MC modeling for Heavy lons

Andrea Beraudo

CERN, Theory Unit

MCnet-LPCC school on Event Generators for LHC, 23-27 July 2012 CERN

イロト 不得下 イヨト イヨト 二日

Outline

- The motivation: exploring the QCD phase diagram
- Virtual experiment: lattice-QCD simulations
- Real experiments: heavy-ion collisions
 - Collision geometry (Glauber model)
 - Evolution of the produced medium (hydrodynamics)
- "External" probes of the medium:
 - Heavy flavor: relaxation to thermal equilibrium
 - Jet quenching: medium-induced parton branchings

Throughout my lecture I will try to stress the role of numerical simulations and Monte Carlo tools, emphasizing – when possible – analogies/differences with *pp* collisions

Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the *order* parameters

- Polyakov loop (L) ~ energy cost to add an isolated color charge
- Chiral condensate (qq) ~ effective mass of a "dressed" quark in a hadron

Region explored at LHC: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$)

- From QGP (color deconfinement, chiral symmetry restored)
- to hadronic phase (confined, chiral symmetry breaking¹)

NB $\langle \overline{q}q \rangle \neq 0$ responsible for most of the baryonic mass of the universe: only ~35 MeV of the proton mass from $m_{u/d} \neq 0$

¹V. Koch, Aspects of chiral symmetry, Int.J.Mod.Phys. E6 (1997) = > = > <

Virtual experiments: lattice-QCD simulations

- The best (unique?) tool to study QCD in the non-perturbative regime
- Limited to the study of equilibrium quantities

QCD on the lattice

The QCD partition function

$$\mathcal{Z} = \int [dU] \exp \left[-\beta S_g(U)\right] \prod_q \det \left[M(U, m_q)\right]$$

is evaluated on the lattice through a MC sampling of the field configurations, where

•
$$\beta = 6/g^2$$

• S_g is the gauge action, weighting the different field configurations;

- $U \in SU(3)$ is the link variable connecting two lattice sites;
- $M \equiv \gamma_{\mu} D_{\mu} + m_q$ is the Dirac operator

From the partition function on gets all the thermodynamical quantities²:

• Pressure: $P = (T/V) \ln \mathcal{Z}$;

²Wuppertal group, JHEP 1011 (2010) 077

From the partition function on gets all the thermodynamical quantities²:

- Pressure: $P = (T/V) \ln Z$;
- Entropy density: $s = \partial P / \partial T$;

²Wuppertal group, JHEP 1011 (2010) 077

From the partition function on gets all the thermodynamical quantities²:

- Pressure: $P = (T/V) \ln \mathcal{Z}$;
- Entropy density: $s = \partial P / \partial T$;

• Energy density:
$$\epsilon = Ts - P$$
;

メロト スポト メヨト メヨト 二日

²Wuppertal group, JHEP 1011 (2010) 077

From the partition function on gets all the thermodynamical quantities²:

- Pressure: $P = (T/V) \ln \mathcal{Z}$;
- Entropy density: $s = \partial P / \partial T$;
- Energy density: $\epsilon = Ts P$;
- Speed of sound: $c_s^2 = dP/d\epsilon$

3

²Wuppertal group, JHEP 1011 (2010) 077

From the partition function on gets all the thermodynamical quantities²:

- Pressure: $P = (T/V) \ln \mathcal{Z};$
- Entropy density: $s = \partial P / \partial T$;
- Energy density: $\epsilon = Ts P$;
- Speed of sound: $c_s^2 = dP/d\epsilon$

- Rapid rise in thermodynamical quantities suggesting a change in the number of active degrees of freedom (hadrons → partons);
- One observes a systematic ~20% deviation from the Stephan-Boltzmann limit even at large T: how to interpret it?

²Wuppertal group, JHEP 1011 (2010) 077

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

Real experiments: heavy-ion collisions

ollision geometry Aedium evolution Iard probes

Heavy-ion collisions: a typical event

- Valence quarks of participant nucleons act as sources of strong color fields giving rise to *particle production*
- Spectator nucleons don't participate to the collision;

Almost all the energy and baryon number carried away by the remnants

ollision geometry Aedium evolution Iard probes

Heavy-ion collisions: a typical event

Heavy-ion collisions: a cartoon of space-time evolution

- Soft probes (low- p_T hadrons): collective behavior of the medium;
- Hard probes (high- p_T particles, heavy quarks, quarkonia): produced in hard pQCD processes in the initial stage, allow to perform a tomography of the medium

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

Collision Geometry: the Glauber Model

- For a nice overview: M.L. Miller et al., nucl-ex/0701025;
- For some references to *pp* physics: T. Sjöstrand and M. van ZijL, PRD 36, 2019 (1987)

Collision geometry Medium evolution Hard probes

Glauber Model: outline

- Nuclei are extended/composite objects: they can cross at different impact parameter b and with a different number of elementary binary collisions N_{coll};
- the Glauber Model (optical or MC) is used to describe the geometry of the collision

Collision geometry Medium evolution Hard probes

Glauber Model: outline

 Nuclei are extended/composite objects: they can cross at different impact parameter b and with a different number of elementary binary collisions N_{coll};

• the Glauber Model (optical or MC) is used to describe the geometry of the collision

Modeling collision geometry important to interpret the data

- Thicker/denser medium going *from peripheral to central collisions* (higher particle multiplicity, larger jet quenching...);
- Initial eccentricity and fluctuations leave their fingerprints in final hadronic observables

Analogies with modeling of UE and MPI in pp collisions

Collision geometry Medium evolution Hard probes

Glauber Model: the optical limit

• Nuclear "thickness function" [Area⁻¹]:

$$\widehat{T}_A(\mathbf{s}) \equiv \int dz_A \, \rho_A(\mathbf{s}, z_A)$$

• Nuclear "overlap function" [Area⁻¹]:

$$\widehat{T}_{AB}(\mathbf{b}) \equiv \int d\mathbf{s} \, \widehat{T}_{A}(\mathbf{s}) \widehat{T}_{B}(\mathbf{s}-\mathbf{b})$$

Collision geometry Medium evolution Hard probes

Glauber Model: the optical limit

• Nuclear "thickness function" [Area⁻¹]:

• Nuclear "overlap function" [Area⁻¹]:

$$\widehat{\mathcal{T}}_{AB}(\mathbf{b})\equiv\int d\mathbf{s}\ \widehat{\mathcal{T}}_{A}(\mathbf{s})\widehat{\mathcal{T}}_{B}(\mathbf{s}-\mathbf{b})$$

イロト 不得 トイヨト イヨト

- Probability of elementary inelastic collision: $p_{\text{coll}}^{NN}(b) = \sigma_{\text{in}}^{NN} \widehat{T}_{AB}(b)$
- Collisions at a given impact parameter b is described by a binomial distribution:

$$P(n,b) = {AB \choose n} [p_{\text{coll}}^{NN}(b)]^n [1 - p_{\text{coll}}^{NN}(b)]^{AB-n}$$

Collision geometry Medium evolution Hard probes

Glauber Model: results in the optical limit

• Number of binary collisions (per A - B crossing, $\sum_{n=0}^{AB} P(n, b) = 1$):

$$N_{\rm coll}(b) = \sum_{n=1}^{AB} n P(n, b) = AB \ \widehat{T}_{AB}(b) \sigma_{\rm in}^{NN}$$

• Number of participants:

$$N_{\text{part}}(b) = A \int d\mathbf{s} \widehat{T}_{A}(\mathbf{s}) \left\{ 1 - [1 - \widehat{T}_{B}(\mathbf{s} - \mathbf{b})\sigma_{\text{in}}^{NN}]^{B} \right\} \\ + B \int d\mathbf{s} \widehat{T}_{B}(\mathbf{s} - \mathbf{b}) \left\{ 1 - [1 - \widehat{T}_{A}(\mathbf{s})\sigma_{\text{in}}^{NN}]^{A} \right\}$$

• Total inelastic cross section $\sigma_{in}^{AB} = \int_0^\infty 2\pi \ bdb \ p_{in}^{AB}(b)$ obtained integrating the probability of having at least one inelastic interaction

$$p_{\mathrm{in}}^{AB}(b) = \sum_{n=1}^{AB} P(n, b) = 1 - [1 - \widehat{T}_{AB}(b)\sigma_{\mathrm{in}}^{NN}]^{AB}$$

Collision geometry Medium evolution Hard probes

Glauber Model: centrality classes

 Centrality classes defined from measured dN_{evt}/dN_{ch}, dividing total inelastic cross-section in percentiles;

イロト イポト イヨト イヨト

Collision geometry Medium evolution Hard probes

Glauber Model: centrality classes

- Centrality classes defined from measured dN_{evt}/dN_{ch}, dividing total inelastic cross-section in percentiles;
- Analogous observable considered in UE studies in pp collisions, and used for MC-tunes

Collision geometry Medium evolution Hard probes

Glauber Model: centrality classes

- Centrality classes defined from measured dN_{evt}/dN_{ch}, dividing total inelastic cross-section in percentiles;
- Analogous observable considered in UE studies in pp collisions, and used for MC-tunes
- Which is the range of impact parameters (*to use in a theory calculation*!) corresponding to a given centrality class?
- A simple geometrical picture arises from the Glauber Model, e.g.

$$\frac{\int_{0}^{b_{0.1}} bdb \{1 - [1 - \hat{T}_{AB}(b)\sigma_{\rm in}^{NN}]^{AB}\}}{\int_{0}^{\infty} bdb \{1 - [1 - \hat{T}_{AB}(b)\sigma_{\rm in}^{NN}]^{AB}\}} = 0.1$$

defines the 0-10% centrality class

Collision geometry Medium evolution Hard probes

Glauber model for hard processes

Hard pQCD processes ($c\overline{c}$ production, high- p_T scattering...) scale with $N_{\rm coll}$, hence the interest of estimating $\langle N_{\rm coll} \rangle$ in a given centrality class

Collision geometry Medium evolution Hard probes

Glauber model for hard processes

Hard pQCD processes ($c\overline{c}$ production, high- p_T scattering...) scale with $N_{\rm coll}$, hence the interest of estimating $\langle N_{\rm coll} \rangle$ in a given centrality class

• Binary collisions *per inelastic event at given b*:

 $N_{\rm coll}^{\rm in.evt}(b) = N_{\rm coll}(b)/p_{\rm in}^{AB}(b)$

(distinction relevant only for very peripheral events)

Collision geometry Medium evolution Hard probes

Glauber model for hard processes

Hard pQCD processes ($c\overline{c}$ production, high- p_T scattering...) scale with $N_{\rm coll}$, hence the interest of estimating $\langle N_{\rm coll} \rangle$ in a given centrality class

• Binary collisions *per inelastic event at given b*:

 $N_{\rm coll}^{\rm in.evt}(b) = N_{\rm coll}(b)/p_{\rm in}^{AB}(b)$

(distinction relevant only for very peripheral events)

• Average over all inelastic events at different b:

$$\langle N_{\rm coll} \rangle_{b_1 - b_2} \equiv \frac{\int_{b_1}^{b_2} bdb \, N_{\rm coll}^{\rm in.evt}(b) \, \rho_{\rm in}^{AB}(b)}{\int_{b_1}^{b_2} bdb \, \rho_{\rm in}^{AB}(b)} = \frac{\int_{b_1}^{b_2} bdb \, N_{\rm coll}(b)}{\int_{b_1}^{b_2} bdb \, \rho_{\rm in}^{AB}(b)}$$

Collision geometry Medium evolution Hard probes

Glauber model for hard processes

Hard pQCD processes ($c\overline{c}$ production, high- p_T scattering...) scale with $N_{\rm coll}$, hence the interest of estimating $\langle N_{\rm coll} \rangle$ in a given centrality class

• Binary collisions *per inelastic event at given b*:

 $N_{\rm coll}^{\rm in.evt}(b) = N_{\rm coll}(b)/p_{\rm in}^{AB}(b)$

(distinction relevant only for very peripheral events)

• Average over all inelastic events at different b:

$$\langle N_{\rm coll} \rangle_{b_1 - b_2} \equiv \frac{\int_{b_1}^{b_2} bdb \, N_{\rm coll}^{\rm in.evt}(b) \, \rho_{\rm in}^{AB}(b)}{\int_{b_1}^{b_2} bdb \, \rho_{\rm in}^{AB}(b)} = \frac{\int_{b_1}^{b_2} bdb \, N_{\rm coll}(b)}{\int_{b_1}^{b_2} bdb \, \rho_{\rm in}^{AB}(b)}$$

One can then compare hard observables in *AA* collisions with a proper *rescaled pp* benchmark

Collision geometry Medium evolution Hard probes

Modeling of MPI in pp: some similarities

 $\begin{array}{l} \mbox{In QCD } \sigma_{\rm hard}(p_T^{\rm min}) > \sigma_{\rm tot}^{\rm pp} \mbox{ for small } p_T^{\rm min}; \\ \mbox{paradox solved by multiple interactions: } \langle n(p_T^{\rm min}) \rangle = \sigma_{\rm hard}(p_T^{\rm min}) / \sigma_{\rm ND} \end{array}$

Collision geometry Medium evolution Hard probes

Modeling of MPI in pp: some similarities

In QCD $\sigma_{hard}(p_T^{min}) > \sigma_{tot}^{pp}$ for small p_T^{min} ; paradox solved by multiple interactions: $\langle n(p_T^{min}) \rangle = \sigma_{hard}(p_T^{min}) / \sigma_{ND}$

• Interactions at given b assumed to follow a Poisson distribution $P_n(b) = \frac{[\overline{n}(b)]^n}{n!} \exp[-\overline{n}(b)], \quad \text{with} \quad \overline{n}(b) = k \underbrace{\mathcal{O}(b)}_{\text{overlap}}$

NB: Poisson vs Binomial distribution in AB collisions

• Number of interactions *per inelastic event at given b*:

$$\langle n(b) \rangle = \frac{\overline{n}(b)}{\rho_{\rm in}(b)} = \frac{k\mathcal{O}(b)}{1 - \exp[-k\mathcal{O}(b)]}$$

• Average number of interactions per inelastic event:

$$\langle n \rangle = \frac{\int bdb \langle n(b) \rangle p_{\rm in}(b)}{\int bdb p_{\rm in}(b)} = \frac{\int bdb \,\overline{n}(b)}{\int bdb \,p_{\rm in}(b)} = \frac{\sigma_{\rm hard}}{\sigma_{\rm ND}}$$

Collision geometry Medium evolution Hard probes

Glauber Model: Monte Carlo implementation

• Effective nucleon radius R from hard-sphere scattering $\sigma = 4\pi R^2$, identifying $\sigma \equiv \sigma_{in}^{NN}$;

イロト イポト イヨト イヨト

3

Collision geometry Medium evolution Hard probes

Glauber Model: Monte Carlo implementation

- Effective nucleon radius R from hard-sphere scattering $\sigma = 4\pi R^2$, identifying $\sigma \equiv \sigma_{in}^{NN}$;
- Nucleons distributed in nuclei A and B according to ρ_{A/B}(x)

イロト イポト イヨト イヨト

Collision geometry Medium evolution Hard probes

Glauber Model: Monte Carlo implementation

- Effective nucleon radius R from hard-sphere scattering $\sigma = 4\pi R^2$, identifying $\sigma \equiv \sigma_{in}^{NN}$;
- Nucleons distributed in nuclei A and B according to ρ_{A/B}(x)

イロト イポト イヨト イヨト

18 / 76

• A collision occurs if $d_{\perp} < 2R$

Collision geometry Medium evolution Hard probes

Glauber Model: Monte Carlo implementation

- Effective nucleon radius R from hard-sphere scattering $\sigma = 4\pi R^2$, identifying $\sigma \equiv \sigma_{in}^{NN}$;
- Nucleons distributed in nuclei A and B according to ρ_{A/B}(x)
- A collision occurs if $d_{\perp} < 2R$

- Overall agreement except for most peripheral collisions;
- MC-Glauber provides more granular initial conditions

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

Glauber model provides the initial for... ...medium evolution: hydrodynamics

Some references...

- J.Y. Ollitrault, "*Phenomenology of the little bang*", J.Phys.Conf.Ser. 312 (2011) 012002;
- J.Y. Ollitrault, "*Relativistic hydrodynamics for heavy-ion collisions*", Eur.J.Phys. 29 (2008) 275-302
- U.W. Heinz, "Hydrodynamic description of ultrarelativistic heavy ion collisions", in *Hwa, R.C. (ed.) et al.: Quark gluon plasma* 634-714

Collision geometry Medium evolution Hard probes

Hydrodynamics and heavy-ion collisions

The success of hydrodynamics in describing particle spectra in heavy-ion collisions measured at RHIC came as a surprise!

- The general setup and its implications
- Predictions
 - Radial flow
 - Elliptic flow
- What can we learn?
 - Initial conditions
 - Event-by-event fluctuations and consequences

Medium evolution

Hydrodynamics: the general setup

- Hydrodynamics is applicable in a situation in which $\lambda_{\rm mfp} \ll L$
- In this limit the behavior of the system is entirely governed by the conservation laws

where

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}, \quad j^{\mu}_{B} = n_{B}u^{\mu} \quad \text{and} \quad u^{\mu} = \gamma(1, \vec{v})$$

Information on the medium is entirely encoded into the EOS

 $P = P(\epsilon)$

 The transition from fluid to particles occurs at the freeze-out hypersuface Σ^{fo} (e.g. at $T = T_{fo}$)

$$E(dN/d\vec{p}) = \int_{\Sigma^{\text{fo}}} p^{\mu} d\Sigma_{\mu} \exp[-(p \cdot u)/T]$$
Collision geometry Medium evolution Hard probes

Hydro predictions: radial flow (I)

- $T_{\rm slope}$ (~ 167 MeV) *universal* in pp collisions;
- T_{slope} growing with m in AA collisions: spectrum gets harder!

э

Collision geometry Medium evolution Hard probes

Hydro predictions: radial flow (II)

Physical interpretation:

Thermal emission on top of a collective flow

$$\begin{aligned} \frac{1}{2}m\langle \mathbf{v}_{\perp}^{2}\rangle &= \frac{1}{2}m\left\langle \left(\mathbf{v}_{\perp th} + \mathbf{v}_{\perp flow}\right)^{2}\right\rangle \\ &= \frac{1}{2}m\langle \mathbf{v}_{\perp th}^{2}\rangle + \frac{1}{2}m\mathbf{v}_{\perp flow}^{2} \\ \implies & T_{slope} = T_{fo} + \frac{1}{2}m\mathbf{v}_{\perp flow}^{2} \end{aligned}$$

Collision geometry Medium evolution Hard probes

Hydro predictions: radial flow (II)

Physical interpretation:

Thermal emission on top of a collective flow

Radial flow gets larger going from RHIC to LHC!

Collision geometry Medium evolution Hard probes

Hydro predictions: elliptic flow

• In *non-central collisions* particle emission is not azimuthally-symmetric!

Collision geometry Medium evolution Hard probes

Hydro predictions: elliptic flow

- In *non-central collisions* particle emission is not azimuthally-symmetric!
- The effect can be quantified through the *Fourier coefficient* v₂

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left(1 + 2v_2 \cos[2(\phi - \psi_{RP})] + \dots \right)$$
$$v_2 \equiv \langle \cos[2(\phi - \psi_{RP})] \rangle$$

v₂(p_T) ~ 0.2 gives a modulation 1.4 vs
 0.6 for in-plane vs out-of-plane particle emission!

Medium evolution

Elliptic flow: physical interpretation

• Matter behaves like a fluid whose *expansion* is *driven by pressure* gradients

$$rac{\partial}{\partial t}\left[(\epsilon+P)v^i
ight]=-rac{\partial P}{\partial x^i};$$

- Spatial anisotropy is converted into momentum anisotropy;
- At freeze-out particles are mostly emitted along the reaction-plane. ・ロト ・四ト ・ヨト ・ヨト

- 34

Collision geometry Medium evolution Hard probes

Elliptic flow: mass ordering

The mass ordering of v_2 is a direct consequence of the hydro expansion

- Particles emitted according to a thermal distribution $\sim \exp[-p \cdot u(x)/T_{fo}]$ in the local rest-frame of the fluid-cell;
- Parametrizing the fluid velocity as

 $u^{\mu} \equiv \gamma_{\perp} (\cosh Y, \mathbf{u}_{\perp}, \sinh Y),$

one gets $(v_z \equiv \tanh Y)$

 $p \cdot u = \gamma_{\perp} [\mathbf{m}_{\perp} \cosh(y - Y) - \mathbf{p}_{\perp} \cdot \mathbf{u}_{\perp}]$

 Dependence on m_T at the basis of mass ordering at fixed p_T

26 / 76

Initial conditions: "Bjorken" estimate

• It is useful to describe the evolution in term of the variables

$$au \equiv \sqrt{t^2 - z^2}$$
 and $\eta_s \equiv \frac{1}{2} \ln \frac{t + z}{t - z}$

Independence of the initial conditions on η_s entails $v_z = z/t$

Initial conditions: "Bjorken" estimate

• It is useful to describe the evolution in term of the variables

$$au \equiv \sqrt{t^2 - z^2}$$
 and $\eta_s \equiv \frac{1}{2} \ln \frac{t + z}{t - z}$

Independence of the initial conditions on η_s entails $v_z = z/t$

• For a *purely longitudinal* Hubble-like expansion entropy conservation implies:

$$s \tau = s_0 \tau_0 \longrightarrow s_0 = (s \tau)/\tau_0$$

Initial conditions: "Bjorken" estimate

• It is useful to describe the evolution in term of the variables

$$au \equiv \sqrt{t^2 - z^2}$$
 and $\eta_s \equiv \frac{1}{2} \ln \frac{t + z}{t - z}$

Independence of the initial conditions on η_s entails $v_z = z/t$

• For a *purely longitudinal* Hubble-like expansion entropy conservation implies:

$$s \tau = s_0 \tau_0 \quad \longrightarrow \quad s_0 = (s \tau)/\tau_0$$

• Entropy density is defined in the local fluid rest-frame:

$$s \equiv \frac{dS}{d\mathbf{x}_{\perp} dz} \bigg|_{z=0} = \frac{1}{\tau} \frac{dS}{d\mathbf{x}_{\perp} d\eta_s} \quad \longrightarrow \quad s\tau = \frac{dS}{d\mathbf{x}_{\perp} d\eta_s}$$

27 / 76

Initial conditions: "Bjorken" estimate

• It is useful to describe the evolution in term of the variables

$$au \equiv \sqrt{t^2 - z^2}$$
 and $\eta_s \equiv \frac{1}{2} \ln \frac{t + z}{t - z}$

Independence of the initial conditions on η_s entails $v_z = z/t$

• For a *purely longitudinal* Hubble-like expansion entropy conservation implies:

$$s \tau = s_0 \tau_0 \quad \longrightarrow \quad s_0 = (s \tau)/\tau_0$$

• Entropy density is defined in the local fluid rest-frame:

$$s \equiv \frac{dS}{d\mathbf{x}_{\perp} dz} \bigg|_{z=0} = \frac{1}{\tau} \frac{dS}{d\mathbf{x}_{\perp} d\eta_s} \quad \longrightarrow \quad s\tau = \frac{dS}{d\mathbf{x}_{\perp} d\eta_s}$$

• Entropy is related to the *final multiplicity of charged particles* $(S \sim 3.6 N \text{ for pions})$, so that (at decoupling $\eta \approx \eta_s$):

$$s_0 \approx \frac{1}{\tau_0} \frac{3.6}{\pi R_A^2} \frac{dN_{\rm ch}}{d\eta} \frac{3}{2}$$

Collision geometry Medium evolution Hard probes

"Bjorken" estimate: results

$$s_0 pprox rac{1}{ au_0} rac{3.6}{\pi R_A^2} rac{dN_{
m ch}}{d\eta} rac{3}{2}$$

• From $dN_{\rm ch}/d\eta \approx 1600$ measured by ALICE at LHC and $R_{\rm Pb} \approx 6$ fm one gets:

$$s_0 pprox (80\,{
m fm}^{-2})/ au_0$$

 τ₀ is found to be quite small (v₂ must develop early!):

$$0.1 \lesssim \tau_0 \lesssim 1 \text{ fm} \longrightarrow 80 \lesssim s_0 \lesssim 800 \text{ fm}^{-3}$$

This should be compared with I-QCD

 $s(T = 200 \text{ MeV}) \approx 10 \text{ fm}^{-3}$

28 / 76

Initial conditions: Glauber model

Glauber model provides initial conditions for hydro. Taking as a guidance $s_0 \tau_0 \approx s \tau$ one can assume the following "soft + hard" ansatz

$$s_0(\mathbf{x}) = rac{C}{\tau_0} \left[rac{1-lpha}{2} n_{\mathrm{part}}(\mathbf{x}) + lpha n_{\mathrm{coll}}(\mathbf{x})
ight]$$

Initial conditions: Glauber model

Glauber model provides initial conditions for hydro. Taking as a guidance $s_0 \tau_0 \approx s \tau$ one can assume the following "soft + hard" ansatz

$$s_0(\mathbf{x}) = rac{C}{\tau_0} \left[rac{1-lpha}{2} n_{\mathrm{part}}(\mathbf{x}) + lpha n_{\mathrm{coll}}(\mathbf{x})
ight]$$

• Optical Glauber:

$$n_{\text{part}}(\mathbf{x}) = A \, \widehat{T}_A(\mathbf{x} + \mathbf{b}/2) \left\{ 1 - [1 - \widehat{T}_B(\mathbf{x} - \mathbf{b}/2)\sigma_{\text{in}}^{NN}]^B \right\} + B \, \widehat{T}_B(\mathbf{x} - \mathbf{b}/2) \left\{ 1 - [1 - \widehat{T}_A(\mathbf{x} + \mathbf{b}/2)\sigma_{\text{in}}^{NN}]^A \right\}$$
$$n_{\text{coll}}(\mathbf{x}) = AB \, \sigma_{\text{in}}^{NN} \, \widehat{T}_A(\mathbf{x} + \mathbf{b}/2) \, \widehat{T}_B(\mathbf{x} - \mathbf{b}/2)$$

イロト 不得 トイヨト イヨト

3

29 / 76

Initial conditions: Glauber model

Glauber model provides initial conditions for hydro. Taking as a guidance $s_0 \tau_0 \approx s \tau$ one can assume the following "soft + hard" ansatz

$$s_0(\mathbf{x}) = \frac{C}{\tau_0} \left[\frac{1-\alpha}{2} n_{\text{part}}(\mathbf{x}) + \alpha n_{\text{coll}}(\mathbf{x}) \right]$$

• Optical Glauber:

$$n_{\text{part}}(\mathbf{x}) = A \, \widehat{T}_A(\mathbf{x} + \mathbf{b}/2) \left\{ 1 - [1 - \widehat{T}_B(\mathbf{x} - \mathbf{b}/2)\sigma_{\text{in}}^{NN}]^B \right\} + B \, \widehat{T}_B(\mathbf{x} - \mathbf{b}/2) \left\{ 1 - [1 - \widehat{T}_A(\mathbf{x} + \mathbf{b}/2)\sigma_{\text{in}}^{NN}]^A \right\}$$
$$n_{\text{coll}}(\mathbf{x}) = AB \, \sigma_{\text{in}}^{NN} \, \widehat{T}_A(\mathbf{x} + \mathbf{b}/2) \, \widehat{T}_B(\mathbf{x} - \mathbf{b}/2)$$

• MC-Glauber: one *counts* the number of participants/collisions within the area σ_{in}^{NN} centered at **x**

$$n_{\text{part}}(\mathbf{x}) = \frac{N_{\text{part}}^{A}(\mathbf{x}) + N_{\text{part}}^{B}(\mathbf{x})}{\sigma_{\text{in}}^{NN}}, \quad n_{\text{coll}}(\mathbf{x}) = \frac{N_{\text{coll}}(\mathbf{x})}{\sigma_{\text{in}}^{NN}}$$

Medium evolution

Initial conditions: event-by-event fluctuations

- Flow coefficients are defined as $v_n \equiv \langle \langle \cos[n(\phi \Psi_n)] \rangle \rangle$.
- For hydro simulations with smooth initial conditions
 - $\Psi_n \equiv \Psi_{\rm BP}$ known exactly:
 - all odd-harmonics vanish.
- Real life is more complicated...

Odd harmonics appear, angles Ψ_n are not directly measured.

Glauber-MC initial conditions mandatory to study these effects

Collision geometry Medium evolution Hard probes

Event-by-event fluctuations: experimental consequences

Fluctuating initial conditions giving rise to^a:

• Non-vanishing v_2 in central collisions;

< ロト < 同ト < ヨト < ヨト

31 / 76

• Odd harmonics $(v_3 \text{ and } v_5)$

Collision geometry Medium evolution Hard probes

Event-by-event fluctuations: experimental consequences

Fluctuating initial conditions giving rise to^a:

- Non-vanishing v_2 in central collisions;
- Odd harmonics (v_3 and v_5)

Hydro can reproduce also higher harmonics^b

^aALICE, Phys.Rev.Lett. 107 (2011) 032301 ^bB: Schenke *et al.*, PRC 85, 024901 (2012)

Collision geometry Medium evolution Hard probes

Hard probes: outline

"External" colored particles produced in hard pQCD events (heavy quarks, high- p_T partons) allowing a *tomography of the medium*

- Experimental findings;
- Theory modeling and interpretation
 - Heavy flavor: stochastic dynamics of heavy quarks in the plasma; developing tools allowing to describe approach to equilibrium
 - Jet quenching: modeling of medium-induced parton branchings and modification of parton showers in a medium (angular distribution of gluon radiation, color connections...)

Collision geometry Medium evolution Hard probes

Experimental findings

$$R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$$

Sizable suppression of D meson spectra;

Collision geometry Medium evolution Hard probes

Experimental findings

 $R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$

- Sizable suppression of D meson spectra;
- Important suppression also of J/ψ from B decays $(B \rightarrow J/\psi + X)$;

Collision geometry Medium evolution Hard probes

Experimental findings

 $R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$

- Sizable *suppression* of D meson spectra;
- Important suppression also of J/ψ from B decays (B → J/ψ + X);

• D mesons seem to follow the collective flow of light hadrons

Collision geometry Medium evolution Hard probes

Experimental findings

 $R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$

- Sizable *suppression* of D meson spectra;
- Important suppression also of J/ψ from B decays (B → J/ψ + X);
- D mesons seem to follow the collective flow of light hadrons

Sizable v_2 observed for D mesons \longrightarrow theoretical setup allowing to describe approach to thermalization

Collision geometry Medium evolution Hard probes

The Boltzmann equation

Time evolution of HQ phase-space distribution $f_Q(t, \mathbf{x}, \mathbf{p})$:

$$\frac{d}{dt}f_Q(t,\mathbf{x},\mathbf{p})=C[f_Q]$$

• Total derivative along particle trajectory

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \mathbf{v} \frac{\partial}{\partial \mathbf{x}} + \mathbf{F} \frac{\partial}{\partial \mathbf{p}}$$

Neglecting x-dependence and mean fields: $\partial_t f_Q(t, \mathbf{p}) = C[f_Q]$

• Collision integral:

$$C[f_Q] = \int d\mathbf{k} [\underbrace{w(\mathbf{p} + \mathbf{k}, \mathbf{k}) f_Q(\mathbf{p} + \mathbf{k})}_{\text{gain term}} - \underbrace{w(\mathbf{p}, \mathbf{k}) f_Q(\mathbf{p})}_{\text{loss term}}]$$

 $w(\mathbf{p}, \mathbf{k})$: HQ transition rate $\mathbf{p} \rightarrow \mathbf{p} - \mathbf{k}$

34 / 76

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*³ (Landau)

$$C[f_Q] \approx \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] \left[w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p}) \right]$$

³B. Svetitsky, PRD 37, 2484 (1988)

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*³ (Landau)

$$C[f_Q] \approx \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] \left[w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p}) \right]$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$\frac{\partial}{\partial t}f_Q(t,\mathbf{p}) = \frac{\partial}{\partial p^i} \left\{ A^i(\mathbf{p})f_Q(t,\mathbf{p}) + \frac{\partial}{\partial p^j} [B^{ij}(\mathbf{p})f_Q(t,\mathbf{p})] \right\}$$

where

$$A^{i}(\mathbf{p}) = \int d\mathbf{k} \ k^{i} w(\mathbf{p}, \mathbf{k}) \longrightarrow A^{i}(\mathbf{p}) = A(p) \ p^{i}$$
$$B^{ij}(\mathbf{p}) = \frac{1}{2} \int d\mathbf{k} \ k^{i} k^{j} w(\mathbf{p}, \mathbf{k}) \longrightarrow B^{ij}(\mathbf{p}) = \hat{p}^{i} \hat{p}^{j} B_{0}(p) + (\delta^{ij} - \hat{p}^{i} \hat{p}^{j}) B_{1}(p)$$

³B. Svetitsky, PRD 37, 2484 (1988)

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*³ (Landau)

$$C[f_Q] \approx \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] \left[w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p}) \right]$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$\frac{\partial}{\partial t} f_Q(t, \mathbf{p}) = \frac{\partial}{\partial p^i} \left\{ A^i(\mathbf{p}) f_Q(t, \mathbf{p}) + \frac{\partial}{\partial p^j} [B^{ij}(\mathbf{p}) f_Q(t, \mathbf{p})] \right\}$$

where

$$A^{i}(\mathbf{p}) = \int d\mathbf{k} \, k^{i} w(\mathbf{p}, \mathbf{k}) \quad \longrightarrow \quad A^{i}(\mathbf{p}) = A(p) \, p^{i}$$
$$B^{ij}(\mathbf{p}) = \frac{1}{2} \int d\mathbf{k} \, k^{i} k^{j} w(\mathbf{p}, \mathbf{k}) \quad \longrightarrow \quad B^{ij}(\mathbf{p}) = \hat{p}^{i} \hat{p}^{j} B_{0}(p) + (\delta^{ij} - \hat{p}^{i} \hat{p}^{j}) B_{1}(p)$$

Problem reduced to the evaluation of three transport coefficients

³B. Svetitsky, PRD 37, 2484 (1988)

Collision geometry Medium evolution Hard probes

Physical interpretation

• Ignoring the momentum dependence of the transport coefficients $\gamma \equiv A(p)$ and $D \equiv B_0(p) = B_1(p)$ the FP equation reduces to

$$\frac{\partial}{\partial t} f_Q(t, \mathbf{p}) = \gamma \frac{\partial}{\partial p^i} [p^i f_Q(t, \mathbf{p})] + D \Delta_{\mathbf{p}} f_Q(t, \mathbf{p})]$$

Collision geometry Medium evolution Hard probes

Physical interpretation

• Ignoring the momentum dependence of the transport coefficients $\gamma \equiv A(p)$ and $D \equiv B_0(p) = B_1(p)$ the FP equation reduces to

$$\frac{\partial}{\partial t}f_Q(t,\mathbf{p}) = \gamma \frac{\partial}{\partial p^i}[p^i f_Q(t,\mathbf{p})] + D\,\Delta_{\mathbf{p}}f_Q(t,\mathbf{p})$$

• Starting from the initial condition $f_Q(t=0, \mathbf{p}) = \delta(\mathbf{p} - \mathbf{p}_0)$ one gets

$$f_Q(t, \mathbf{p}) = \left(\frac{\gamma}{2\pi D[1 - \exp(-2\gamma t)]}\right)^{3/2} \exp\left[-\frac{\gamma}{2D} \frac{[\mathbf{p} - \mathbf{p}_0 \exp(-\gamma t)]^2}{1 - \exp(-2\gamma t)}\right]$$

Collision geometry Medium evolution Hard probes

Physical interpretation

• Ignoring the momentum dependence of the transport coefficients $\gamma \equiv A(p)$ and $D \equiv B_0(p) = B_1(p)$ the FP equation reduces to

$$\frac{\partial}{\partial t}f_Q(t,\mathbf{p}) = \gamma \frac{\partial}{\partial p^i}[p^i f_Q(t,\mathbf{p})] + D\,\Delta_{\mathbf{p}}f_Q(t,\mathbf{p})$$

• Starting from the initial condition $f_Q(t=0, \mathbf{p}) = \delta(\mathbf{p} - \mathbf{p}_0)$ one gets

$$f_Q(t, \mathbf{p}) = \left(\frac{\gamma}{2\pi D[1 - \exp(-2\gamma t)]}\right)^{3/2} \exp\left[-\frac{\gamma}{2D} \frac{[\mathbf{p} - \mathbf{p}_0 \exp(-\gamma t)]^2}{1 - \exp(-2\gamma t)}\right]$$

• Asymptotically the solution *forgets about the initial condition* and tends to a thermal distribution

$$f_Q(t, \mathbf{p}) \underset{t \to \infty}{\sim} \left(\frac{\gamma}{2\pi D} \right)^{3/2} \exp \left[-\left(\frac{\gamma M_Q}{D} \right) \frac{\mathbf{p}^2}{2M_Q} \right]$$

 $\longrightarrow D = M_Q \gamma T$: Einstein *fluctuation-dissipation* relation

Hard probes

The challenge: addressing the experimental situation

One needs a tool, equivalent to the Fokker-Planck equation, but allowing to face the complexity of the experimental situation⁴ in which

⁴A.B. et al., NPA 831 59 (2009) and EPJC 71 (2011) 1666 For a review: R. Rapp and H. van Hees, arXiv:0903.1096 ⁵A.W.C. Lau and T.C. Lubensky, PRE 76, 011123 (2007)

The challenge: addressing the experimental situation

One needs a tool, equivalent to the Fokker-Planck equation, but allowing to face the complexity of the experimental situation⁴ in which

- heavy quarks can be relativistic, so that one must deal with the momentum dependence⁵ of the transport coefficients;
- the dynamics in the medium must be *interfaced with the initial hard production*, possibly given by pQCD event generators;
- the stochastic dynamics takes plane in a medium which undergoes a hydrodynamical expansion.

⁴A.B. et al., NPA 831 59 (2009) and EPJC 71 (2011) 1666 For a review: R. Rapp and H. van Hees, arXiv:0903.1096 ⁵A.W.C. Lau and T.C. Lubensky, PRE 76, 011123 (2007) \rightarrow (2) (2) (2)

Collision geometry Medium evolution Hard probes

The challenge: addressing the experimental situation

One needs a tool, equivalent to the Fokker-Planck equation, but allowing to face the complexity of the experimental situation⁴ in which

- heavy quarks can be relativistic, so that one must deal with the momentum dependence⁵ of the transport coefficients;
- the dynamics in the medium must be *interfaced with the initial hard production*, possibly given by pQCD event generators;
- the stochastic dynamics takes plane in a medium which undergoes a hydrodynamical expansion.

A proper *relativistic generalization of the Langevin equation* allows to accomplish this task

 4 A.B. et al., NPA 831 59 (2009) and EPJC 71 (2011) 1666 For a review: R. Rapp and H. van Hees, arXiv:0903.1096 5 A.W.C. Lau and T.C. Lubensky, PRE 76, 011123 (2007) \rightarrow (2007) \rightarrow (2007)

Collision geometry Medium evolution Hard probes

・ロト ・回ト ・ヨト ・ヨト

3

38 / 76

The relativistic Langevin equation

$$rac{\Delta p^i}{\Delta t} = - \underbrace{\eta_{D}(p)p^i}_{ ext{determ.}} + \underbrace{\xi^i(t)}_{ ext{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{\parallel}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{\perp}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Collision geometry Medium evolution Hard probes

The relativistic Langevin equation

$$rac{\Delta p^i}{\Delta t} = - \underbrace{\eta_D(p)p^i}_{ ext{determ.}} + \underbrace{\xi^i(t)}_{ ext{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{\parallel}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{\perp}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Transport coefficients to calculate:

• Momentum diffusion
$$\kappa_{\perp} \equiv \frac{1}{2} \frac{\langle \Delta p_{\perp}^2 \rangle}{\Delta t}$$
 and $\kappa_{\parallel} \equiv \frac{\langle \Delta p_{\parallel}^2 \rangle}{\Delta t}$;

• Friction term (dependent on the discretization scheme!)

$$\eta_{D}^{\mathrm{Ito}}(p) = \frac{\kappa_{\parallel}(p)}{2TE_{p}} - \frac{1}{E_{p}^{2}} \left[(1-v^{2}) \frac{\partial \kappa_{\parallel}(p)}{\partial v^{2}} + \frac{d-1}{2} \frac{\kappa_{\parallel}(p) - \kappa_{\perp}(p)}{v^{2}} \right]$$

fixed in order to insure approach to equilibrium (Einstein relation): Langevin \Leftrightarrow Fokker Planck with steady solution $\exp(-E_p/T)$

Langevin equation: the numerical algorithm

Update performed in the local fluid rest-frame:

$$\begin{split} \Delta \bar{\boldsymbol{p}}_{n}^{i} &= -\eta_{D}(\bar{\boldsymbol{p}}_{n})\bar{\boldsymbol{p}}_{n}^{i}\Delta \bar{t} + \xi^{i}(\bar{t}_{n})\Delta \bar{t} \equiv -\eta_{D}(\bar{\boldsymbol{p}}_{n})\bar{\boldsymbol{p}}_{n}^{i}\Delta \bar{t} + g^{ij}(\bar{\boldsymbol{p}}_{n})\zeta^{i}(\bar{t}_{n})\sqrt{\Delta \bar{t}},\\ \Delta \bar{\boldsymbol{x}}_{n} &= \bar{\boldsymbol{p}}_{n}/\bar{\boldsymbol{E}}_{n}\Delta \bar{t} \end{split}$$

with $\Delta \overline{t} = 0.02 \text{ fm/c}$ (in the fluid rest-frame!) and

$$g^{ij}(\mathbf{p}) \equiv \sqrt{\kappa_{\parallel}(p)} \hat{p}^{i} \hat{p}^{j} + \sqrt{\kappa_{\perp}(p)} (\delta^{ij} - \hat{p}^{i} \hat{p}^{j}) \quad \text{and} \quad \langle \zeta_{n}^{i} \zeta_{n'}^{j} \rangle = \delta^{ij} \delta_{nn'}$$

Hence one needs simply to:

- extract three independent random numbers ζⁱ from a gaussian distribution with σ=1;
- update the momentum and position of the heavy quark;
- go back to the Lab-frame: \mathbf{x}_{n+1} and \mathbf{p}_{n+1} .
Collision geometry Medium evolution Hard probes

The background medium

The fields $u^{\mu}(x)$ and T(x) are taken from the output of two longitudinally boost-invariant ("Hubble-law" longitudinal expansion $v_z = z/t$)

$$\begin{aligned} x^{\mu} &= (\tau \cosh \eta, \mathbf{r}_{\perp}, \tau \sinh \eta) \quad \text{with} \quad \tau \equiv \sqrt{t^2 - z^2} \\ u^{\mu} &= \gamma_{\perp} (\cosh \eta, \mathbf{u}_{\perp}, \sinh \eta) \quad \text{with} \quad \gamma_{\perp} \equiv \frac{1}{\sqrt{1 - \mathbf{u}_{\perp}^2}} \end{aligned}$$

hydro codes⁶.

- $u^{\mu}(x)$ used to perform the update each time in the fluid rest-frame;
- T(x) allows to fix at each step the value of the transport coefficients.

⁶P.F. Kolb, J. Sollfrank and U. Heinz, Phys. Rev. C **62** (2000) 054909

P. Romatschke and U.Romatschke, Phys. Rev. Lett. 99 (2007) 172301

Collision geometry Medium evolution Hard probes

Evaluation of transport coefficients: $\kappa_{\perp}(p)$ and $\kappa_{\parallel}(p)$

It's the stage where the various models differ!

We account for the effect of $2 \rightarrow 2$ collisions in the medium

⁷Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

Collision geometry Medium evolution Hard probes

Evaluation of transport coefficients: $\kappa_{\perp}(p)$ and $\kappa_{\parallel}(p)$

It's the stage where the various models differ! We account for the effect of $2 \rightarrow 2$ collisions in the medium

Intermediate cutoff $|t|^* \sim m_D^{27}$ separating the contributions of

⁷Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

Collision geometry Medium evolution Hard probes

Evaluation of transport coefficients: $\kappa_{\perp}(p)$ and $\kappa_{\parallel}(p)$

It's the stage where the various models differ! We account for the effect of $2 \rightarrow 2$ collisions in the medium

Intermediate cutoff $|t|^* \sim m_D^{27}$ separating the contributions of

- hard collisions $(|t| > |t|^*)$: kinetic pQCD calculation
- soft collisions (|t| < |t|*): Hard Thermal Loop approximation (resummation of medium effects)

⁷Similar strategy for the evaluation of *dE/dx* in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008). ↓ □ ▶ ↓ ⊕ ℕ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕ ▶ ↓ ⊕

Collision geometry Medium evolution Hard probes

$\kappa_{\perp}(p)$ and $\kappa_{\parallel}(p)$: hard contribution

$$\begin{aligned} \kappa_{\perp}^{g/q(\text{hard})} &= \frac{1}{2} \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^{*}) \times \\ &\times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^{2} q_{\perp}^{2} \end{aligned}$$

$$\kappa_{\parallel}^{g/q(\text{hard})} = \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^{*}) \times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^{2} q_{\parallel}^{2}$$

where: $(|t| \equiv q^2 - \omega^2)$

Collision geometry Medium evolution Hard probes

$\kappa_{\perp}(p)$ and $\kappa_{\parallel}(p)$: soft contribution

When the exchanged 4-momentum is **soft** the t-channel gluon feels the presence of the medium **and requires resummation**.

Collision geometry Medium evolution Hard probes

$\kappa_{\perp}(p)$ and $\kappa_{\parallel}(p)$: soft contribution

When the exchanged 4-momentum is **soft** the t-channel gluon feels the presence of the medium and requires **resummation**.

The *blob* represents the *dressed gluon propagator*, which has longitudinal and transverse components:

$$\Delta_L(z,q) = rac{-1}{q^2 + \Pi_L(z,q)}, \quad \Delta_T(z,q) = rac{-1}{z^2 - q^2 - \Pi_T(z,q)},$$

where *medium effects* are embedded in the HTL gluon self-energy.

Collision geometry Medium evolution Hard probes

Soft contribution: some comments

The resummation of the in-medium gluon self-energy prevents the appearance of soft divergences in $\kappa_{\perp/\parallel}(p)$

⁸T. Sjöstrand and P.Z. Skands, JHEP 03 (2004) 053. ← (2) → (2)

Collision geometry Medium evolution Hard probes

Soft contribution: some comments

The resummation of the in-medium gluon self-energy prevents the appearance of soft divergences in $\kappa_{\perp/\parallel}(p)$

• Dealing with MPI in *pp* collisions divergence $d\hat{\sigma}/dp_{\perp}^2 \sim \alpha_s^2(p_{\perp}^2)/p_{\perp}^4$ from *t*-channel diagrams regularized through the overall factor⁸

$$\frac{\alpha_s^2(p_\perp^2 + p_{\perp 0}^2)}{\alpha_s^2(p_T^2)} \frac{p_\perp^4}{(p_\perp^2 + p_{\perp 0}^2)^2}$$

Physical argument: hadrons at sufficiently large distance-scales are neutral objects, so that scattering processes cannot involve arbitrarily long-wavelength gluons. $p_{\perp 0}$ is a free parameter to be tuned to data;

⁸T. Sjöstrand and P.Z. Skands, JHEP 03 (2004) 053. ← (2) → (2)

Collision geometry Medium evolution Hard probes

Soft contribution: some comments

The resummation of the in-medium gluon self-energy prevents the appearance of soft divergences in $\kappa_{\perp/\parallel}(p)$

• Dealing with MPI in *pp* collisions divergence $d\hat{\sigma}/dp_{\perp}^2 \sim \alpha_s^2(p_{\perp}^2)/p_{\perp}^4$ from *t*-channel diagrams regularized through the overall factor⁸

$$\frac{\alpha_s^2(p_\perp^2 + p_{\perp 0}^2)}{\alpha_s^2(p_T^2)} \frac{p_\perp^4}{(p_\perp^2 + p_{\perp 0}^2)^2}$$

Physical argument: hadrons at sufficiently large distance-scales are neutral objects, so that scattering processes cannot involve arbitrarily long-wavelength gluons. $p_{\perp 0}$ is a free parameter to be tuned to data;

• in thermal-QCD, at least in a weak-coupling framework, the medium correction to the tree-level gluon propagator can be calculated from first principles.

⁸T. Sjöstrand and P.Z. Skands, JHEP 03 (2004) 053.

Collision geometry Medium evolution Hard probes

A first check: thermalization in a static medium

For $t \gg 1/\eta_D$ one approaches a relativistic Maxwell-Jüttner distribution⁹

$$f_{\mathrm{MJ}}(p)\equiv rac{e^{-E_p/T}}{4\pi M^2 T \, K_2(M/T)}, \qquad ext{with } \int \! d^3 p \, f_{\mathrm{MJ}}(p)=1$$

(Test with a sample of c quarks with $p_0 = 2 \text{ GeV/c}$) ⁹A.B., A. De Pace, W.M. Alberico and A. Molinari, NPA 831, 59 (2009) $\approx 2000 \text{ M}$

Collision geometry Medium evolution Hard probes

HF studies: a multi-step setup

We are ready to perform numerical simulations for a realistic case!

- Initial generation of $Q\overline{Q}$ pairs (POWHEG + Parton Shower) and distribution in the transverse plane $(\widehat{T}_A(\mathbf{x}+\mathbf{b}/2)\widehat{T}_B(\mathbf{x}-\mathbf{b}/2));$
- Langevin evolution in the QGP $(u^{\mu}(x) \text{ and } T(x) \text{ given by hydro});$
- At T_c HQs hadronize (fragmentation with PDG branching ratios)
- and decay into electrons (PYTHIA decayer with PDG decay tables), e.g. $D \rightarrow X \nu_e e$.

NB One has first of all to check to be able to reproduce pp results!

Collision geometry Medium evolution Hard probes

Results at RHIC

Heavy-flavor electrons: invariant spectra

- *pp* spectrum nicely reproduced;
- Continuous curves: AA case after Langevin evolution^a;
- Dashed curves: *pp* result scaled by $\langle N_{\rm coll} \rangle$

^aW.M. Alberico et al., EPJC 71 (2011) 1666

Collision geometry Medium evolution Hard probes

Results at RHIC

Heavy-flavor electrons: R_{AA}

- Left panel: $R_{AA}(p_T)$ in central events;
- Right panel: integrated R_{AA} vs centrality

Collision geometry Medium evolution Hard probes

Results at RHIC

Heavy-flavor electrons: elliptic flow

- Flow at low-*p*_T results underestimated;
- With a very small τ₀~0.1 fm discrepancy *reduced*, but *still present*

Shortcoming of the approximations in evaluation of $\kappa_{\perp/\parallel}?$ Effect of hadronization by coalescence with light quarks?

Collision geometry Medium evolution Hard probes

Results at LHC

D meson spectra in pp collisions

Hard production in elementary p-p collisions generated with POWHEG + PYTHIA PS: nice agreement with FONLL outcome and ALICE results

э

イロト イポト イヨト イヨト

Collision geometry Medium evolution Hard probes

Results at LHC

D meson R_{AA} collisions

Challenge for theoretical models: reproducing both R_{AA} and v_2 ¹⁰

¹⁰M. Monteno talk at "Hard Probes 2012"

Introduction	Collision geometry
Virtual experiments: lattice QCD	
Real experiments: heavy-ion collisions	Hard probes

Jet quenching

(in a broad sense: jet-reconstruction in AA possible only recently)

Collision geometry Medium evolution Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{\mathrm{coll}}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

イロト イポト イヨト イヨト

Collision geometry Medium evolution Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$$

イロト イポト イヨト イヨト

3

Collision geometry Medium evolution Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll} \right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$$

イロト イポト イヨト イヨト

Collision geometry Medium evolution Hard probes

Inclusive hadron spectra: the nuclear modification factor

$$R_{AA} \equiv \frac{\left(dN^{h}/dp_{T}\right)^{AA}}{\left\langle N_{\rm coll}\right\rangle \left(dN^{h}/dp_{T}\right)^{pp}}$$

Hard-photon $R_{AA} \approx 1$

- supports the Glauber picture (binary-collision scaling);
- entails that quenching of inclusive hadron spectra is a *final state effect* due to in-medium energy loss.

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha - 1} D^{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

Some CAVEAT:

• At variance wrt e^+e^- collisions, in hadronic collisions one starts with a parton p_T -distribution ($\sim 1/p_T^{\alpha}$) so that inclusive hadron spectrum simply reflects *higher moments of FF*

$$\frac{dN^{h}}{dp_{T}} \sim \frac{1}{p_{T}^{\alpha}} \sum_{f} \int_{0}^{1} dz \, z^{\alpha-1} D^{f \to h}(z)$$

carrying limited information on FF (but very sensitive to hard tail!)

• Surface bias:

Quenched spectrum does not reflect $\langle L_{\rm QGP} \rangle$ crossed by partons distributed in the transverse plane according to $n_{\rm coll}(\mathbf{x})$ scaling, but *due to its steeply falling shape* is biased by the enhanced contribution of the ones *produced close to the surface and losing a small amount of energy*!

Virtual experiments: lattice QCD Real experiments: heavy-ion collisions Hard probes

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a huge mismatch in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

(日) (同) (三) (三)

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a *huge mismatch* in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

Collision geometry Medium evolution Hard probes

Dijet correlations: results

- Dijet asymmetry $A_j \equiv \frac{E_{\tau_1} E_{\tau_2}}{E_{\tau_1} + E_{\tau_2}}$ enhanced wrt to p+p and increasing with centrality;
- $\Delta \phi$ distribution unchanged wrt p+p (jet pairs ~ back-to-back)

Introduction	Collision geometry
Virtual experiments: lattice QCD	
Real experiments: heavy-ion collisions	Hard probes

Physical interpretation of the data: energy-loss at the parton level!

- Interaction of the high-p_T parton with the color field of the medium induces the radiation of (mostly) soft (ω ≪ E) and collinear (k_⊥ ≪ ω) gluons;
- Radiated gluon can further re-scatter in the medium (cumulated q_⊥ favor decoherence from the projectile).

Introduction	Collision geometry Medium evolution
Real experiments: heavy-ion collisions	Hard probes

The basic ingredients

- Vacuum-radiation spectrum;
- (Gunion-Bertsch) induced spectrum

Vacuum radiation by off-shell partons

A hard parton with $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ loses its virtuality Q through gluon-radiation. In *light-cone coordinates*, with $p_{\pm} \equiv E \pm p_z/\sqrt{2}$:

Introduction Collision geometry Virtual experiments: lattice QCD Medium evolution Real experiments: heavy-ion collisions Hard probes

Vacuum radiation by off-shell partons

A hard parton with $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ loses its virtuality Q through gluon-radiation. In *light-cone coordinates*, with $p_{\pm} \equiv E \pm p_z/\sqrt{2}$:

- k_{\perp} vs virtuality: $\mathbf{k}^2 = x (1-x) Q^2$;
- Radiation spectrum (our benchmark): IR and collinear divergent!

$$d\sigma_{
m vac}^{
m rad} = d\sigma^{
m hard} rac{lpha_s}{\pi^2} C_R rac{dk^+}{k^+} rac{d\mathbf{k}}{\mathbf{k}^2}$$

• Time-scale (formation time) for gluon radiation: $\Delta t_{\rm rad} \sim Q^{-1}(E/Q) \sim 2\omega/k^2 \quad (x \approx \omega/E)$

Medium-induced radiation by on-shell partons

• On-shell partons propagating in a color field can radiated gluons.

Medium-induced radiation by on-shell partons

• On-shell partons propagating in a color field can radiated gluons.

• The single-inclusive gluon spectrum: the Gunion-Bertsch result

$$x \frac{dN_{g}^{\text{GB}}}{dxd\mathbf{k}} = C_{R} \frac{\alpha_{s}}{\pi^{2}} \left(\frac{L}{\lambda_{g}^{\text{el}}} \right) \left\langle \left[\mathbf{K}_{0} - \mathbf{K}_{1} \right]^{2} \right\rangle = C_{R} \frac{\alpha_{s}}{\pi^{2}} \left(\frac{L}{\lambda_{g}^{\text{el}}} \right) \left\langle \frac{\mathbf{q}^{2}}{\mathbf{k}^{2} (\mathbf{k} - \mathbf{q})^{2}} \right\rangle$$

where C_R is the color charge of the hard parton and:

$$\mathbf{K}_{0} \equiv \frac{\mathbf{k}}{\mathbf{k}^{2}}, \qquad \mathbf{K}_{1} \equiv \frac{\mathbf{k} - \mathbf{q}}{(\mathbf{k} - \mathbf{q})^{2}} \qquad \text{and} \qquad \langle \dots \rangle \equiv \int d\mathbf{q} \frac{1}{\sigma^{\mathrm{el}}} \frac{d\sigma^{\mathrm{el}}}{d\mathbf{q}}$$

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_{\mathcal{R}} \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2/2\omega$ and two regimes can be distinguished:

• Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$

Introduction	Collision geometry
Virtual experiments: lattice QCD	Medium evolution
Real experiments: heavy-ion collisions	Hard probes

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

- Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$
- Incoherent regime ($\omega_1 L \gg 1$): $d\sigma^{\text{ind}} \sim \langle (\mathbf{K}_0 \mathbf{K}_1)^2 + \mathbf{K}_1^2 \mathbf{K}_0^2 \rangle$
Introduction Collision geometry Virtual experiments: lattice QCD Medium evolution Real experiments: heavy-ion collisions Hard probes

The induced spectrum: physical interpretation

$$\omega \frac{d\sigma^{\text{ind}}}{d\omega d\mathbf{k}} = d\sigma^{\text{hard}} C_R \frac{\alpha_s}{\pi^2} \left(\frac{L}{\lambda_g^{\text{el}}} \right) \left\langle \left[(\mathbf{K}_0 - \mathbf{K}_1)^2 + \mathbf{K}_1^2 - \mathbf{K}_0^2 \right] \left(1 - \frac{\sin(\omega_1 L)}{\omega_1 L} \right) \right\rangle$$

In the above $\omega_1 \equiv (\mathbf{k} - \mathbf{q})^2 / 2\omega$ and two regimes can be distinguished:

- Coherent regime LPM ($\omega_1 L \ll 1$): $d\sigma^{\text{ind}} = 0 \longrightarrow d\sigma^{\text{rad}} = d\sigma^{\text{vac}}$
- Incoherent regime ($\omega_1 L \gg 1$): $d\sigma^{\text{ind}} \sim \langle (\mathbf{K}_0 \mathbf{K}_1)^2 + \mathbf{K}_1^2 \mathbf{K}_0^2 \rangle$ The full radiation spectrum can be organized as

$$d\sigma^{
m rad} = d\sigma^{
m GB} + d\sigma^{
m vac}_{
m gain} + d\sigma^{
m vac}_{
m loss}$$

where

$$d\sigma^{\rm GB} = d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \left(L/\lambda_g^{\rm el} \right) \left\langle (\mathbf{K}_0 - \mathbf{K}_1)^2 \right\rangle (d\omega d\mathbf{k}/\omega)$$

$$d\sigma^{\rm vac}_{\rm gain} = d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \left(L/\lambda_g^{\rm el} \right) \left\langle \mathbf{K}_1^2 \right\rangle (d\omega d\mathbf{k}/\omega)$$

$$d\sigma^{\rm vac}_{\rm loss} = \left(1 - L/\lambda_g^{\rm el} \right) d\sigma^{\rm hard} C_R \frac{\alpha_s}{\pi^2} \mathbf{K}_0^2 (d\omega d\mathbf{k}/\omega)$$

58 / 76

イロン イロン イヨン イヨン 三日

Gluon formation-time: physical meaning

Behavior of the induced spectrum depending on the gluon formation-time

 $t_{
m form}\equiv\omega_1^{-1}=2\omega/({f k}-{f q})^2$

differing from the vacuum result $t_{\rm form}^{\rm vac} \equiv 2\omega/\mathbf{k}^2$, due to the transverse **q**-kick received from the medium. Why such an expression?

Gluon formation-time: physical meaning

Behavior of the induced spectrum depending on the gluon formation-time

$$t_{
m form}\equiv\omega_1^{-1}=2\omega/({f k}-{f q})^2$$

differing from the vacuum result $t_{\rm form}^{\rm vac} \equiv 2\omega/\mathbf{k}^2$, due to the transverse **q**-kick received from the medium. Why such an expression? Consider for instance the $\langle \mathbf{K}_1^2 \rangle$ term, with the hard *off-shell* parton $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ radiating a gluon which then scatters in the medium

イロト 不得下 イヨト イヨト 二日

59 / 76

Gluon formation-time: physical meaning

Behavior of the induced spectrum depending on the gluon formation-time

$$t_{
m form}\equiv\omega_1^{-1}=2\omega/({f k}-{f q})^2$$

differing from the vacuum result $t_{\rm form}^{\rm vac} \equiv 2\omega/\mathbf{k}^2$, due to the transverse **q**-kick received from the medium. Why such an expression? Consider for instance the $\langle \mathbf{K}_1^2 \rangle$ term, with the hard *off-shell* parton $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ radiating a gluon which then scatters in the medium

The radiation will occur in a time set by the uncertainty principle:

$$Q^2 \sim (\mathbf{k} - \mathbf{q})^2 / x \quad \longrightarrow \quad t_{
m form} \sim Q^{-1} (E/Q) \sim 2 \omega / (\mathbf{k} - \mathbf{q})^2$$

Gluon formation-time: physical meaning

Behavior of the induced spectrum depending on the gluon formation-time

$$t_{
m form}\equiv\omega_1^{-1}=2\omega/({f k}-{f q})^2$$

differing from the vacuum result $t_{\rm form}^{\rm vac} \equiv 2\omega/\mathbf{k}^2$, due to the transverse **q**-kick received from the medium. Why such an expression? Consider for instance the $\langle \mathbf{K}_1^2 \rangle$ term, with the hard *off-shell* parton $p_i \equiv [p_+, Q^2/2p_+, \mathbf{0}]$ radiating a gluon which then scatters in the medium

The radiation will occur in a time set by the uncertainty principle:

$$Q^2 \sim (\mathbf{k} - \mathbf{q})^2 / x \longrightarrow t_{
m form} \sim Q^{-1} (E/Q) \sim 2\omega / (\mathbf{k} - \mathbf{q})^2$$

 \longrightarrow if $t_{\text{form}} \gtrsim L$ the process is suppressed!

Real experiments: heavy-ion collisions	Hard probes
Virtual experiments: lattice QCD	
Introduction	Collision geometry

Average energy loss

Integrating the lost energy $\boldsymbol{\omega}$ over the inclusive gluon spectrum:

$$\langle \Delta E
angle = \int d\omega \int d\mathbf{k} \; \omega \frac{dN_g^{\mathrm{ind}}}{d\omega d\mathbf{k}} \sim \frac{C_R \alpha_s}{4} \left(\frac{\mu_D^2}{\lambda_g^{\mathrm{el}}} \right) L^2 \; \ln \frac{E}{\mu_D}$$

- *L*² dependence on the medium-length;
- μ_D: Debye screening mass of color interaction ~ typical momentum exchanged in a collision;
- $\mu_D^2/\lambda_g^{\rm el}$ often replaced by the *transport coefficient* \hat{q} , so that

$$\langle \Delta E \rangle \sim \alpha_s \hat{q} L^2$$

 \hat{q} : average q_{\perp}^2 acquired per unit length

イロン 不良 とくほど 人間 とうせい

60 / 76

Numerical results

Collision geometry Medium evolution Hard probes

Numerical results

At variance with vacuum-radiation, medium induced spectrum

- Infrared safe (vanishing as $\omega \rightarrow 0$);
- Collinear safe (vanishing as $\theta \rightarrow 0$).

Depletion of gluon spectrum at small angles due to their rescattering in the medium!

3

イロト 不得 トイヨト イヨト

Collision geometry Medium evolution Hard probes

Numerical results

At variance with vacuum-radiation, medium induced spectrum

- Infrared safe (vanishing as $\omega \rightarrow 0$);
- Collinear safe (vanishing as $\theta \rightarrow 0$).

In general $\langle N \rangle > 1$, so that addressing multiple gluon emission becomes mandatory

Introduction Collision geome Virtual experiments: lattice QCD Medium evolutio Real experiments: heavy-ion collisions Hard probes

How to address more differential observables?

 So far we focused on *inclusive spectrum* of radiated gluons: a parton radiating gluons of energy ω₁ and ω₂ simply contributes twice to such a spectrum; Introduction Collision geome Virtual experiments: lattice QCD Medium evoluti Real experiments: heavy-ion collisions Hard probes

How to address more differential observables?

- So far we focused on *inclusive spectrum* of radiated gluons: a parton radiating gluons of energy ω₁ and ω₂ simply contributes twice to such a spectrum;
- A more differential information (e.g. *exclusive* one, two... gluon spectrum) is desirable in order to deal with more exclusive observables (jet fragmentation, jet-shapes...);

イロン イロン イヨン イヨン 三日

62 / 76

How to address more differential observables?

- So far we focused on *inclusive spectrum* of radiated gluons: a parton radiating gluons of energy ω₁ and ω₂ simply contributes twice to such a spectrum;
- A more differential information (e.g. *exclusive* one, two... gluon spectrum) is desirable in order to deal with more exclusive observables (jet fragmentation, jet-shapes...);
- Ideally one would like to *follow a full parton-shower evolution in the plasma*, described by *modified Sudakov form factors*

$$\Delta(t,t_0) = \exp\left[-\int_{t_0}^t \frac{dt'}{t'}\int dz \frac{\alpha_s(t',z)}{2\pi} P(z,t')\right],$$

where medium effects are included as *corrections to the DGLAP splitting functions*:

$$P(z,t) = P^{\rm vac}(z) + \Delta P(z,t)$$

As an evolution variable one can use the parton virtuality $t \equiv Q^2$

Collision geometry Medium evolution Hard probes

Evaluation of modified splitting functions

• Vacuum-radiation spectrum

$$dN_g^{\rm vac} = \frac{\alpha_s}{\pi^2} C_R \frac{dk^+}{k^+} \frac{d\mathbf{k}}{\mathbf{k}^2} = \frac{\alpha_s}{2\pi} \left(\frac{2C_R}{x}\right) dx \frac{d\mathbf{k}^2}{\mathbf{k}^2}$$

allows to identify the soft limit of $P^{vac}(z)$ (where z=1-x):

$$\frac{dN_g^{\rm vac}}{dzd\mathbf{k}^2} \equiv \frac{\alpha_s}{2\pi} \frac{1}{\mathbf{k}^2} P^{\rm vac}(z), \quad \longrightarrow \quad P^{\rm vac}(z) \underset{z \to 1}{\simeq} \frac{2C_R}{1-z}$$

Collision geometry Medium evolution Hard probes

Evaluation of modified splitting functions

• Vacuum-radiation spectrum

$$dN_g^{\rm vac} = \frac{\alpha_s}{\pi^2} C_R \frac{dk^+}{k^+} \frac{d\mathbf{k}}{\mathbf{k}^2} = \frac{\alpha_s}{2\pi} \left(\frac{2C_R}{x}\right) dx \frac{d\mathbf{k}^2}{\mathbf{k}^2}$$

allows to identify the soft limit of $P^{\rm vac}(z)$ (where z=1-x):

$$\frac{dN_g^{\rm vac}}{dzd\mathbf{k}^2} \equiv \frac{\alpha_s}{2\pi} \frac{1}{\mathbf{k}^2} P^{\rm vac}(z), \quad \longrightarrow \quad P^{\rm vac}(z) \underset{z \to 1}{\simeq} \frac{2C_R}{1-z}$$

 Medium-corrections to the splitting function are then obtained through the matching with the induced radiation spectrum¹¹:

$$\Delta P(z,t) \simeq \frac{2\pi t}{\alpha_s} \frac{dN_g^{\rm ind}}{dzdt}$$

where $\mathbf{k}^2 = z(1-z)t$.

Collision geometry Medium evolution Hard probes

In-medium parton showers: results

Q-HERWIG Sudakov factor ($\hat{q}L_0 = 0 - 50 \text{ GeV}^2$) and Q-PYTHIA R_{AA}

Collision geometry Medium evolution Hard probes

Some comments

- In Q-PYTHIA and Q-HERWIG the only effect of the medium enters into a modification of the splitting functions, *enhancing the probability of gluon radiation*;
- however color-exchanges with the medium can also affect¹²
 - correlations between successive gluon emissions (a.k.a. angular ordering in the vacuum)
 - color-flow in parton branchings

The in-medium breaking of color-coherence will be our next subject

¹²A.B., arXiv:1207.4294 [hep-ph]

Introduction	Collision geometry
Virtual experiments: lattice QCD	
Real experiments: heavy-ion collisions	Hard probes

QCD-antenna radiation in a medium

Problem analyzed in a series of papers: Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, PRL 106 (2011) 122002, PLB 707 (2012) 156-159, JHEP 1204 (2012) 064...

Collision geometry Medium evolution Hard probes

QCD radiation in the medium: antiangular ordering

The total (vacuum+medium) radiation spectrum reads

$$dN_{q,\gamma^*}^{\text{tot}} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta \, d\theta}{1 - \cos\theta} \left[\theta(\cos\theta - \cos\theta_{q\bar{q}}) + \Delta_{\text{med}} \theta(\cos\theta_{q\bar{q}} - \cos\theta) \right]$$

- Δ_{med} from 0 (no medium effect) to 1 (complete decoherence of the $q\overline{q}$ pair, radiating as two uncorrelated color charges)
- For $\Delta_{\text{med}} \rightarrow 1 \ dN_{\gamma^*}^{\text{tot}} = dN_{g^*}^{\text{tot}}$: pair forgets about initial color;

Introduction	Collision geometry
Virtual experiments: lattice QCD	
Real experiments: heavy-ion collisions	Hard probes

Medium-modification of color-flow for high- p_T probes¹³

- I will mainly focus on leading-hadron spectra...
- ...but the effects may be relevant for more differential observables (e.g. jet-fragmentation pattern)

 $^{13}A.B,$ J.G.Milhano and U.A. Wiedemann, J. Phys. G G38 (2011) 124118 and Phys. Rev. C85 (2012) 031901 + arXiv:1204.4342 [hep_ph] (a) (b) (a) (2012) (2

Collision geometry Medium evolution Hard probes

From partons to hadrons

The *final stage of* any *parton shower* has to be interfaced with some hadronization routine. Keeping track of color-flow one identifies *color-singlet* objects whose decay will give rise to hadrons

Hard probes

From partons to hadrons

The final stage of any parton shower has to be interfaced with some hadronization routine. Keeping track of color-flow one identifies color-singlet objects whose decay will give rise to hadrons

• In PYTHIA hadrons come from the fragmentation of $q\bar{q}$ strings, with gluons representing kinks along the string (Lund model);

Introduction Collisi Virtual experiments: lattice QCD Mediu Real experiments: heavy-ion collisions Hard

Collision geometry Medium evolution Hard probes

From partons to hadrons

The *final stage of* any *parton shower* has to be interfaced with some hadronization routine. Keeping track of color-flow one identifies *color-singlet* objects whose decay will give rise to hadrons

- In PYTHIA hadrons come from the fragmentation of qq̄ strings, with gluons representing kinks along the string (Lund model);
- In HERWIG the shower is evolved up to a softer scale, all gluons are forced to split in qq pair (large-N_c!) and singlet clusters (usually of low invariant mass!) are thus identified.

Hard probes

Vacuum radiation: color flow (in large- N_c)

 Most of the radiated gluons in a shower remain color-connected with the projectile fragment;

Hard probes

Vacuum radiation: color flow (in large- N_c)

- Most of the radiated gluons in a shower remain color-connected with the projectile fragment;
- Only $g \rightarrow q\overline{q}$ splitting can break the color connection, BUT

$$egin{split} egin{split} egin{split} egin{aligned} eta_{qg} &\sim \left[z^2 + \left(1-z
ight)^2
ight] & ext{vs} & eta_{gg} &\sim \left[rac{1-z}{z} + rac{z}{1-z} + z(1-z)
ight] \end{split}$$

less likely: no soft (i.e. $z \rightarrow 1$) enhancement!

イロト イポト イヨト イヨト

Collision geometry Medium evolution Hard probes

Medium-induced radiation: color-flow (+ Lund string)

"Final State Radiation"
 (gluon ∈ leading string)
Gluon contributes to leading hadron

"Initial State Radiation" (gluon decohered: lost!) Gluon contributes to *enhanced soft multiplicity* from subleading string

Collision geometry Medium evolution Hard probes

Fragmentation function

ISR characterized by:

- Depletion of hard tail of FF (gluon decohered!);
- Enhanced soft multiplicity from the subleading string

FF: higher order moments and hadron spectra

Starting from a steeply falling parton spectrum $\sim 1/p_T^n$ at the end of the shower evolution, single hadron spectrum sensitive to *higher moments* of FF:

$$dN^h/dp_T \sim \langle x^{n-1}
angle/p_T^n$$

- Quenching of hard tail of FF affects higher moments: e.g.
 - FSR: $\langle x^6 \rangle \approx 0.078$;
 - ISR: $\langle x^6 \rangle_{\rm lead} \approx 0.052$

イロト 不得 トイヨト イヨト

73 / 76

FF: higher order moments and hadron spectra

Starting from a steeply falling parton spectrum $\sim 1/p_T^n$ at the end of the shower evolution, single hadron spectrum sensitive to higher *moments* of FF:

$$dN^h/dp_T \sim \langle x^{n-1}
angle/p_T^n$$

- Quenching of hard tail of FF affects higher moments: e.g.
 - FSR: $\langle x^6 \rangle \approx 0.078$; • ISR: $\langle x^6 \rangle_{\text{lead}} \approx 0.052$
- Ratio of the two channels suggestive of the effect on the hadron spectrum

イロト イポト イヨト イヨト

Collision geometry Medium evolution Hard probes

Relevance for jet observables

Some comments in the light of experimental results¹⁴:

 Vacuum-like fragmentation of strings of reduced energy (color-decoherence of radiated gluons), in agreement with no change of hard-FF (p_T^{track} > 4 GeV) in Pb+Pb wrt p+p measured by CMS;

Collision geometry Medium evolution Hard probes

Relevance for jet observables

Some comments in the light of experimental results¹⁴:

- Vacuum-like fragmentation of strings of reduced energy (color-decoherence of radiated gluons), in agreement with no change of hard-FF (p_T^{track} > 4 GeV) in Pb+Pb wrt p+p measured by CMS;
- Enhanced multiplicity of soft particles from the decay of subleading strings (decohered gluons give rise to new strings!), in agreement with CMS observations;

74 / 76

Collision geometry Medium evolution Hard probes

Relevance for jet observables

Some comments in the light of experimental results¹⁴:

- Vacuum-like fragmentation of strings of reduced energy (color-decoherence of radiated gluons), in agreement with no change of hard-FF (p_T^{track} > 4 GeV) in Pb+Pb wrt p+p measured by CMS;
- Enhanced multiplicity of soft particles from the decay of subleading strings (decohered gluons give rise to new strings!), in agreement with CMS observations;
- Broad angular distribution of soft hadrons around the-jet axis observed by CMS remains to be explained: larger amount of partonic rescattering (i.e. higher orders in opacity) probably required.

¹⁴CMS PAS HIN-11-004 and PRC 84, 024906 (2011) → (B) → (E) → (E

Collision geometry Medium evolution Hard probes

Relevance for info on medium properties

 Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;

Collision geometry Medium evolution Hard probes

Relevance for info on medium properties

 Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;

• In the case of AA collisions a naive convolution

Parton Energy loss \otimes Vacuum Fragmentation

without accounting for the modified color-flow would result into a too hard hadron spectrum: fitting the experimental amount of quenching would require an overestimate of the energy loss at the partonic level;

Collision geometry Medium evolution Hard probes

Relevance for info on medium properties

 Hadronization schemes developed to reproduce data from elementary collisions: a situation in which most of the radiated gluons are still color-connected with leading high-p_T fragment;

• In the case of AA collisions a naive convolution

Parton Energy loss \otimes Vacuum Fragmentation

without accounting for the modified color-flow would result into a too hard hadron spectrum: fitting the experimental amount of quenching would require an overestimate of the energy loss at the partonic level;

 Color-decoherence of radiated gluon might contribute to reproduce the observed high-p_T suppression with milder values of the medium transport coefficients (e.g. q̂).

Collision geometry Medium evolution Hard probes

Final considerations

- Heavy-ion collisions produce certainly a "dirty" environment; nevertheless the final goal is to interpret the experimental findings in terms of QCD;
- I tried to give a general overview on the subject, with the hope that some of you can find such an issue of interest and – may be – discover topics where you can give a contribution to the field: multi-disciplinary skills are welcome and necessary!
- Feel free to contact me for any question, comment, proposal...

Thank you!