent regime $\omega_{\rm BH} < \omega < \omega_c$. One has to express the medium thickness *L* in units of the gluon formation length $l_{\rm form} = \sqrt{\omega/\hat{q}}$, getting the effective numbers of radiators:

$$\omega \frac{dN_g}{d\omega} \sim \alpha_s C_R \frac{L}{I_{\rm form}(\omega)} = \alpha_s C_R \sqrt{\frac{\omega_c}{\omega}}$$

Hence, for the *average energy-loss* one gets:

$$\langle \Delta E \rangle \sim \alpha_s C_R \sqrt{\omega_c} \int_{\omega_{\rm BH}}^{\omega_c} \frac{d\omega}{\sqrt{\omega}} \sim \alpha_s C_R \omega_c = \alpha_s C_R \hat{q} L^2$$

Energy-loss: heuristic derivation

Let us estimate the spectrum of radiated gluons in the coherent regime $\omega_{\rm BH} < \omega < \omega_c$. One has to express the medium thickness *L* in units of the gluon formation length $l_{\rm form} = \sqrt{\omega/\hat{q}}$, getting the effective numbers of radiators:

$$\omega \frac{dN_g}{d\omega} \sim \alpha_s C_R \frac{L}{I_{\rm form}(\omega)} = \alpha_s C_R \sqrt{\frac{\omega_c}{\omega}}$$

Hence, for the *average energy-loss* one gets:

$$\langle \Delta E \rangle \sim \alpha_s C_R \sqrt{\omega_c} \int_{\omega_{\rm BH}}^{\omega_c} \frac{d\omega}{\sqrt{\omega}} \underset{\omega_{\rm BH} \ll \omega_c}{\sim} \alpha_s C_R \omega_c = \alpha_s C_R \hat{q} L^2$$

One can show (try!) that the contribution from the *incoherent regime* $\omega < \omega_c$ in which

$$\omega \frac{dN_g}{d\omega} \sim \alpha_s C_R \frac{L}{\lambda_{\rm mfp}}$$

is subleading by a factor $\lambda_{\rm mfp}/L$.

45 / 59

Dijet measurements (with tracking information)

Tracks in a ring of radius $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$ and width 0.08 *around the subleading-jet axis*:

<ロ > < 部 > < 言 > < 言 > こ > < こ > へ つ へ つ へ つ く つ へ つ 46 / 59

Dijet measurements (with tracking information)

Tracks in a ring of radius $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$ and width 0.08 *around the subleading-jet axis*:

Increasing A_J a sizable fraction of energy around subleading jet carried by soft ($p_T < 4 \text{ GeV}$) tracks with a broad angular distribution

 So far we have considered a purely partonic description, assuming a direct connection with the final hadronic observables. In particular, based on time-scale considerations

$$\Delta t_{
m rest}^{
m hadr} \sim 1/Q \quad \longrightarrow \quad \Delta t_{
m lab}^{
m hadr} \sim (E/Q)(1/Q) \mathop{>>}_{F
ightarrow \infty} au_{
m QGP},$$

high-energy partons are expected to fragment *outside the medium*. Hence one could think of neglecting medium effects at the hadronization stage;

 So far we have considered a purely partonic description, assuming a direct connection with the final hadronic observables. In particular, based on time-scale considerations

$$\Delta t^{
m hadr}_{
m rest} \sim 1/Q \quad \longrightarrow \quad \Delta t^{
m hadr}_{
m lab} \sim (E/Q)(1/Q) \mathop{>>}_{E
ightarrow\infty} au_{
m QGP},$$

high-energy partons are expected to fragment *outside the medium*. Hence one could think of neglecting medium effects at the hadronization stage;

• However high-energy partons exchange color with the medium and *this can modify the color flow in the shower*, no matter when this occurred, affecting the final hadron spectra and the jet-fragmentation pattern!

...Hence the interest in studying medium-modification of color-flow for high- p_T probes¹ focusing on

- leading-hadron spectra...
- ...but considering also more differential observables (e.g. jet-fragmentation pattern)

Essential ideas presented here in a N = 1 opacity calculation

¹A.B, J.G.Milhano and U.A. Wiedemann, Phys. Rev. C85 (2012) 031901 and JHEP 1207 (2012) 144

From partons to hadrons

The *final stage of* any *parton shower* has to be interfaced with some hadronization routine. Keeping track of color-flow one identifies *color-singlet* objects whose decay will give rise to hadrons

From partons to hadrons

The *final stage of* any *parton shower* has to be interfaced with some hadronization routine. Keeping track of color-flow one identifies *color-singlet* objects whose decay will give rise to hadrons

 In PYTHIA hadrons come from the fragmentation of qq strings, with gluons representing kinks along the string (Lund model);

From partons to hadrons

The *final stage of* any *parton shower* has to be interfaced with some hadronization routine. Keeping track of color-flow one identifies *color-singlet* objects whose decay will give rise to hadrons

- In PYTHIA hadrons come from the fragmentation of qq strings, with gluons representing kinks along the string (Lund model);
- In HERWIG the shower is evolved up to a softer scale, all gluons are forced to split in qq̄ pair (large-N_c!) and singlet clusters (usually of low invariant mass!) are thus identified.

PYTHIA vs HERWIG

• The PYTHIA hadronization routine is based on the Lund string model, in which a string is stretched between a $Q\overline{Q}$ pair until the energy $E = \sigma R$ makes more favorable to excite a new $Q\overline{Q}$ pair from the vacuum

 The HERWIG hadronization routine is based on the *decay of color-singlet low-mass cluster*, e.g. C → π⁺π⁻, C → K⁺K⁻...Being most of the clusters light (M ~ 1 GeV) one has usually just a 2-body decay.

Vacuum radiation: color flow (in large- N_c)

Final hadrons from the fragmentation of the Lund string (in red)

- First endpoint attached to the final quark fragment;
- Radiated gluon color connected with the other daughter of the branching – belongs to the same string forming a kink on it;
- Second endpoint of the string here attached to the beam-remnant (very low p_T, very far in rapidity)

Vacuum radiation: color flow (in large- N_c)

 Most of the radiated gluons in a shower remain color-connected with the projectile fragment;

<ロ> (日) (日) (日) (日) (日)

Vacuum radiation: color flow (in large- N_c)

- Most of the radiated gluons in a shower remain color-connected with the projectile fragment;
- Only $g \rightarrow q \overline{q}$ splitting can break the color connection, BUT

$$P_{qg} \sim \left[z^2 + (1-z)^2\right] \quad vs \quad P_{gg} \sim \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z)\right]$$

less likely: no soft (i.e. $z \to 1$) enhancement!
AA collisions: in-medium parton shower

"Final State Radiation"
 (gluon ∈ leading string)
Gluon contributes to leading hadron

"Initial State Radiation" (gluon decohered: lost!) Gluon contributes to *enhanced soft multiplicity* from subleading string

From partons to hadrons...

In the following slides we will hadronize partonic configurations with

イロン イヨン イヨン イヨン

3

- the same kinematics
- different color-connections
 - $q_{\rm proj}g\overline{q}_{\rm beam};$

From partons to hadrons...

In the following slides we will hadronize partonic configurations with

<ロ> (日) (日) (日) (日) (日)

- the same kinematics
- different color-connections
 - $q_{\rm proj}g\overline{q}_{\rm beam};$
 - $q_{\text{proj}}g\overline{q}_{\text{med}};$

From partons to hadrons...

In the following slides we will hadronize partonic configurations with

<ロ> (日) (日) (日) (日) (日)

- the same kinematics
- different color-connections
 - $q_{\rm proj}g\overline{q}_{\rm beam};$
 - $q_{\rm proj}g\overline{q}_{\rm med};$
 - $q_{\rm med}g\overline{q}_{\rm med}$.

From partons to hadrons...

In the following slides we will hadronize partonic configurations with

<ロ> (日) (日) (日) (日) (日)

54 / 59

- the same kinematics
- different color-connections
 - $q_{\rm proj}g\overline{q}_{\rm beam};$
 - $q_{\rm proj}g\overline{q}_{\rm med};$
 - $q_{\rm med}g\overline{q}_{\rm med}$.

Hadronization performed with Lund-string model of PYTHIA 6.4

"Jet"-Fragmentation

- FSR overlapping with vacuum-shower;
- ISR characterized by:
 - Depletion of hard tail of FF (gluon decohered!);
 - Enhanced soft multiplicity from the subleading string < => = ->

"Jet"-FF: higher moments and hadron spectra

At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects higher moments of FF

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D^{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)

"Jet"-FF: higher moments and hadron spectra

At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects higher moments of FF

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D^{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)

- Quenching of hard tail of FF affects higher moments: e.g.
 - FSR: $\langle x^6 \rangle \approx 0.078$;
 - ISR: $\langle x^6 \rangle_{\text{lead}} \approx 0.052$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

"Jet"-FF: higher moments and hadron spectra

At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$rac{dN^h}{dp_T}\sim rac{1}{p_T^{lpha}}\sum_f \int_0^1 dz\, z^{lpha-1}D^{f
ightarrow h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)

- Quenching of hard tail of FF affects higher moments: e.g.
 - FSR: ⟨x⁶⟩ ≈ 0.078;
 ISR: ⟨x⁶⟩_{lead} ≈ 0.052
- Ratio of the two channels suggestive of the effect on the hadron spectrum

"Jet"-FF: AA vs pp

CMS Jet-FF ($p_T^{\mathrm{track}} > 1$ GeV)

Same parton kinematics, but different color-connections: enhanced soft-hadron multiplicity from the decay of subleading strings (decohered gluons give rise to new strings!), a string string strings strings

"Jet"-FF: AA vs pp

CMS Jet-FF ($p_T^{\mathrm{track}} > 1$ GeV)

Same parton kinematics, but different color-connections: enhanced soft-hadron multiplicity from the decay of subleading strings (decohered gluons give rise to new strings!), and the strings are solved.

Relevance for info on medium properties

 Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;

<ロ> (日) (日) (日) (日) (日)

Relevance for info on medium properties

 Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;

• In the case of AA collisions a naive convolution

Parton Energy loss \otimes Vacuum Fragmentation

without accounting for the modified color-flow would result into a too hard hadron spectrum: fitting the experimental amount of quenching would require an overestimate of the energy loss at the partonic level;

Relevance for info on medium properties

 Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;

• In the case of AA collisions a naive convolution

Parton Energy loss \otimes Vacuum Fragmentation

without accounting for the modified color-flow would result into a too hard hadron spectrum: fitting the experimental amount of quenching would require an overestimate of the energy loss at the partonic level;

• Color-decoherence of radiated gluon might contribute to reproduce the observed high- p_T suppression with milder values of the medium transport coefficients (e.g. \hat{q}).

Some references...

- Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, *Jet physics in heavy-ion collisions*, Int.J.Mod.Phys. A28 (2013) 1340013;
- S. Peigne and A.V. Smilga, *Energy losses in a hot plasma revisited*, arXiv:0810.5702;
- U.A. Wiedemann, *Jet Quenching in Heavy Ion Collisions*, arXiv:0908.2306;
- Jorge Casalderrey-Solana and Carlos A. Salgado, *Introductory lectures on jet quenching in heavy ion collisions*, Acta Phys.Polon. B38 (2007) 3731-3794.