Chapter 2 - Control Structures

O
=
=
=:
©

NN
N

NN
oNoO U W

Introduction

Algorithms

Pseudocode

Control Structures

if Selection Structure

if/felse Selection Structure

while Repetition Structure

Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)

Formulating Algorithms with Top-Down, Stepwise Refinement:
Case Study 2 (Sentinel-Controlled Repetition)

Formulating Algorithms with Top-Down, Stepwise Refinement:
Case Study 3 (Nested Control Structures)

Assignment Operators

Increment and Decrement Operators

Essentials of Counter-Controlled Repetition

for Repetition Structure

Examples Using the for Structure

O 2003 Prentice Hall, Inc. All rights reserved. = =

Chapter 2 - Control Structures

Qutline
2.16
2.17
2.18
2.19
2.20
2.21

switch Multiple-Selection Structure

do/while Repetition Structure

break and continue Statements

Logical Operators

Confusing Equality (==) and Assignment (=) Operators
Structured-Programming Summary

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.1 Introduction

» Before writing a program
— Have athorough understanding of problem
— Carefully plan your approach for solving it
» Whilewriting a program
— Know what “building blocks’ are available
— Use good programming principles

O 2003 Prentice Hall, Inc. All rights reserved. = =

2.2 Algorithms

» Computing problems
— Solved by executing a series of actions in a specific order

 Algorithm a procedure determining
— Actionsto be executed
— Order to be executed
— Example recipe
* Program control
— Specifies the order in which statements are executed

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.3 Pseudocode

» Pseudocode
— Artificia, informa language used to develop algorithms
— Similar to everyday English
» Not executed on computers
— Used to think out program before coding
« Easy to convert into C++ program
— Only executable statements
* No need to declare variables

O 2003 Prentice Hall, Inc. All rights reserved. = =

2.4 Control Structures

» Sequentia execution
— Statements executed in order

» Transfer of control
— Next statement executed not next one in sequence

» 3 control structures (Bohm and Jacopini)
— Seguence structure
« Programs executed sequentially by default
— Selection structures
«if,if/lelse,switch

— Repetition structures
e whil e,do/ whil e, for

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.4 Control Structures

o C++ keywords

— Cannot be used as identifiers or variable names
|c++ Keywords

Keywords common to the

Cand C++ programming

languages

auto br eak case char const
conti nue def aul t do doubl e el se
enum extern f1 oat for goto

if int | ong register return
short si gned si zeof static struct
switch typedef uni on unsigned voi d

vol atile whi | e

C++ only keywords

asm bool catch cl ass const _cast
del ete dynani c_cast explicit false friend
inline mut abl e nanespace new oper at or
private protected public rei nterpret_cast
static_cast tenpl ate this throw true

try typeid typenane using virtual
wchar _t

O 2003 Prentice Hall, Inc. All rights reserved. = =

2.4 Control Structures

» Flowchart
— Graphical representation of an algorithm
— Specia-purpose symbols connected by arrows (flowlines)
— Rectangle symbal (action symbol)
* Any type of action
— Oval symboal
» Beginning or end of aprogram, or asection of code (circles)
» Single-entry/single-exit control structures

— Connect exit point of one to entry point of the next
— Contral structure stacking

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.5 if Selection Structure

» Sdlection structure
— Choose among alternative courses of action
— Pseudocode example:
If student’ s grade is greater than or equal to 60
Print “ Passed”

— If the conditionist r ue

 Print statement executed, program continues to next statement
— If thecondition isf al se

 Print statement ignored, program continues
— Indenting makes programs easier to read

« C++ ignores whitespace characters (tabs, spaces, etc.)

O 2003 Prentice Hall, Inc. All rights reserved. = =

10

2.5 if Selection Structure

* Trandation into C++
If student’s grade is greater than or equal to 60
Print “ Passed”

if (grade >= 60)
cout << "Passed";

» Diamond symbol (decision symbol)
— Indicates decision is to be made
— Contains an expression that can be true or false
« Test condition, follow path

e i f structure
— Single-entry/single-exit

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.5 if Selection Structure

* Howchart of pseudocode statement

A decision can be made on
any expression.

zero-f al se

grade >= 60 ssed”

nonzero-true

Example:
falsi 3 - 4istrue

O 2003 Prentice Hall, Inc. All rights reserved. = =

11

2.6 if/el seSelection Structure

| f

— Performs action if condition true

i f/el se

— Different actions if conditions true or false

Pseudocode

if student’sgradeis greater than or equal to 60
print “ Passed”

else
print “ Failed”

C++ code

if (grade >= 60)
cout << "Passed";
el se
cout << "Failed";

O 2003 Prentice Hall, Inc. All rights reserved. [] |

12

13

2.6 if/el seSelection Structure

» Ternary conditional operator (?:)
— Three arguments (condition, valueif t r ue, vaueif f al se)

» Code could be written:

cout << (grade >= 60 ? “Passed” : “Failed”);
Condition Value if true Value if false
fal se true
J grade >= 60 J
print “Fajiled” print “vPa'aepd"

I

O 2003 Prentice Hall, Inc. All rights reserved. = =

14

2.6 if/el seSelection Structure

 Nestedi f/ el se structures

— One inside another, test for multiple cases

— Once condition met, other statements skipped
if student’ s grade is greater than or equal to 90
Print “ A”
dse
if student’ s grade is greater than or equal to 80
Print “ B”
ese
if student’ s gradeis greater than or equal to 70
Print“ C”
ese
if student’s grade is greater than or equal to 60
Print “D”
else
Print “ F”

O 2003 Prentice Hall, Inc. All rights reserved. [] |

15

2.6 if/el seSelection Structure

» Example

if (grade >= 90) /1 90 and above
cout << "A";

else if (grade >= 80) // 80-89
cout << "B";

else if (grade >= 70) [/ 70-79
cout << "C';

else if (grade >= 60) // 60-69
cout << "D';

el se /1 less than 60
cout << "F";

O 2003 Prentice Hall, Inc. All rights reserved. = =

16

2.6 if/el seSelection Structure

» Compound statement

— Set of statements within apair of braces
if (grade >= 60)
cout << "Passed.\n";
el se {
cout << "Failed.\n";
cout << "You nust take this course again.\n";

}

— Without braces,
cout << "You nust take this course again.\n";

always executed
* Block

— Set of statements within braces

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.7 while Repetition Structure

* Repstition structure
— Action repeated while some condition remains true
— Psuedocode
while there are more items on my shopping list
Purchase next item and cross it off my list
— whi | e loop repeated until condition becomes false

* Example
i nt product = 2;
while (product <= 1000)
product = 2 * product;

O 2003 Prentice Hall, Inc. All rights reserved. = =

17

2.7 The while Repetition Structure

» Flowchart of whi | e loop

O 2003 Prentice Hall, Inc. All rights reserved. [] |

18

19

2.8 Formulating Algorithms (Counter-
Controlled Repetition)

» Counter-controlled repetition
— Loop repeated until counter reaches certain value
» Definite repetition
— Number of repetitions known
* Example
A class of ten students took a quiz. The grades (integersin

the range 0 to 100) for this quiz are available to you.
Determine the class average on the quiz

O 2003 Prentice Hall, Inc. All rights reserved. = =

20

2.8 Formulating Algorithms (Counter-
Controlled Repetition)

 Pseudocode for example:
Set total to zero
Set grade counter to one

While grade counter islessthan or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

* Next: C++ code for this example

O 2003 Prentice Hall, Inc. All rights reserved. [] |

E 21

1 // Fig. 2.7: fig02_07.cpp H

2 /I Cass average programwi th counter-controlled repetition. E OL'IHE\

3 #include <iostrean>

g using std::cout ; figOZ_O?.cpp

6 using std::cinm (1 of 2)

7 using std::endl;

8

9 // function main begins program execution

10 int main()

1 {

12 int total; /1 sum of grades input by user

13 int gradeCounter; // number of grade to be entered next

14 int grade; /'l grade val ue

15 int average; /'l average of grades

16

17 // initialization phase

18 total = 0O; /1l initialize total

19 gradeCounter = 1; /'l initialize | oop counter

20
O 2003 Prentice Hall, Inc.
All rights reserved.

21 /'l processing phase IAI Outline 22

22 while (gradeCounter <= 10) { /1 1oop 10 tines . -

23 cout << "Enter grade: "; /'l pronpt for input

24 cin >> grade; /1l read grade from user figO2 07.Cpp

25 total = total + grade; /1 add grade to total (ZOfE)

26 gradeCounter = gradeCounter + 1; // increment counter

27) Q .

28 fig02_07.cpp

29 /1 termination pha output (1 of 1)

30 average = total / 10; /'l integer division

31

32 /'l display result

22 cout << TCIass averace | The counter getsincremented each

35 return 0; /1 indicate timetheloop executes.

- ' Eventually, the counter causesthe

loopte-end-

37 } // end function nain

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

O 2003 Prentice Hall, Inc.
All rights reserved.

23

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

» Suppose problem becomes:

Develop a class-averaging program that will process an
arbitrary number of grades each time the programisrun

— Unknown number of students
— How will program know when to end?

» Sentinel value
— Indicates “end of data entry”
— Loop ends when sentingl input

— Sentinel chosen so it cannot be confused with regular input
e -linthiscase

O 2003 Prentice Hall, Inc. All rights reserved. = =

24

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

» Top-down, stepwise refinement
— Begin with pseudocode representation of top
Determine the class average for the quiz
— Divide top into smaller tasks, list in order
Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

O 2003 Prentice Hall, Inc. All rights reserved. [] |

25

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

* Many programs have three phases
— Initidization
« |nitializes the program variables
— Processing
 |nput data, adjusts program variables
— Termination
e Calculate and print the final results
— Helps break up programs for top-down refinement

O 2003 Prentice Hall, Inc. All rights reserved. = =

26

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

» Refine the initialization phase
Initialize variables
goesto
Initialize total to zero
Initialize counter to zero
* Processing
Input, sum and count the quiz grades
goes to
Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

e Termination
Calculate and print the class average
goesto

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “ No grades were entered”

* Next: C++ program

O 2003 Prentice Hall, Inc. All rights reserved. = =

27

[Al
1 // Fig. 2.9: fig02_09.cpp Outline
2 /] Class average programwi th sentinel-controlled repetition. E
3 #include <iostrean>
g using std:: cout; figOZ_O9.cpp
6 using std::cinm (1 of 3)
7 using std::endl ;
8 using std::fixed;
9
10 #i ncl ude <i onani p> /'l paraneterized stream nani pul ators
11
12 wusing std::setprecision; // sets nuneric output precision
13
14 // function main begins program execution
15 int main()
16 { Datatype doubl e used to represent
17 int total; /] sum tectmatnumbers:
18 int gradeCounter; umber of grades entered
19 int grade; /'l grade val ue
20 4
21 doubl e average; /'l number with decimal point for average
22
23 /1l initialization phase
24 total = 0; /Il initialize total
25 gradeCounter = 0; // initialize |oop counter

O 2003 Prentice Hall, Inc.
All rights reserved.

26 m 29

. = Outline

27 /1 processing phase m I—

28 /1 get first grade from user

29 cout << "Enter grade, -1 to end: "; // pronpt for input figOZ 09.Cpp

30 cin >> grade; /1 read grade from user (2 0f§)

31

32 /'l loop until sentir

33 while (grade !'=-1|Static_cast <doubl e>() treatst ot al asa

34 total = total + ddoubl etemporarily (casting).

85 gradeCounter = gr

36 Required because dividing two integers truncates the

37 c_out << "Enter gr remainder.

38 cin >> grade;

ig W ndRuille gradeCount er isani nt, but it gets promotedto

a1 doubl e.

42 /'l termnation phase

43 /1 if user entered at |east ope grade ...

44 if (gradeCounter !=0) {

45

46 /'l cal cul ate averagg of all grades entered

47 average = static_cast < double >(total) / gradeCounter;

48
O 2003 Prentice Hall, Inc.
All rights reserved.
—

49 /1 display average with two digits of precision O tl 30

50 cout << "Class average is " << setprecision(\) uthine

51 << fixed << average << endl; >

:g } /] end if pa:l of if/else fig02_09.cpp

o (30f3)

55 else // if no grad were entered, output appropriate\ressage i

56 cout << "No grad were entered" << endl; f|902_09.cpp

57 output (1 0of 1)

58 return O; /1 indicate program ended successfully

59

60 } // end function nmin
_ fi xed forcesoutput to print i On(2) printstwo digits past
E’“e’ Q’age' i ie e";‘: ;i in fixed point format (not (rounded tofit precision).

E"ter grents, =4 G ek scientific notation). Also,
nter grade, -1 to end: 97

Enter grade, -1 to end: 88 forceSIrallngzaosand

Enter grade, -1 to end: 70 decimal point to print.
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83 trelude<t-estrear>

Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Cl ass average is 82.50

O 2003 Prentice Hall, Inc.
All rights reserved.

31

2.10 Nested Control Structures

e Problem statement

A college has a list of test results (1 = pass, 2 = fail) for 10
students. Write a program that analyzes the results. If more
than 8 students pass, print "Raise Tuition".

* Notice that
— Program processes 10 results
» Fixed number, use counter-controlled loop
— Two counters can be used

« One counts humber that passed
* Another counts number that fail

— Eachtestresultislor 2
* If not 1, assume 2

O 2003 Prentice Hall, Inc. All rights reserved. = =

32

2.10 Nested Control Structures

* Top leve outline
Analyze exam results and decide if tuition should be raised

» First refinement
Initialize variables
Input the ten quiz grades and count passes and failures

Print a summary of the exam results and decide if tuition
should be raised

* Refine

Initialize variables

to
Initialize passesto zero
Initialize failuresto zero
Initialize student counter to one

O 2003 Prentice Hall, Inc. All rights reserved. [] |

33

2.10 Nested Control Structures

* Refine
Input the ten quiz grades and count passes and failures
to

While student counter islessthan or equal to ten
Input the next exam result

If the student passed

Add one to passes
Else
Add oneto failures

Add one to student counter

O 2003 Prentice Hall, Inc. All rights reserved. = =

34

2.10 Nested Control Structures

* Refine

Print a summary of the exam results and decide if tuition should
beraised
to
Print the number of passes
Print the number of failures

If more than eight students passed
Print “ Raise tuition”

* Program next

O 2003 Prentice Hall, Inc. All rights reserved. [] |

E 35

1 // Fig. 2.11: fig02_11.cpp H
2 /Il Analysis of examination results. E OL'IHQ
3 #include <iostrean>
g using std::cout ; figOZ_ll.cpp
6 using std::cin; (1 of 2)
7 using std::endl ;
8
9 // function main begins program execution
10 int main()
1 {
12 I/ initialize variables in declarations
13 int passes = 0; /'l nunber of passes
14 int failures = 0; /'l nunber of failures
15 int studentCounter = 1; /'l student counter
16 int result; /1 one examresult
17
18 /'l process 10 students using counter-controlled | oop
19 whi | e (student Counter <= 10) {
20
21 /'l pronpt user for input and obtain value from user
22 cout << "Enter result (1 = pass, 2 = fail): ";
23 cin >> result;
24
O 2003 Prentice Hall, Inc.
All rights reserved.
25 // if result 1, increment passes; if/else nested in while 36
26 if (result == 1) Il iflelse nested in while
27 passes = passes + 1;
z _ _ _ fig02_11.cpp
29 else // if result not 1, increnent failures (ZOf 2)
30 failures = failures + 1;
31
32 /'l increment studentCounter so |oop eventually terninates
53 student Counter = student Counter + 1;
34
35 } /1 end while
36
37 /1 term nation phase; display nunber of passes and failures
38 cout << "Passed " << passes << endl;
39 cout << "Failed " << failures << endl;
40
41 /1 if nore than eight students passed, print "raise tuition"
42 if (passes > 8)
43 cout << "Raise tuition " << endl;
44
45 return 0; /'l successful termnation
46

47 '} /1 end function nain

O 2003 Prentice Hall, Inc.
All rights reserved.

[al

Enter result (1 = pass, 2 = fail): 1 .
Enter result (1 = pass, 2 = fail): 2 E OL'IHE\
Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fa?l): 1 figOZ 11.Cpp
Enter result (1 = pass, 2 = fail): 1 —

Enter result (1 = pass, 2 = fail): 1 output (10f 1)
Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Passed 6

Failed 4

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Passed 9

Failed 1

Rai se tuition

O 2003 Prentice Hall, Inc.

All rights reserved.

2.11 Assignment Operators

» Assignment expression abbreviations

— Addition assignment operator
c = c + 3; abbreviatedto
c += 3;

» Statements of the form
vari abl e = vari abl e operator expression
can be rewritten as
vari abl e operat or= expression

» Other assignment operators

d-=4 (d =d - 4
e *= 5 (e = e * b
f /=3 (f =11 3)
g % 9 (g =g %9

O 2003 Prentice Hall, Inc. All rights reserved. [] |

38

39

2.12 Increment and Decrement Operators

* Increment operator (++) - can be used instead of ¢
+= 1
» Decrement operator (- -) - can be used instead of ¢ -
=1
— Preincrement
» When the operator is used before the variable (++c or —c)
» Variable ischanged, then the expressionitisin is evaluated.
— Posincrement
* When the operator is used after the variable (c++ orc- -)
» Expression the variableisin executes, then the variable is changed.

O 2003 Prentice Hall, Inc. All rights reserved. = =

40

2.12 Increment and Decrement Operators

* Increment operator (++)
— Increment variable by one
— Cc++
e Sameasc += 1
» Decrement operator (- -) smilar
— Decrement variable by one
—C--

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.12 Increment and Decrement Operators

¢ Preincrement

— Variable changed before used in expression
» Operator before variable (++c or- - ¢)

» Postincrement

— Incremented changed after expression
¢ Operator after variable (c++, c--)

O 2003 Prentice Hall, Inc. All rights reserved. = =

41

2.12 Increment and Decrement Operators

e Ifc = 5, then
— cout << ++c;
¢ c ischanged to 6, then printed out
— cout << c++;
e Printsout5 (cout isexecuted before the increment.
¢ ¢ then becomes6

O 2003 Prentice Hall, Inc. All rights reserved. [] |

42

43

2.12 Increment and Decrement Operators

* When variable not in expression
— Preincrementing and postincrementing have same effect

++cC;

cout << c;
and

C++;

cout << c;
are the same

O 2003 Prentice Hall, Inc. All rights reserved. = =

—
1 // Fig. 2.14: fig02_14.cpp o tl 44
2 /Il Preincrenmenting and postincrenenting. uthine
3 #include <iostrean>

5 fig02_14.cpp

5 using std::cout; (1 of 2)

6 using std::endl;

7

8 // function nain begins program execution

9 int main()

10 {

11 int c; /'l declare variable

12

13 /| denonstrate postincrenent

14 c = 5; /l assign 5 to c

15 cout << ¢ << endl; /]l print 5

16 cout << c++ << endl; /1 print 5 then postincrenment

17 cout << ¢ << endl << endl; // print 6

18

19 /'l denpnstrate preincrenent

20 c = 5; /l assign 5 to c

21 cout << ¢ << endl; /1 print 5

22 cout << ++c << endl; /'l preincrement then print 6

23 cout << ¢ << endl; /'l print 6

O 2003 Prentice Hall, Inc.
All rights reserved.

24
25
26
27

5
5
6

5
6
6

m 45

return O; /'l indicate successful term nation E OUtIme
} /1 end function main fig02_14.cpp
(20f2)
fig02_14.cpp

output (1 of 1)

O 2003 Prentice Hall, Inc.
All rights reserved.

46

2.13 Essentials of Counter-Controlled
Repetition

» Counter-controlled repetition requires
— Name of control variable/loop counter
— Initial value of control variable
— Condition to test for fina value

— Increment/decrement to modify control variable when
looping

O 2003 Prentice Hall, Inc. All rights reserved. [] |

1 // Fig. 2.16: fig02_16.cpp m H 47
2 // Counter-controlled repetition. m OL'IHE\
3 #include <iostrean>

“) figd2_16.cpp

5 using std::cout; (1 of 1)

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 int counter = 1; /1 initialization

12

13 while (counter <= 10) { /1 repetition condition

14 cout << counter << endl; // display counter

15 ++count er; /'l i ncrement

16

17 } // end while

18

19 return 0O; // indicate successful term nation

20

21 } // end function nmin

O 2003 Prentice Hall, Inc.
All rights reserved.

1 1Al , a8
) . Outline

3

‘5" fig02_16.cpp

3 output (1 of 1)

7

8

9

10

O 2003 Prentice Hall, Inc.
All rights reserved.

49

2.13 Essentials of Counter-Controlled
Repetition

» The declaration
int counter = 1;

— Namescount er

— Declares count er to be an integer

— Reserves space for count er in memory
— Setscount er toaninitia valueof 1

O 2003 Prentice Hall, Inc. All rights reserved. = =

50

2.14 for Repetition Structure

» Genera format when using f or loops

for (initialization; LoopContinuationTest;
i ncrenent)
st at enent

» Example
for(int counter = 1; counter <= 10; counter++)
cout << counter << endl

— Printsintegers from one to ten

O 2003 Prentice Hall, Inc. All rights reserved. [] |

/1 Fig. 2.17: fig02_17.cpp m 51

. S = Outline
2 // Counter-controlled repetition with the for structure. m I—
3 #include <iostrean>

“) figd2_17.cpp

5 using std::cout; (1 of 1)

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 /1 Initialization, repetition condition and increnenting

12 /1 are all included in the for structure header.

13

14 for (int counter = 1; counter <= 10; counter++)

15 cout << counter << endl;

16

17 return 0O; // indicate successful termn nation

18

19 } // end function nain

O 2003 Prentice Hall, Inc.
All rights reserved.

. 7
) Outline

3

‘5" figo2_17.cpp

3 output (1 of 1)

7

8

9

10

O 2003 Prentice Hall, Inc.
All rights reserved.

53

2.14 for Repetition Structure

» for loopscan usualy be rewritten aswhi | e loops
initialization;
while (| oopContinuationTest) {
st at ement
i ncrement;

}

* |nitiaization and increment
— For multiple variables, use comma-separated lists

for (int i =0, j =0; j + i <=10; j++, 1++4)
cout << j + i << endl;
O 2003 Prentice Hall, Inc. All rights reserved. = =
=

1 // Fig. 2.20: fig02_20.cpp " | 54

s - Izl Outline
2 // Summation with for. -
3 #include <iostrean>
5 fig02_20.cpp
5 using std::cout; (1 Ofi)
6 using std::endl;
7
8 // function main begins program execution flgOZ_ZO.cpp
9 int main() output (1 0of 1)
10 {
11 int sum= 0; // initialize sum
12
13 /1 sum even integers from 2 through 100
14 for (int number = 2; nunber <= 100; nunber += 2)
15 sum += nunber; /! add nunber to sum
16
17 cout << "Sumis " << sum << endl; // output sum
18 return O; /'l successful term nation
19

20 } // end function main

Sum is 2550

O 2003 Prentice Hall, Inc.
All rights reserved.

2.15 Examples Using the for Structure

» Program to calculate compound interest

e A person invests $1000.00 in a savings account yielding 5 percent
interest. Assuming that all interest is left on deposit in the account,
calculate and print the amount of money in the account at the end of
each year for 10 years. Use the following formula for determining

these amounts:
a=p(1+ r)n

e pistheorigina amount invested (i.e., the principal),
r isthe annual interest rate,
n isthe number of years and
a isthe amount on deposit at the end of the nth year

O 2003 Prentice Hall, Inc. All rights reserved. = =

55

—
. . IAI 56
1 // Fig. 2.21: fig02_21.cpp — Outline
2 [/ Calculating conpound interest. -
3 #include <iostrean>
5 fig02_21.cpp
5 using std::cout; (1 of 2)
6 using std::endl;
7 using std::ios;
8 using std::fixed;
9
< >
1(1) A EEE SICLeil(y <cmat h> header needed for
12 using std::setw; / the pow function (program
T wit-Rot compite-without it)-
14
15 #i ncl ude <(:mith>A /|l enabl es programto use function pow
16
17 // function main begins program execution
18 int main()
19 {
20 doubl e anount ; /1 amount on deposi t
21 doubl e principal = 1000.0; // starting principal
22 doubl e rate = . 05; /] interest rate
23

O 2003 Prentice Hall, Inc.
All rights reserved.

E 57

24 /| output table columm heads OUtline
25 cout << "Year" << setw 21 << "Ampunt on_deposit" << endl; -
ij y ot , e Setsthe field width to at least
% cout << fined ecostprocision 2 [CACINGSSINCHPIRIESIRIio02 21, cop
2 ’ than 21, it isright-justified. 20f2)
30 /'l cal cul ate ambunt on deposit for each of ten years
31 for int year = 1; year <= 10; year++ .
s (y y y) { pow(x, y) =xraisedtothe
33 /'l cal cul ate new ampunt f peci fied year yth power.
34 anpunt = principal * pow(1.0 + rate, year);
85
36 // output one table row
37 cout << setw(4) << year
38 << setw(21) << ampunt << endl;
39
40 } // end for
41
42 return 0O; // indicate successful term nation
43
44 '} // end function main
O 2003 Prentice Hall, Inc.
All rights reserved.
=
Year Amount on deposi t Outline 58
1 1050. 00
2 1102. 50
3 1157. 63 figo2_21.cpp
4 1215.51 t _t 1of 1
5 1276. 28 Outpu (o)
6 1340. 10
7 1407. 10
8 1477. 46
9 1551. 33

19 1“8,&

Numbers areright-justified
due to setw statements (at

lpositionsdapd21) |

O 2003 Prentice Hall, Inc.
All rights reserved.

59

2.16 switch Multiple-Selection Structure

e switch
— Test variable for multiple values

— Seriesof case labelsand optional def aul t case
switch (variable) {

case val uel: /1 taken if variable == valuel
statenents
br eak; /] necessary to exit switch

case val ue2:

case val ue3: /1 taken if variable == value2 or == val ue3
statenents

br eak;

defaul t: /1 taken if variable matches no ot her cases
statenents
br eak;

O 2003 Prentice Hall, Inc. All rights reserved. = =

60

2.16 switch Multiple-Selection Structure

I

e
C > case a action(s) > br eak >
fal se
rue I
[» case b action(s) 4 br eak 4
fal se
v
e
C » case z action(s) 4 br eak 4
fal se
defaul t +i-0R{L5)

O 2003 Prentice Hall, Inc. All rights reserved. [] |

» Example upcoming
— Program to read grades (A-F)

» Details about characters

2.16 switch Multiple-Selection Structure

— Display number of each grade entered

— Single characters typically stored inachar datatype
e char al-byteinteger, sochar scan be stored asi nts
— Cantreat character asi nt or char
* 97 isthe numerical representation of lowercase‘a (ASCII)

« Usesingle quotes to get numerical representation of character
cout << "The character (" << 'a' << ") has the value "
<< static_cast<int > ('a'

Prints

The character

) << endl;

(a) has the val ue 97

O 2003 Prentice Hall, Inc. All rights reserved. = =

61

W N b WN R

©

10
11
12
13
14
15
16
17
18
19
20
21

/Il Fig.

2 223

fig02_22.cpp

/'l Counting letter grades.
#i ncl ude <i ostrean>

using std::cout ;
using std::cin;
using std::endl ;

/1 function main begins program execution

int mai

{
int
int
int
int
int
int

cout << "Enter the letter grades."
<< "Enter the EOF character to end input."

n()

gr ade;
aCount
bCount
cCount
dCount
f Count

/'l one grade
of As

/'l nunber
/'l nunber
/'l nunber
/'l nunber
/'l nunber

OO0 oo o

of
of
of
of

Fs

<< endl

<< endl;

fig02_22.cpp
(1of 4)

O 2003 Prentice Hall, Inc.
All rights reserved.

: : |i| 63

22 /1 loop until user types end-of-file ke Dutline

23 while ((grade =cin.get()) != Ec-) {break causes switch toendand [—

24 the program continues with the first

25 /1" determ ne whi statement after the swi t ch 2.cpp

26 switch (grade) structure.

27

28 A d A . .

- case . FERD L FIECES ci n. get () usesdot notation

case 'a': | ower case a g .

30 ++aCount;; ement aCount (expl_aned chapter 6).Thl$

a1 sl /) - function gets 1 character from the

2 Assignment statements havea | keyboard (after Enter pressed),

33 chse B : 1, |value, whichisthe same as and it is assigned to gr ade .

34 clhse 'b': /1 [thevariable on theleft of the

35 ++bCount; /1 |=. Thevalueof thisstatement |¢j n_get () returnsEOF (end-of-

’|comparesgr ade (anint) | |iSthesameasthevaue file) after the EOF character is

|tothenumerical , returned by ci n. get () . input, to indicate the end of data.

5| representationsof Aand a. ; _ EOF may bectrl-d or ctrl-z,

40 ++cCount; /1 Tt_u_sc_an dso pe “sed_to depending on your OS.

ps 3) initialize multiple variables:

reak; 11l

0 a=b=c=0;
O 2003 Prentice Hall, Inc.
All rights reserved.
—

43 case 'D : /1 grade was uppercase D outline 64

44 case 'd': /1 or |owercase d

45 ++dCount; /1 increnment dCount

46 br eak; /] exit swt figOZ 22.Cpp

& Thistest is necessary because (30f 4)

48 case 'F': /1 grade way Enter is pressed after each

& wese vl letter grade isinput. This adds

<L <] o a newline character that must

51 br eak; A 3

= be removed. Likewise, we

53 case '\n': a /'l ignore ng Wal.’lt to ignore any

54 case '\t': /1 tabs, whiHesSeee

55 case ' /1 and spad| X X

56 br eak: /1 _sxr—sw|Noticethedef aul t statement, which

57 leatchesall othercases—————— |

58 defaul t: 4 /1 catch all other characters

59 cout << "Incorrect letter grade entered."

60 << " Enter a new grade." << endl;

61 br eak; /1 optional; will exit sw tch anyway

62

63 } I/ end switch

64

65 } /1 end while

66

O 2003 Prentice Hall, Inc.
All rights reserved.

78 } I/ end function nmin

di spl ay
di spl ay
di spl ay
di spl ay
di spl ay

nunber
nunber
nunber
nunber
nunber

/1 output summary of results
cout << "\n\nTotals for each letter grade are:"
<< "\pA: " << aCount Il
<< "\ nB: << bCount Il
<< "\ nC << cCount 11
<< "\ nD: << dCount 11
<< "\ nF: << f Count Il
<< endl ;
return 0; // indicate successful term

nation

A grades
B grades
C grades
D grades
F grades

[al

= Qutline
™ ‘

fig02_22.cpp
(40f 4)

O 2003 Prentice Hall, Inc.
All rights reserved.

65

Enter the letter grades.

Enter the ECF character to end input.

2T >U0- MO T2 >00 WY

N

Totals for each letter grade are:

A

moow

ncorrect

3

BN WN

letter grade entered. Enter a new grade.

1A]
. Outline

fig02_22.cpp
output (1 of 1)

O 2003 Prentice Hall, Inc.
All rights reserved.

66

67

2.17 do/while Repetition Structure

e Smilar to whi | e structure

— Makes loop continuation test a end, not beginning
— Loop body executes at least once

* Format o
do {
st at ement
} while (condition); | acti on(s) |
fal se
O

O 2003 Prentice Hall, Inc. All rights reserved. = =

—
1 // Fig. 2.24: fig02_24.cpp O tl 68
2 /] Using the do/while repetition structure. Luting
3 #include <iostrean>

5 fig02_24.cpp

5 using std::cout; (1 of 1)

6 using std::endl;

7

8 // function main begins program execution f|902_24.cpp

9 int main() output (1 0of 1)
10 {

11 int counter = 1;

12 Notice thepreincrement in

13 do { Lleep-continuationtest————

14 cout << counter << " ", /1 display counter

15 } while (++€ounter <= 10); // end do/while

16

17 cout << endl ;

18

19 return O; I/ indicate successful term nation

20

21 } // end function nmin

1 2 3 45 6 7 8 9 10

O 2003 Prentice Hall, Inc.
All rights reserved.

69

2.18 break and continue Statements

* break statement
— Immediate exit from whi | e, f or,do/ whi | e,swi t ch
— Program continues with first statement after structure

e Common uses

— Escape early from aloop
— Skip the remainder of swi t ch

O 2003 Prentice Hall, Inc. All rights reserved. = =

—
1 /] Fig. 2.26: fig02_26.cpp o tl 70
2 /] Using the break statenent in a for structure. Luting
3 #include <iostrean>

5 fig02_26.cpp

5 using std::cout; (1 of 2)

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11

12 int x; // x declared here so it can be used after the |oop

13

14 /'l | oop 10 tines

15 for (x = 1 x <:y/ Exitsf or structure when

16 Lbreak—executed—— M

17 /Il if xis 5, térmnate |oop

18 if (x==5)4

19 br eak; /Il break loop only if x is 5

20

21 cout << x << " ", /'l display value of x

22

23 } /1 end for

24

25 cout << "\nBroke out of |oop when x becane " << x << endl| ;

O 2003 Prentice Hall, Inc.
All rights reserved.

26 m 71

27 return 0; /1 indicate successful term nation E Quitline

28

29 } // end function main fig02_26.cpp
(20f2)

1234

Broke out of |oop when x became 5 figO2 26 cpp
outht (1of 1)

O 2003 Prentice Hall, Inc.
All rights reserved.

72

2.18 break and continue Statements

e conti nue statement
— Usedinwhi | e,f or,do/ whil e
— Skips remainder of loop body
— Proceeds with next iteration of loop

 whi | e and do/ whi | e structure

— Loop-continuation test evaluated immediately after the
cont i nue statement

e for structure

— Increment expression executed
— Next, loop-continuation test eval uated

O 2003 Prentice Hall, Inc. All rights reserved. [] |

m 73

1 /] Fig. 2.27: fig02_27.cpp H

2 // Using the continue statenent in a for structure. E OL'IHE\

3 #include <iostrean>

“) figd2_27.cpp

5 using std::cout; (1 of 2)

6 using std::endl;

7

8 // function main begins program execution

9 int main()

10 {

11 /1 |oop 10 tines

12 for (int x = 1; x <= 10; x++)

13 Skipsto next iteration of the

14 /1 it xis 5 continuewith n{l0OP.

15 if (x==05)

16 conti nue; 4 /'l skip remaining code in | oop body

17

18 cout << x << " ", /1 display value of x

19

20 } // end for structure

21

22 cout << "\nUsed continue to skip printing the value 5"

23 << endl ;

24

25 return 0; /1l indicate successful termnation
O 2003 Prentice Hall, Inc.
All rights reserved.

26 74

27 '} // end function main

1234678910
Used continue to skip printing the value 5

1A]
. Outline

fig02_27.cpp
(20f2)

fig02_27.cpp
output (1 0of 1)

O 2003 Prentice Hall, Inc.
All rights reserved.

75

2.19 Logical Operators

» Used as conditionsin loops, if statements
* && (logical AND)
— t rue if both conditionsaret r ue

if (gender == 1 & age >= 65)
++seni or Fenal es;

* || (logica OR)

— true if ether of conditionist r ue

if (senmesterAverage >= 90 || final Exam>= 90)
cout << "Student grade is A" << endl;

O 2003 Prentice Hall, Inc. All rights reserved. = =

76

2.19 Logical Operators

* | (logical NOT, logical negation)

— Returnst r ue when its condition isf al se, & viceversa

if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;
Alternative:
if (grade != sentinel Val ue)

cout << "The next grade is " << grade << endl;

O 2003 Prentice Hall, Inc. All rights reserved. [] |

7

2.20 Confusing Equality (==) and
Assignment (=) Operators

e Common error
— Does not typically cause syntax errors

» Aspectsof problem
— Expressions that have a value can be used for decision
e Zero = false, nonzero = true
— Assignment statements produce a value (the value to be
assigned)

O 2003 Prentice Hall, Inc. All rights reserved. = =

78

2.20 Confusing Equality (==) and
Assignment (=) Operators

» Example
if (payCode == 4)
cout << "You get a bonus!" << endl;
— If paycode is 4, bonus given

 If == wasreplaced with =

if (payCode = 4)
cout << "You get a bonus!" << endl;

— Paycode set to 4 (no matter what it was before)
— Statement is true (since 4 is non-zero)
— Bonusgiven in every case

O 2003 Prentice Hall, Inc. All rights reserved. [] |

2.20 Confusing Equality (==) and
Assignment (=) Operators

» Lvaues
— Expressions that can appear on left side of equation
— Can be changed (l.e., variables)
e X = 4;
* Rvaues
— Only appear on right side of equation
— Constants, such as numbers (i.e. cannot write4 = X;)

e Lvalues can be used as rvaues, but not vice versa

O 2003 Prentice Hall, Inc. All rights reserved. = =

79

2.21 Structured-Programming Summary

 Structured programming
— Programs easier to understand, test, debug and modify

» Rulesfor structured programming
— Only use single-entry/single-exit control structures
— Rules
1) Begin with the “simplest flowchart”
2) Any rectangle (action) can be replaced by two rectangles
(actions) in sequence
3) Any rectangle (action) can be replaced by any control
structure (sequence, if, if/else, switch, while, do/while or for)
4) Rules 2 and 3 can be applied in any order and multiple times

O 2003 Prentice Hall, Inc. All rights reserved. [] |

80

81

2.21 Structured-Programming Summary

| Representation of Rule 3 (replacing any rectangle with a control structure) |

C)
A

—

O 2003 Prentice Hall, Inc. All rights reserved. = =

82

2.21 Structured-Programming Summary

 All programs broken down into

— Seguence

— Selection
eif,if/lelse,orswitch
« Any selection can be rewritten asani f statement

— Repetition
e whil e,do/whileorfor
« Any repetition structure can be rewritten asawhi | e statement

O 2003 Prentice Hall, Inc. All rights reserved. [] |

