Heavy-ion collisions: theory review

Andrea Beraudo

CERN, Theory Unit

"QCD at Cosmic Energies", Paris, 11-15 June 2012

Outline

- The motivation: exploring the QCD phase diagram
- Virtual experiment: lattice-QCD simulations
- Real experiments: heavy-ion collisions
 - Soft observables;
 - Hard probes

Heavy-ion collisions: exploring the QCD phase-diagram

 Critical line (cross-over + C.E.P. + 1st-order) from IQCD and effective lagrangians (NJL, linear sigma model..)

Heavy-ion collisions: exploring the QCD phase-diagram

- Critical line (cross-over + C.E.P. + 1st-order) from IQCD and effective lagrangians (NJL, linear sigma model..)
- Experimental points from fit of final hadron multiplicities

Heavy-ion collisions: exploring the QCD phase-diagram

- Critical line (cross-over + C.E.P. + 1st-order) from IQCD and effective lagrangians (NJL, linear sigma model..)
- Experimental points from fit of final hadron multiplicities

Region explored at LHC: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$)

- From QGP (color deconfinement, chiral symmetry restored)
- to hadronic phase (confined, chiral symmetry breaking)

NB $\langle \overline{q}q \rangle \neq 0$ responsible for most of the baryonic mass of the universe: only ~ 35 MeV of the proton mass from $m_{u/d} \neq 0$

Virtual experiments: lattice-QCD simulations

- The best (unique?) tool to study QCD in the non-perturbative regime
- Limited to the study of equilibrium quantities

QCD on the lattice

The QCD partition function

$$\mathcal{Z} = \int [dU] \exp \left[-\beta S_g(U)\right] \prod_q \det \left[M(U, m_q)\right]$$

is evaluated on the lattice through a MC sampling of the field configurations, where

•
$$\beta = 6/g^2$$

- S_g is the gauge action, weighting the different field configurations;
- $U \in SU(3)$ is the link variable connecting two lattice sites;
- *M* is the Dirac operator

From the partition function on gets all the thermodynamical quantities¹:

• Pressure: $P = (T/V) \ln Z$;

From the partition function on gets all the thermodynamical quantities¹:

- Pressure: $P = (T/V) \ln \mathcal{Z}$;
- Trace anomaly: $I \equiv \epsilon - 3P = T^5 (\partial/\partial T) (P/T^4);$

From the partition function on gets all the thermodynamical quantities¹:

- Pressure: $P = (T/V) \ln \mathcal{Z};$
- Trace anomaly: $I \equiv \epsilon - 3P = T^5 (\partial/\partial T) (P/T^4);$
- Energy density: $\epsilon = I + 3P$;

From the partition function on gets all the thermodynamical quantities¹:

- Pressure: $P = (T/V) \ln \mathcal{Z};$
- Trace anomaly: $I \equiv \epsilon - 3P = T^5 (\partial/\partial T) (P/T^4);$
- Energy density: $\epsilon = I + 3P$;
- Entropy density:
 s = (e + P)/T;

From the partition function on gets all the thermodynamical quantities¹:

- Pressure: $P = (T/V) \ln \mathcal{Z};$
- Trace anomaly: $I \equiv \epsilon - 3P = T^5 (\partial/\partial T) (P/T^4);$
- Energy density: $\epsilon = I + 3P$;
- Entropy density: $s = (\epsilon + P)/T;$
- Speed of sound: $c_s^2 = dP/d\epsilon$

lattice-QCD results: some comments

- One observes a ~20% deviation from the SB limit even at large T: how to interpret it?
- $T^{\mu}_{\nu} \equiv \text{diag}(\epsilon, -P, -P, -P)$: the trace anomaly $I \equiv \epsilon - 3P$ gives a measure of the breaking of conformal invariance (a challenge for approaches based on AdS/CFT correspondence?)

Soft probes Hard probes

Real experiments: heavy-ion collisions

(日) (同) (三) (三)

э

Soft probes Hard probes

Heavy-ion collisions: a typical event

- Valence quarks of participant nucleons act as sources of strong color fields giving rise to *particle production*
- Spectator nucleons don't participate to the collision;

Almost all the energy and baryon number carried away by the remnants

Soft probes Hard probes

Heavy-ion collisions: a typical event

< 17 ▶

Soft probes Hard probes

Heavy-ion collisions: a cartoon of space-time evolution

- Soft probes (low-p_T hadrons): collective behavior of the medium;
- Hard probes (high-p_T particles, heavy quarks, quarkonia): produced in hard pQCD processes in the initial stage, allow to perform a tomography of the medium

Soft probes and hydrodynamics

Some references...

- J.Y. Ollitrault, "*Phenomenology of the little bang*", J.Phys.Conf.Ser. 312 (2011) 012002;
- J.Y. Ollitrault, "*Relativistic hydrodynamics for heavy-ion collisions*", Eur.J.Phys. 29 (2008) 275-302
- U.W. Heinz, "Hydrodynamic description of ultrarelativistic heavy ion collisions", in *Hwa, R.C. (ed.) et al.: Quark gluon plasma* 634-714

Hydrodynamics and heavy-ion collisions

The success of hydrodynamics in describing particle spectra in heavy-ion collisions measured at RHIC came as a surprise!

- The general setup and its implications
- Predictions
 - Radial flow
 - Elliptic flow
- What can we learn?
 - Initial conditions
 - Event-by-event fluctuations and consequences
 - QCD EOS

Hydrodynamics: the general setup

- Hydrodynamics is applicable in a situation in which $\lambda_{
 m mfp} \ll L$
- In this limit the behavior of the system is entirely governed by the *conservation laws*

where

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$
 and $j^{\mu}_B = n_B u^{\mu}$

• Information on the medium is entirely encoded into the EOS

 $P = P(\epsilon)$

• The transition from fluid to particles occurs at the freeze-out hypersuface Σ^{fo} (e.g. at $T = T_{fo}$)

$$E(dN/d\vec{p}) = \int_{\Sigma^{fo}} p^{\mu} d\Sigma_{\mu} \exp\left[-(p \cdot u)/T\right]_{\text{T}} = 0$$

Soft probes Hard probes

Hydro predictions: radial flow (I)

- $T_{\rm slope}$ (~ 167 MeV) *universal* in pp collisions;
- T_{slope} growing with m in AA collisions: spectrum gets harder!

э

Hydro predictions: radial flow (II)

Physical interpretation:

Thermal emission on top of a collective flow

$$\frac{1}{2}m\langle \mathbf{v}_{\perp}^{2}\rangle = \frac{1}{2}m\left\langle \left(\mathbf{v}_{\perp th} + \mathbf{v}_{\perp flow}\right)^{2}\right\rangle$$
$$= \frac{1}{2}m\langle \mathbf{v}_{\perp th}^{2} \rangle + \frac{1}{2}m\mathbf{v}_{\perp flow}^{2}$$
$$\implies T_{slope} = T_{fo} + \frac{1}{2}m\mathbf{v}_{\perp flow}^{2}$$

Soft probes Hard probes

Hydro predictions: elliptic flow

• In *non-central collisions* particle emission is not azimuthally-symmetric!

Soft probes Hard probes

Hydro predictions: elliptic flow

- In *non-central collisions* particle emission is not azimuthally-symmetric!
- The effect can be quantified through the *Fourier coefficient* v₂

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left(1 + 2v_2 \cos[2(\phi - \psi_{RP})] + \dots \right)$$
$$v_2 \equiv \langle \cos[2(\phi - \psi_{RP})] \rangle$$

v₂(p_T) ~ 0.2 gives a modulation 1.4 vs
 0.6 for in-plane vs out-of-plane particle emission!

< 67 ▶

Soft probes Hard probes

Elliptic flow: physical interpretation

• Matter behaves like a fluid whose *expansion* is *driven by pressure gradients*

$$rac{\partial}{\partial t}\left[(\epsilon+P)v^i
ight]=-rac{\partial P}{\partial x^i};$$

- Spatial anisotropy is converted into momentum anisotropy;
- At freeze-out particles are mostly emitted along the reaction-plane.

• • = • • = •

Soft probes Hard probes

Elliptic flow: mass ordering

The mass ordering of v_2 is a direct consequence of the hydro expansion

- Particles emitted according to a thermal distribution $\sim \exp[-p \cdot u(x)/T_{fo}]$ in the local rest-frame of the fluid-cell;
- Parametrizing the fluid velocity as

 $u^{\mu} \equiv \gamma_{\perp} (\cosh Y, \mathbf{u}_{\perp}, \sinh Y),$

one gets $(v_z \equiv \tanh Y)$

 $p \cdot u = \gamma_{\perp} [\mathbf{m}_{\perp} \cosh(y - Y) - \mathbf{p}_{\perp} \cdot \mathbf{u}_{\perp}]$

 Dependence on m_T at the basis of mass ordering at fixed p_T

Initial conditions: "Bjorken" estimate

• It is useful to describe the evolution in term of the variables

$$au \equiv \sqrt{t^2 - z^2}$$
 and $\eta_s \equiv \frac{1}{2} \ln \frac{t + z}{t - z}$

• Assuming a boost-invariant purely longitudinal expansion $(v_z = z/t)$ entropy conservation implies:

$$s \tau = s_0 \tau_0 \quad \longrightarrow \quad s_0 = (s \tau)/\tau_0$$

• Entropy density is defined in the local fluid rest-frame:

$$s \equiv \left. \frac{dS}{d\mathbf{x}_{\perp} dz} \right|_{z=0} = \frac{1}{\tau} \frac{dS}{d\mathbf{x}_{\perp} d\eta_s}$$

• Entropy is related to the *final multiplicity of charged particles* $(S \sim 3.6 N \text{ for pions})$, so that:

$$s_0 = \frac{1}{\tau_0} \frac{3.6}{\pi R_A^2} \frac{dN_{\rm ch}}{d\eta} \frac{3}{2}$$

Soft probes Hard probes

"Bjorken" estimate: results

$$s_0 = \frac{1}{\tau_0} \frac{3.6}{\pi R_A^2} \frac{dN_{\rm ch}}{d\eta} \frac{3}{2}$$

• From $dN_{\rm ch}/d\eta \approx 1600$ measured by ALICE at LHC and $R_{\rm Pb} \approx 6$ fm one gets:

$$s_0 pprox (80\,{
m fm}^{-2})/ au_0$$

• τ_0 is found to be quite small:

 $0.1 < au_0 < 1 \; {
m fm} \; \longrightarrow \; 80 < s_0 < 800 \; {
m fm}^{-3}$

• This should be compared with I-QCD

$$s(T=200\,{\rm MeV})\approx 10\,{\rm fm}^{-3}$$

• Within the Glauber model, given the nuclear thickness function

$$T_A(\mathbf{x}) \equiv \int_{-\infty}^{+\infty} dz \, \rho_A(\mathbf{x}, z)$$

one can express the *initial entropy density* in terms of the local density of

• Within the Glauber model, given the nuclear thickness function

$$T_A(\mathbf{x}) \equiv \int_{-\infty}^{+\infty} dz \, \rho_A(\mathbf{x}, z)$$

one can express the *initial entropy density* in terms of the local density of

• participants: $s(\tau_0, \mathbf{x}; \mathbf{b}) = K(\tau_0) [n_{\text{part}}^A(\mathbf{x}; \mathbf{b}) + n_{\text{part}}^B(\mathbf{x}; \mathbf{b})]$, with

$$n_{\text{part}}^{A}(\mathbf{x}; \mathbf{b}) = T_{A}(\mathbf{x} + \mathbf{b}/2) \left[1 - \left(1 - \sigma_{pp}^{\text{in}} T_{B}(\mathbf{x} - \mathbf{b}/2)/B \right)^{B} \right]$$

Image: A image: A

• Within the Glauber model, given the nuclear thickness function

$$T_A(\mathbf{x}) \equiv \int_{-\infty}^{+\infty} dz \, \rho_A(\mathbf{x}, z)$$

one can express the *initial entropy density* in terms of the local density of

• participants: $s(\tau_0, \mathbf{x}; \mathbf{b}) = K(\tau_0) [n_{\text{part}}^A(\mathbf{x}; \mathbf{b}) + n_{\text{part}}^B(\mathbf{x}; \mathbf{b})]$, with

$$n_{\text{part}}^{A}(\mathbf{x}; \mathbf{b}) = T_{A}(\mathbf{x} + \mathbf{b}/2) \left[1 - \left(1 - \sigma_{pp}^{\text{in}} T_{B}(\mathbf{x} - \mathbf{b}/2)/B \right)^{B} \right]$$

• binary collisions: $s(\tau_0, \mathbf{x}; \mathbf{b}) = K'(\tau_0) n_{\text{bin}}(\mathbf{x}; \mathbf{b})$, where

$$n_{\text{bin}}(\mathbf{x};\mathbf{b}) = \sigma_{\rho\rho}^{\text{in}} T_A(\mathbf{x}+\mathbf{b}/2) T_B(\mathbf{x}-\mathbf{b}/2)$$

• Within the Glauber model, given the nuclear thickness function

$$T_A(\mathbf{x}) \equiv \int_{-\infty}^{+\infty} dz \, \rho_A(\mathbf{x}, z)$$

one can express the *initial entropy density* in terms of the local density of

• participants: $s(\tau_0, \mathbf{x}; \mathbf{b}) = K(\tau_0) [n_{\text{part}}^A(\mathbf{x}; \mathbf{b}) + n_{\text{part}}^B(\mathbf{x}; \mathbf{b})]$, with

$$n_{\text{part}}^{A}(\mathbf{x};\mathbf{b}) = T_{A}(\mathbf{x}+\mathbf{b}/2) \left[1 - \left(1 - \sigma_{pp}^{\text{in}} T_{B}(\mathbf{x}-\mathbf{b}/2)/B\right)^{B}\right]$$

• binary collisions: $s(\tau_0, \mathbf{x}; \mathbf{b}) = K'(\tau_0) n_{\text{bin}}(\mathbf{x}; \mathbf{b})$, where

$$n_{\mathrm{bin}}(\mathbf{x};\mathbf{b}) = \sigma_{\rho\rho}^{\mathrm{in}} T_A(\mathbf{x} + \mathbf{b}/2) T_B(\mathbf{x} - \mathbf{b}/2)$$

• An essential input is the *inelastic pp cross section* $\sigma_{pp}^{in}(\sqrt{s})$

Soft probes Hard probes

Glauber model and heavy-ion collisions

• $\sigma_{pp}^{\rm in} \approx 40 - 60$ mb at RHIC-LHC energies;

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Soft probes Hard probes

Glauber model and heavy-ion collisions

- $\sigma_{pp}^{\rm in} \approx 40 60$ mb at RHIC-LHC energies;
- The Glauber model seems to work pretty well: *nuclear modification factor*

$$R_{AA}(p_T)\equiv rac{(dN/dp_T)_{AA}}{\langle N_{
m coll}
angle (dN/dp_T)_{pp}}$$

close to 1 for color-neutral probes!

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Initial conditions: event-by-event fluctuations

- Flow coefficients are defined as $v_n \equiv \langle \langle \cos[n(\phi \Psi_n)] \rangle \rangle$.
- For hydro simulations with smooth initial conditions
 - $\Psi_n \equiv \Psi_{\rm RP}$ known exactly;
 - all odd-harmonics vanish.
- Real life is more complicated...

Odd harmonics appear, angles Ψ_n are not directly measured.

• Glauber-MC initial conditions mandatory to study these effects

Soft probes Hard probes

Event-by-event fluctuations: experimental consequences

Fluctuating initial conditions giving rise to^a:

- Non-vanishin v₂ in central collisions;
- Odd harmonics $(v_3 \text{ and } v_5)$

^aALICE, Phys.Rev.Lett. 107 (2011) 032301
Initial conditions: Color Glass Condensate

Basic idea:

 s_0 related to the rapidity density of produced gluons

Spectrum of produced gluons evaluated within k_T -factorization:

$$s_0 \sim rac{dN_g}{d\mathbf{r}_\perp dy} \sim \int rac{d\mathbf{p}_\perp}{\mathbf{p}_\perp^2} \int d\mathbf{k}_\perp \, lpha_s \, \phi_A(x_1, \mathbf{k}_\perp^2) \, \phi_B(x_2, (\mathbf{p}_\perp - \mathbf{k}_\perp)^2)$$

where $\phi(x, \mathbf{k}_{\perp}^2)$ is an unintegrated gluon distribution

- It can be expressed through the *dipole scattering amplitude* $\mathcal{N}(x, \mathbf{r}_{\perp})$
- The small-x evolution of the latter is described by the BK-equation

$$\partial \mathcal{N} \sim \underbrace{\mathcal{N}}_{\rm BFKL} - \underbrace{\mathcal{N}^2}_{\rm saturation}$$

A unique setup able to describe data from DIS up to A-A collisions?

Soft probes Hard probes

CGC and particle production

Particle density and its evolution with centrality nicely accomodated² ²J.L. Albacete, A. Dumitru and Y. Nara, J.Phys.Conf.Ser. 316 (2011) 012011.

Hydro evolution: the role of the Equation of State

0.35 SB 0.3 0.25 0.3 N,=6 0.25 0.2 .=8 million 0.2 0.15 N.=10 0.15 0.1 200 100 150 250 300 0.1 1000 200 400 600 800 T[MeV]

C_s²(T)

In ideal hydro the dependence on the EOS enters through *speed of sound*:

$$\frac{\partial \mathbf{v}^{i}}{\partial t} = -\frac{1}{\epsilon + P} \frac{\partial P}{\partial x^{i}} = -\mathbf{c}_{s}^{2} \frac{\partial \ln s}{\partial x^{i}};$$

For the transverse expansion one gets:

$$v_x = rac{c_s^2 x}{\sigma_x^2} t, \quad v_y = rac{c_s^2 y}{\sigma_y^2} t$$

The larger the speed of sound, the larger the *radial flow*!

Hard probes

- A few experimental results
 - Jet-quenching
 - Heavy-flavor
- The physical interpretation (with some novel ideas)

▲ 同 ▶ → ▲ 三

Soft probes Hard probes

Jet-quenching

(in a broad sense: jet-reconstruction in AA possible only recently)

< A >

프 () () ()

Soft probes Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$$

Soft probes Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$$

< 17 >

-

Soft probes Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{\mathrm{coll}}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

Soft probes Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$\frac{R_{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^h/dp_T \right)^{PP}}$$

Hard-photon $R_{AA} \approx 1$

- supports the Glauber picture (binary-collision scaling);
- entails that quenching of inclusive hadron spectra is a *final state effect* due to in-medium energy loss.

Soft probes Hard probes

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D^{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)

Image: A image: A

Soft probes Hard probes

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D^{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)Surface bias:

Image: A = A

Soft probes Hard probes

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D^{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)

Surface bias:

Quenched spectrum does not reflect $\langle L_{\text{QGP}} \rangle$ crossed by partons distributed in the transverse plane according to $n_{\text{coll}}(\mathbf{x})$ scaling, but *due to its steeply falling shape* is biased by the enhanced contribution of the ones *produced close to the surface and losing a small amount of energy*!

・ロト ・同ト ・ヨト ・ヨト

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a *huge mismatch* in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

< 17 ▶

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a *huge mismatch* in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

Soft probes Hard probes

Dijet correlations: results

- Dijet asymmetry $A_j \equiv \frac{E_{T_1} E_{T_2}}{E_{T_1} + E_{T_2}}$ enhanced wrt to p+p and increasing with centrality;
- $\Delta \phi$ distribution unchanged wrt p+p (jet pairs ~ back-to-back)

- 4 回 2 - 4 □ 2 - 4 □

Dijet correlations: adding tracking information

Tracks in a ring of radius $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$ and width 0.08 around the subleading-jet axis:

▲ @ ▶ < ∃ ▶</p>

Soft probes Hard probes

Dijet correlations: adding tracking information

Tracks in a ring of radius $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$ and width 0.08 *around the subleading-jet axis*:

Increasing A_J a sizable fraction of energy around subleading jet carried by soft ($p_T < 4 \text{ GeV}$) tracks with a broad angular distribution

Soft probes Hard probes

Dijet measurements: Fragmentation Fuctions

$$\boldsymbol{\xi} \equiv -\ln z \equiv -\ln \left(p_T^{\mathrm{track}} / p_T^{\mathrm{jet}}
ight), \qquad p_T^{\mathrm{track}} > 4 \mathrm{GeV}$$

Image: A math a math

э

Soft probes Hard probes

Dijet measurements: Fragmentation Fuctions

$$\boldsymbol{\xi} \equiv -\ln z \equiv -\ln \left(\rho_T^{\mathrm{track}} / \rho_T^{\mathrm{jet}}
ight), \qquad p_T^{\mathrm{track}} > 4 \mathrm{GeV}$$

Image: A math a math

-

Soft probes Hard probes

Dijet measurements: Fragmentation Fuctions

$$\boldsymbol{\xi} \equiv -\ln z \equiv -\ln \left(\rho_T^{\mathrm{track}} / \rho_T^{\mathrm{jet}}
ight), \qquad p_T^{\mathrm{track}} > 4 \mathrm{GeV}$$

Image: A math a math

-

Soft probes Hard probes

Dijet measurements: Fragmentation Fuctions

Hard component of jet-FF in AA not strongly modified wrt to pp. Data (for hard tracks!) compatible with vacuum-like fragmentation of jets with reduced energy

ndrea Beraudo Heavy-ion collisions: theory review

Soft probes Hard probes

Physical interpretation of the data: energy-loss at the parton level!

- Interaction of the high-p_T parton with the color field of the medium induces the radiation of (mostly) soft (ω ≪ E) and collinear (k_⊥ ≪ ω) gluons;
- Radiated gluon can further re-scatter in the medium (cumulated q_⊥ favor *decoherence* from the projectile).

The basic ingredients

- Vacuum-radiation spectrum;
- (Gunion-Bertsch) induced spectrum

Soft probes Hard probes

Vacuum radiation by off-shell partons

A hard parton with $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ loses its virtuality Q through gluon-radiation. In *light-cone coordinates*, with $p_{\pm} \equiv E \pm p_z/\sqrt{2}$:

Soft probes Hard probes

Vacuum radiation by off-shell partons

A hard parton with $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ loses its virtuality Q through gluon-radiation. In *light-cone coordinates*, with $p_{\pm} \equiv E \pm p_z/\sqrt{2}$:

• k_{\perp} vs virtuality: $\mathbf{k}^2 = x (1-x) Q^2$;

4

• Radiation spectrum (our benchmark): IR and collinear divergent!

$$d\sigma_{
m vac}^{
m rad} = d\sigma^{
m hard} rac{lpha_s}{\pi^2} C_R rac{dk^+}{k^+} rac{d\mathbf{k}}{\mathbf{k}^2}$$

• Time-scale (formation time) for gluon radiation:

$$\Delta t_{
m rad} \sim Q^{-1}(E/Q) \sim 2\omega/\mathbf{k}^2 \quad (x \approx \omega/E)$$

Medium-induced radiation by on-shell partons

• On-shell partons propagating in a color field can radiated gluons.

Medium-induced radiation by on-shell partons

• On-shell partons propagating in a color field can radiated gluons.

• The single-inclusive gluon spectrum: the Gunion-Bertsch result

$$x\frac{dN_{g}^{\text{GB}}}{dxd\mathbf{k}} = C_{R}\frac{\alpha_{s}}{\pi^{2}}\left(\frac{L}{\lambda_{g}^{\text{el}}}\right)\left\langle \left[\mathbf{K}_{0}-\mathbf{K}_{1}\right]^{2}\right\rangle = C_{R}\frac{\alpha_{s}}{\pi^{2}}\left(\frac{L}{\lambda_{g}^{\text{el}}}\right)\left\langle \frac{\mathbf{q}^{2}}{\mathbf{k}^{2}(\mathbf{k}-\mathbf{q})^{2}}\right\rangle$$

where C_R is the *color charge* of the hard parton and:

$$\mathbf{K}_{0} \equiv \frac{\mathbf{k}}{\mathbf{k}^{2}}, \qquad \mathbf{K}_{1} \equiv \frac{\mathbf{k} - \mathbf{q}}{(\mathbf{k} - \mathbf{q})^{2}} \qquad \text{and} \qquad \langle \dots \rangle \equiv \int d\mathbf{q} \frac{1}{\sigma^{\mathrm{el}}} \frac{d\sigma^{\mathrm{el}}}{d\mathbf{q}}$$

Soft probes Hard probes

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2/2\omega$ and two regimes can be distinguished:

< 67 ▶

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

• Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$

< 4 A ► <

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

- Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$
- Incoherent regime $(\omega_1 L \gg 1)$: $d\sigma^{\text{ind}} \sim \langle (\mathbf{K}_0 \mathbf{K}_1)^2 + \mathbf{K}_1^2 \mathbf{K}_0^2 \rangle$

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_{\mathcal{R}} \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

- Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$
- Incoherent regime ($\omega_1 L \gg 1$): $d\sigma^{\text{ind}} \sim \langle (\mathbf{K}_0 \mathbf{K}_1)^2 + \mathbf{K}_1^2 \mathbf{K}_0^2 \rangle$ The full radiation spectrum can be organized as

$$d\sigma^{
m rad} = d\sigma^{
m GB} + d\sigma^{
m vac}_{
m gain} + d\sigma^{
m vac}_{
m loss}$$

where

$$d\sigma^{\rm GB} = d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \left(L/\lambda_g^{\rm el} \right) \left\langle (\mathbf{K}_0 - \mathbf{K}_1)^2 \right\rangle (d\omega d\mathbf{k}/\omega)$$

$$d\sigma^{\rm vac}_{\rm gain} = d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \left(L/\lambda_g^{\rm el} \right) \left\langle \mathbf{K}_1^2 \right\rangle (d\omega d\mathbf{k}/\omega)$$

$$d\sigma^{\rm vac}_{\rm loss} = \left(1 - L/\lambda_g^{\rm el} \right) d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \,\mathbf{K}_0^2 \left(d\omega d\mathbf{k}/\omega \right)$$

Average energy loss

Integrating the lost energy $\boldsymbol{\omega}$ over the inclusive gluon spectrum:

$$\langle \Delta E \rangle = \int d\omega \int d\mathbf{k} \; \omega \frac{dN_g^{\mathrm{ind}}}{d\omega d\mathbf{k}} \sim \frac{C_R \alpha_s}{4} \left(\frac{\mu_D^2}{\lambda_g^{\mathrm{el}}} \right) L^2 \; \ln \frac{E}{\mu_D}$$

- *L*² dependence on the medium-length;
- μ_D: Debye screening mass of color interaction ~ *typical momentum* exchanged in a collision;
- $\mu_D^2/\lambda_g^{\rm el}$ often replaced by the *transport coefficient* \hat{q} , so that

$$\langle \Delta E \rangle \sim \alpha_s \hat{q} L^2$$

 \hat{q} : average q_{\perp}^2 acquired per unit length

・ロト ・同ト ・ヨト ・ヨト

Soft probes Hard probes

Numerical results

At variance with vacuum-radiation, medium induced spectrum

- Infrared safe (vanishing as $\omega \rightarrow 0$);
- Collinear safe (vanishing as $\theta \rightarrow 0$).

Depletion of gluon spectrum at small angles due to their rescattering in the medium!

Medium-modification of color-flow for high- p_T probes

- I will mainly focus on leading-hadron spectra...
- ...but the effects may be relevant for more differential observables (e.g. jet-fragmentation pattern)

Essential ideas presented here in a N = 1 opacity calculation³

 3 A.B, J.G.Milhano and U.A. Wiedemann, J. Phys. G G38 (2011) 124118 and Phys. Rev. C85 (2012) 031901 + arXiv:1204.4342 [hep=ph] = = =

Soft probes Hard probes

Vacuum radiation: color flow (in large- N_c)

Final hadrons from the fragmentation of the Lund string (in red)

- First endpoint attached to the final quark fragment;
- Radiated gluon color connected with the other daughter of the branching – belongs to the same string forming a kink on it;
- Second endpoint of the string here attached to the beam-remnant (very low p_T, very far in rapidity)

Soft probes Hard probes

Vacuum radiation: color flow (in large- N_c)

• Most of the radiated gluons in a shower remain color-connected with the projectile fragment;
Soft probes Hard probes

Vacuum radiation: color flow (in large- N_c)

- Most of the radiated gluons in a shower remain color-connected with the projectile fragment;
- Only $g \rightarrow q\overline{q}$ splitting can break the color connection, BUT

$$P_{qg} \sim \left[z^2 + (1-z)^2
ight]$$
 vs $P_{qg} \sim \left[rac{1-z}{z} + rac{z}{1-z} + z(1-z)
ight]$

less likely: no soft (i.e. $z \rightarrow 1$) enhancement!

Soft probes Hard probes

Hadronization in the presence of medium-modified color flow

Andrea Beraudo Heavy-ion collisions: theory review

< 6 >

∃ >

Soft probes Hard probes

Hadronization à la PYTHIA

"Final State Radiation"
 (gluon ∈ leading string)
Gluon contributes to leading hadron

"Initial State Radiation" (gluon decohered: lost!) Gluon contributes to *enhanced soft multiplicity* from subleading string

・ロト ・同ト ・ヨト ・ヨト

Soft probes Hard probes

Fragmentation function

ISR characterized by:

- Depletion of hard tail of FF (gluon decohered!);
- Enhanced soft multiplicity from the subleading string

Soft probes Hard probes

FF: higher order moments and hadron spectra

Starting from a steeply falling parton spectrum $\sim 1/p_T^n$ at the end of the shower evolution, single hadron spectrum sensitive to *higher moments* of FF:

$$dN^h/dp_T \sim \langle x^{n-1}
angle/p_T^n$$

- Quenching of hard tail of FF affects higher moments: e.g.
 - FSR: $\langle x^6 \rangle \approx 0.078$;

Image: A mathematical states and a mathem

• ISR: $\langle x^6 \rangle_{\rm lead} \approx 0.052$

Soft probes Hard probes

FF: higher order moments and hadron spectra

Starting from a steeply falling parton spectrum $\sim 1/p_T^n$ at the end of the shower evolution, single hadron spectrum sensitive to *higher moments* of FF:

$$dN^h/dp_T \sim \langle x^{n-1}
angle/p_T^n$$

- Quenching of hard tail of FF affects higher moments: e.g.
 - FSR: ⟨x⁶⟩ ≈ 0.078;
 ISR: ⟨x⁶⟩_{lead} ≈ 0.052
- Ratio of the two channels suggestive of the effect on the hadron spectrum

Soft probes Hard probes

Relevance for info on medium properties

 Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;

Relevance for info on medium properties

- Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;
- In the case of AA collisions a naive convolution

Parton Energy loss \otimes Vacuum Fragmentation

without accounting for the modified color-flow would result into a too hard hadron spectrum: fitting the experimental amount of quenching would require an overestimate of the energy loss at the partonic level;

Relevance for info on medium properties

- Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;
- In the case of AA collisions a naive convolution

Parton Energy loss \otimes Vacuum Fragmentation

without accounting for the modified color-flow would result into a too hard hadron spectrum: fitting the experimental amount of quenching would require an overestimate of the energy loss at the partonic level;

• Color-decoherence of radiated gluon might contribute to reproduce the observed high-p_T suppression with milder values of the medium transport coefficients (e.g. \hat{q}).

Soft probes Hard probes

Heavy-flavor

Andrea Beraudo Heavy-ion collisions: theory review

æ

<ロト <部ト < 注ト < 注ト

Soft probes Hard probes

Experimental findings

• Sizeable *suppression* of D meson spectra;

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Experimental findings

- Sizeable *suppression* of D meson spectra;
- Important suppression also of J/ψ from B decays;

Image: A mathematical states and a mathem

Soft probes Hard probes

Experimental findings

- Sizeable *suppression* of D meson spectra;
- Important suppression also of J/ψ from B decays;
- D mesons seem to follow the collective flow of light hadrons

Hard probes

Some challenges posed by experimental data

Radiated energy: angular distribution

- Color charge: C_F vs C_A ;
- Mass effect: radiation from b strongly suppressed;
- Reconsidering the importance of collisional energy loss?

Image: A math a math

Soft probes Hard probes

A possible tool to study the heavy-quark dynamics in the QGP: the relativistic Langevin equation

- Trivial extensions of jet-quenching calculations to the massive case simply describe the energy-loss of heavy quarks, which remain *external probes* crossing the medium;
- The Langevin equation allows to follow the *relaxation to thermal equilibrium*.⁴

⁴W.M. Alberico *et al.*, EPJC 71, 1666 and J.Phys.G G38 (2011) 124144 🚊 ૭૧૯

Update of the HQ momentum in the plasma: the recipe

$$rac{\Delta p^i}{\Delta t} = - \underbrace{\eta_D(p)p^i}_{ ext{determ.}} + \underbrace{\xi^i(t)}_{ ext{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

< 17 ▶

Update of the HQ momentum in the plasma: the recipe

$$rac{\Delta p^i}{\Delta t} = - \underbrace{\eta_D(p)p^i}_{ ext{determ.}} + \underbrace{\xi^i(t)}_{ ext{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Transport coefficients to calculate:

• Momentum diffusion
$$\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t}$$
 and $\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t}$;

Update of the HQ momentum in the plasma: the recipe

$$rac{\Delta p^i}{\Delta t} = - \underbrace{\eta_D(p)p^i}_{ ext{determ.}} + \underbrace{\xi^i(t)}_{ ext{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Transport coefficients to calculate:

• Momentum diffusion
$$\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t}$$
 and $\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t}$;

• Friction term (dependent on the discretization scheme!)

$$\eta_{D}^{\mathrm{Ito}}(p) = \frac{\kappa_{L}(p)}{2TE_{p}} - \frac{1}{E_{p}^{2}} \left[(1 - v^{2}) \frac{\partial \kappa_{L}(p)}{\partial v^{2}} + \frac{d - 1}{2} \frac{\kappa_{L}(p) - \kappa_{T}(p)}{v^{2}} \right]$$

fixed in order to insure approach to equilibrium (Einstein relation): Langevin \Leftrightarrow Fokker Planck with steady solution $\exp(-E_p/T)$

Soft probes Hard probes

In a static medium...

For $t \gg 1/\eta_D$ one approaches a relativistic Maxwell-Jüttner distribution⁵

$$f_{\rm MJ}(p) \equiv rac{e^{-E_p/T}}{4\pi M^2 \, T \, {\cal K}_2(M/T)}, \qquad {
m with } \int \! d^3 p \, f_{
m MJ}(p) = 1$$

(Test with a sample of c quarks with $p_0 = 2 \text{ GeV/c}$)

⁵A.B., A. De Pace, W.M. Alberico and A. Molinari, NPA=831, 59 (2009) 🛓 🔊 ର ର

Soft probes Hard probes

In an expanding fluid...

The fields $u^{\mu}(x)$ and T(x) are taken from the output of two longitudinally boost-invariant ("Hubble-law" longitudinal expansion $v_z = z/t$)

$$\begin{aligned} x^{\mu} &= (\tau \cosh \eta, \mathbf{r}_{\perp}, \tau \sinh \eta) \quad \text{with} \quad \tau \equiv \sqrt{t^2 - z^2} \\ u^{\mu} &= \bar{\gamma}_{\perp} (\cosh \eta, \bar{\mathbf{v}}_{\perp}, \sinh \eta) \quad \text{with} \quad \bar{\gamma} \equiv \frac{1}{\sqrt{1 - \bar{\mathbf{v}}_{\perp}^2}} \end{aligned}$$

hydro codes⁶.

- $u^{\mu}(x)$ used to perform the update each time in the fluid rest-frame;
- T(x) allows to fix at each step the value of the transport coefficients.

⁶P.F. Kolb, J. Sollfrank and U. Heinz, Phys. Rev. C **62** (2000) 054909 P. Romatschke and U.Romatschke, Phys. Rev. Lett. **99** (2007) 172301

Soft probes Hard probes

Numerical results: spectra in p-p

Hard production in elementary p-p collisions generated with POWHEG + PYTHIA PS: nice agreement with FONLL outcome and ALICE results

< 6 >

Soft probes Hard probes

Numerical results: spectra in Pb-Pb

In Pb-Pb collisions c and b quarks are then propagated inside the medium through the Langevin equation⁷