
1

 2003 Prentice Hall, Inc. All rights reserved.

1

Chapter 2 - Control Structures
Outline
2.1 Introduction
2.2 Algorithms
2.3 Pseudocode
2.4 Control Structures
2.5 if Selection Structure
2.6 if/else Selection Structure
2.7 while Repetition Structure
2.8 Formulating Algorithms: Case Study 1 (Counter-Controlled

Repetition)
2.9 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 2 (Sentinel-Controlled Repetition)
2.10 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 3 (Nested Control Structures)
2.11 Assignment Operators
2.12 Increment and Decrement Operators
2.13 Essentials of Counter-Controlled Repetition
2.14 for Repetition Structure
2.15 Examples Using the for Structure

 2003 Prentice Hall, Inc. All rights reserved.

2

Chapter 2 - Control Structures
Outline
2.16 switch Multiple-Selection Structure
2.17 do/while Repetition Structure
2.18 break and continue Statements
2.19 Logical Operators
2.20 Confusing Equality (==) and Assignment (=) Operators
2.21 Structured-Programming Summary

2

 2003 Prentice Hall, Inc. All rights reserved.

3

2.1 Introduction

• Before writing a program
– Have a thorough understanding of problem
– Carefully plan your approach for solving it

• While writing a program
– Know what “building blocks” are available
– Use good programming principles

 2003 Prentice Hall, Inc. All rights reserved.

4

2.2 Algorithms

• Computing problems
– Solved by executing a series of actions in a specific order

• Algorithm a procedure determining
– Actions to be executed
– Order to be executed
– Example: recipe

• Program control
– Specifies the order in which statements are executed

3

 2003 Prentice Hall, Inc. All rights reserved.

5

2.3 Pseudocode

• Pseudocode
– Artificial, informal language used to develop algorithms
– Similar to everyday English

• Not executed on computers
– Used to think out program before coding

• Easy to convert into C++ program

– Only executable statements
• No need to declare variables

 2003 Prentice Hall, Inc. All rights reserved.

6

2.4 Control Structures

• Sequential execution
– Statements executed in order

• Transfer of control
– Next statement executed not next one in sequence

• 3 control structures (Bohm and Jacopini)
– Sequence structure

• Programs executed sequentially by default

– Selection structures
• if, if/else, switch

– Repetition structures
• while, do/while, for

4

 2003 Prentice Hall, Inc. All rights reserved.

7

2.4 Control Structures

• C++ keywords
– Cannot be used as identifiers or variable names
C++ Keywords

Keywords common to the
C and C++ programming
languages

auto break case char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while
C++ only keywords

asm bool catch class const_cast
delete dynamic_cast explicit false friend
inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t

 2003 Prentice Hall, Inc. All rights reserved.

8

2.4 Control Structures

• Flowchart
– Graphical representation of an algorithm
– Special-purpose symbols connected by arrows (flowlines)
– Rectangle symbol (action symbol)

• Any type of action

– Oval symbol
• Beginning or end of a program, or a section of code (circles)

• Single-entry/single-exit control structures
– Connect exit point of one to entry point of the next
– Control structure stacking

5

 2003 Prentice Hall, Inc. All rights reserved.

9

2.5 if Selection Structure

• Selection structure
– Choose among alternative courses of action
– Pseudocode example:

If student’s grade is greater than or equal to 60
Print “Passed”

– If the condition is true
• Print statement executed, program continues to next statement

– If the condition is false
• Print statement ignored, program continues

– Indenting makes programs easier to read
• C++ ignores whitespace characters (tabs, spaces, etc.)

 2003 Prentice Hall, Inc. All rights reserved.

10

2.5 if Selection Structure

• Translation into C++
If student’s grade is greater than or equal to 60

Print “Passed”

if (grade >= 60)
cout << "Passed";

• Diamond symbol (decision symbol)
– Indicates decision is to be made
– Contains an expression that can be true or false

• Test condition, follow path

• if structure
– Single-entry/single -exit

6

 2003 Prentice Hall, Inc. All rights reserved.

11

2.5 if Selection Structure

• Flowchart of pseudocode statement

true

false

grade >= 60 print “Passed”

A decision can be made on
any expression.

zero - false

nonzero - true

Example:

3 - 4 is true

 2003 Prentice Hall, Inc. All rights reserved.

12

2.6 if/else Selection Structure

• if
– Performs action if condition true

• if/else
– Different actions if conditions true or false

• Pseudocode
if student’s grade is greater than or equal to 60

print “Passed”
else

print “Failed”

• C++ code
if (grade >= 60)

cout << "Passed";
else

cout << "Failed";

7

 2003 Prentice Hall, Inc. All rights reserved.

13

2.6 if/else Selection Structure

• Ternary conditional operator (?:)
– Three arguments (condition, value if true, value if false)

• Code could be written:
cout << (grade >= 60 ? “Passed” : “Failed”);

truefalse

print “Failed” print “Passed”

grade >= 60

Condition Value if true Value if false

 2003 Prentice Hall, Inc. All rights reserved.

14

2.6 if/else Selection Structure

• Nested if/else structures
– One inside another, test for multiple cases
– Once condition met, other statements skipped
if student’s grade is greater than or equal to 90

Print “A”
else

if student’s grade is greater than or equal to 80
Print “B”

else
if student’s grade is greater than or equal to 70

Print “C”
else

if student’s grade is greater than or equal to 60
Print “D”

else
Print “F”

8

 2003 Prentice Hall, Inc. All rights reserved.

15

2.6 if/else Selection Structure

• Example
if (grade >= 90) // 90 and above

cout << "A";
else if (grade >= 80) // 80-89

cout << "B";
else if (grade >= 70) // 70-79

cout << "C";
else if (grade >= 60) // 60-69

cout << "D";
else // less than 60

cout << "F";

 2003 Prentice Hall, Inc. All rights reserved.

16

2.6 if/else Selection Structure

• Compound statement
– Set of statements within a pair of braces
if (grade >= 60)

cout << "Passed.\n";
else {

cout << "Failed.\n";
cout << "You must take this course again.\n";

}

– Without braces,
cout << "You must take this course again.\n";

always executed

• Block
– Set of statements within braces

9

 2003 Prentice Hall, Inc. All rights reserved.

17

2.7 while Repetition Structure

• Repetition structure
– Action repeated while some condition remains true
– Psuedocode

while there are more items on my shopping list
Purchase next item and cross it off my list

– while loop repeated until condition becomes false

• Example
int product = 2;
while (product <= 1000)

product = 2 * product;

 2003 Prentice Hall, Inc. All rights reserved.

18

2.7 The while Repetition Structure

• Flowchart of while loop

product <= 1000 product = 2 * product
true

false

10

 2003 Prentice Hall, Inc. All rights reserved.

19

2.8 Formulating Algorithms (Counter-
Controlled Repetition)

• Counter-controlled repetition
– Loop repeated until counter reaches certain value

• Definite repetition
– Number of repetitions known

• Example
A class of ten students took a quiz. The grades (integers in
the range 0 to 100) for this quiz are available to you.
Determine the class average on the quiz.

 2003 Prentice Hall, Inc. All rights reserved.

20

2.8 Formulating Algorithms (Counter-
Controlled Repetition)

• Pseudocode for example:
Set total to zero
Set grade counter to one
While grade counter is less than or equal to ten

Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

• Next: C++ code for this example

11

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
21

fig02_07.cpp
(1 of 2)

1 // Fig. 2.7: fig02_07.cpp
2 // Class average program with counter-controlled repetition.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 // function main begins program execution
10 int main()
11 {
12 int total; // sum of grades input by user
13 int gradeCounter; // number of grade to be entered next
14 int grade; // grade value
15 int average; // average of grades
16
17 // initialization phase
18 total = 0; // initialize total
19 gradeCounter = 1; // initialize loop counter
20

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
22

fig02_07.cpp
(2 of 2)

fig02_07.cpp
output (1 of 1)

21 // processing phase
22 while (gradeCounter <= 10) { // loop 10 times
23 cout << "Enter grade: "; // prompt for input
24 cin >> grade; // read grade from user
25 total = total + grade; // add grade to total
26 gradeCounter = gradeCounter + 1; // increment counter
27 }
28
29 // termination phase
30 average = total / 10; // integer division
31
32 // display result
33 cout << "Class average is " << average << endl;
34
35 return 0; // indicate program ended successfully
36
37 } // end function main

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

The counter gets incremented each
time the loop executes.
Eventually, the counter causes the
loop to end.

12

 2003 Prentice Hall, Inc. All rights reserved.

23

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

• Suppose problem becomes:
Develop a class-averaging program that will process an
arbitrary number of grades each time the program is run

– Unknown number of students
– How will program know when to end?

• Sentinel value
– Indicates “end of data entry”
– Loop ends when sentinel input
– Sentinel chosen so it cannot be confused with regular input

• -1 in this case

 2003 Prentice Hall, Inc. All rights reserved.

24

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

• Top-down, stepwise refinement
– Begin with pseudocode representation of top

Determine the class average for the quiz

– Divide top into smaller tasks, list in order
Initialize variables

Input, sum and count the quiz grades
Calculate and print the class average

13

 2003 Prentice Hall, Inc. All rights reserved.

25

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

• Many programs have three phases
– Initialization

• Initializes the program variables

– Processing
• Input data, adjusts program variables

– Termination
• Calculate and print the final results

– Helps break up programs for top-down refinement

 2003 Prentice Hall, Inc. All rights reserved.

26

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

• Refine the initialization phase
Initialize variables

goes to
Initialize total to zero

Initialize counter to zero

• Processing
Input, sum and count the quiz grades

goes to
Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter

Input the next grade (possibly the sentinel)

14

 2003 Prentice Hall, Inc. All rights reserved.

27

2.9 Formulating Algorithms (Sentinel-
Controlled Repetition)

• Termination
Calculate and print the class average

goes to
If the counter is not equal to zero

Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

• Next: C++ program

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
28

fig02_09.cpp
(1 of 3)

1 // Fig. 2.9: fig02_09.cpp
2 // Class average program with sentinel-controlled repetition.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8 using std::fixed;
9
10 #include <iomanip> // parameterized stream manipulators
11
12 using std::setprecision; // sets numeric output precision
13
14 // function main begins program execution
15 int main()
16 {
17 int total; // sum of grades
18 int gradeCounter; // number of grades entered
19 int grade; // grade value
20
21 double average; // number with decimal point for average
22
23 // initialization phase
24 total = 0; // initialize total
25 gradeCounter = 0; // initialize loop counter

Data type doubleused to represent
decimal numbers.

15

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
29

fig02_09.cpp
(2 of 3)

26
27 // processing phase
28 // get first grade from user
29 cout << "Enter grade, -1 to end: "; // prompt for input
30 cin >> grade; // read grade from user
31
32 // loop until sentinel value read from user
33 while (grade != -1) {
34 total = total + grade; // add grade to total
35 gradeCounter = gradeCounter + 1; // increment counter
36
37 cout << "Enter grade, -1 to end: "; // prompt for input
38 cin >> grade; // read next grade
39
40 } // end while
41
42 // termination phase
43 // if user entered at least one grade ...
44 if (gradeCounter != 0) {
45
46 // calculate average of all grades entered
47 average = static_cast< double >(total) / gradeCounter;
48

static_cast<double>()treats total as a
double temporarily (casting).

Required because dividing two integers truncates the
remainder.

gradeCounter is an int, but it gets promoted to
double.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
30

fig02_09.cpp
(3 of 3)

fig02_09.cpp
output (1 of 1)

49 // display average with two digits of precision
50 cout << "Class average is " << setprecision(2)
51 << fixed << average << endl;
52
53 } // end if part of if/else
54
55 else // if no grades were entered, output appropriate message
56 cout << "No grades were entered" << endl;
57
58 return 0; // indicate program ended successfully
59
60 } // end function main

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

setprecision(2)prints two digits past
decimal point (rounded to fit precision).

Programs that use this must include <iomanip>

fixed forces output to print
in fixed point format (not
scientific notation). Also,
forces trailing zeros and
decimal point to print.

Include <iostream>

16

 2003 Prentice Hall, Inc. All rights reserved.

31

2.10 Nested Control Structures

• Problem statement
A college has a list of test results (1 = pass, 2 = fail) for 10
students. Write a program that analyzes the results. If more
than 8 students pass, print "Raise Tuition".

• Notice that
– Program processes 10 results

• Fixed number, use counter-controlled loop

– Two counters can be used
• One counts number that passed
• Another counts number that fail

– Each test result is 1 or 2
• If not 1, assume 2

 2003 Prentice Hall, Inc. All rights reserved.

32

2.10 Nested Control Structures

• Top level outline
Analyze exam results and decide if tuition should be raised

• First refinement
Initialize variables
Input the ten quiz grades and count passes and failures
Print a summary of the exam results and decide if tuition
should be raised

• Refine
Initialize variables

to
Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

17

 2003 Prentice Hall, Inc. All rights reserved.

33

2.10 Nested Control Structures

• Refine
Input the ten quiz grades and count passes and failures

to
While student counter is less than or equal to ten

Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

 2003 Prentice Hall, Inc. All rights reserved.

34

2.10 Nested Control Structures

• Refine
Print a summary of the exam results and decide if tuition should

be raised
to

Print the number of passes

Print the number of failures
If more than eight students passed

Print “Raise tuition”

• Program next

18

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
35

fig02_11.cpp
(1 of 2)

1 // Fig. 2.11: fig02_11.cpp
2 // Analysis of examination results.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 // function main begins program execution
10 int main()
11 {
12 // initialize variables in declarations
13 int passes = 0; // number of passes
14 int failures = 0; // number of failures
15 int studentCounter = 1; // student counter
16 int result; // one exam result
17
18 // process 10 students using counter-controlled loop
19 while (studentCounter <= 10) {
20
21 // prompt user for input and obtain value from user
22 cout << "Enter result (1 = pass, 2 = fail): ";
23 cin >> result;
24

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
36

fig02_11.cpp
(2 of 2)

25 // if result 1, increment passes; if/else nested in while
26 if (result == 1) // if/else nested in while
27 passes = passes + 1;
28
29 else // if result not 1, increment failures
30 failures = failures + 1;
31
32 // increment studentCounter so loop eventually terminates
33 studentCounter = studentCounter + 1;
34
35 } // end while
36
37 // termination phase; display number of passes and failures
38 cout << "Passed " << passes << endl;
39 cout << "Failed " << failures << endl;
40
41 // if more than eight students passed, print "raise tuition"
42 if (passes > 8)
43 cout << "Raise tuition " << endl;
44
45 return 0; // successful termination
46
47 } // end function main

19

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
37

fig02_11.cpp
output (1 of 1)

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Passed 6
Failed 4

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed 9
Failed 1
Raise tuition

 2003 Prentice Hall, Inc. All rights reserved.

38

2.11 Assignment Operators

• Assignment expression abbreviations
– Addition assignment operator

c = c + 3; abbreviated to
c += 3;

• Statements of the form
variable = variable operator expression;

can be rewritten as
variable operator= expression;

• Other assignment operators
d -= 4 (d = d - 4)
e *= 5 (e = e * 5)
f /= 3 (f = f / 3)
g %= 9 (g = g % 9)

20

 2003 Prentice Hall, Inc. All rights reserved.

39

2.12 Increment and Decrement Operators
• Increment operator (++) - can be used instead of c
+= 1

• Decrement operator (--) - can be used instead of c -
= 1
– Preincrement

• When the operator is used before the variable (++c or –c)

• Variable is changed, then the expression it is in is evaluated.

– Posincrement
• When the operator is used after the variable (c++ or c--)

• Expression the variable is in executes, then the variable is changed.

 2003 Prentice Hall, Inc. All rights reserved.

40

2.12 Increment and Decrement Operators

• Increment operator (++)
– Increment variable by one
– c++

• Same as c += 1

• Decrement operator (--) similar
– Decrement variable by one
– c--

21

 2003 Prentice Hall, Inc. All rights reserved.

41

2.12 Increment and Decrement Operators

• Preincrement
– Variable changed before used in expression

• Operator before variable (++c or --c)

• Postincrement
– Incremented changed after expression

• Operator after variable (c++, c--)

 2003 Prentice Hall, Inc. All rights reserved.

42

2.12 Increment and Decrement Operators

• If c = 5, then
– cout << ++c;

• c is changed to 6, then printed out

– cout << c++;
• Prints out 5 (cout is executed before the increment.

• c then becomes 6

22

 2003 Prentice Hall, Inc. All rights reserved.

43

2.12 Increment and Decrement Operators

• When variable not in expression
– Preincrementing and postincrementing have same effect

++c;
cout << c;

and
c++;
cout << c;

are the same

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
44

fig02_14.cpp
(1 of 2)

1 // Fig. 2.14: fig02_14.cpp
2 // Preincrementing and postincrementing.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11 int c; // declare variable
12
13 // demonstrate postincrement
14 c = 5; // assign 5 to c
15 cout << c << endl; // print 5
16 cout << c++ << endl; // print 5 then postincrement
17 cout << c << endl << endl; // print 6
18
19 // demonstrate preincrement
20 c = 5; // assign 5 to c
21 cout << c << endl; // print 5
22 cout << ++c << endl; // preincrement then print 6
23 cout << c << endl; // print 6

23

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
45

fig02_14.cpp
(2 of 2)

fig02_14.cpp
output (1 of 1)

24
25 return 0; // indicate successful termination
26
27 } // end function main

5
5
6

5
6
6

 2003 Prentice Hall, Inc. All rights reserved.

46

2.13 Essentials of Counter-Controlled
Repetition

• Counter-controlled repetition requires
– Name of control variable/loop counter
– Initial value of control variable
– Condition to test for final value
– Increment/decrement to modify control variable when

looping

24

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
47

fig02_16.cpp
(1 of 1)

1 // Fig. 2.16: fig02_16.cpp
2 // Counter-controlled repetition.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11 int counter = 1; // initialization
12
13 while (counter <= 10) { // repetition condition
14 cout << counter << endl; // display counter
15 ++counter; // increment
16
17 } // end while
18
19 return 0; // indicate successful termination
20
21 } // end function main

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
48

fig02_16.cpp
output (1 of 1)

1
2
3
4
5
6
7
8
9
10

25

 2003 Prentice Hall, Inc. All rights reserved.

49

2.13 Essentials of Counter-Controlled
Repetition

• The declaration
int counter = 1;

– Names counter
– Declares counter to be an integer
– Reserves space for counter in memory
– Sets counter to an initial value of 1

 2003 Prentice Hall, Inc. All rights reserved.

50

2.14 for Repetition Structure

• General format when using for loops
for (initialization; LoopContinuationTest;

increment)
statement

• Example
for(int counter = 1; counter <= 10; counter++)

cout << counter << endl;

– Prints integers from one to ten
No
semicolon
after last
statement

26

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
51

fig02_17.cpp
(1 of 1)

1 // Fig. 2.17: fig02_17.cpp
2 // Counter-controlled repetition with the for structure.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11 // Initialization, repetition condition and incrementing
12 // are all included in the for structure header.
13
14 for (int counter = 1; counter <= 10; counter++)
15 cout << counter << endl;
16
17 return 0; // indicate successful termination
18
19 } // end function main

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
52

fig02_17.cpp
output (1 of 1)

1
2
3
4
5
6
7
8
9
10

27

 2003 Prentice Hall, Inc. All rights reserved.

53

2.14 for Repetition Structure

• for loops can usually be rewritten as while loops
initialization;
while (loopContinuationTest){

statement
increment;

}

• Initialization and increment
– For multiple variables, use comma-separated lists

for (int i = 0, j = 0; j + i <= 10; j++, i++)
cout << j + i << endl;

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
54

fig02_20.cpp
(1 of 1)

fig02_20.cpp
output (1 of 1)

1 // Fig. 2.20: fig02_20.cpp
2 // Summation with for.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11 int sum = 0; // initialize sum
12
13 // sum even integers from 2 through 100
14 for (int number = 2; number <= 100; number += 2)
15 sum += number; // add number to sum
16
17 cout << "Sum is " << sum << endl; // output sum
18 return 0; // successful termination
19
20 } // end function main

Sum is 2550

28

 2003 Prentice Hall, Inc. All rights reserved.

55

2.15 Examples Using the for Structure

• Program to calculate compound interest
• A person invests $1000.00 in a savings account yielding 5 percent

interest. Assuming that all interest is left on deposit in the account,
calculate and print the amount of money in the account at the end of
each year for 10 years. Use the following formula for determining
these amounts:
a = p(1+r)

• p is the original amount invested (i.e., the principal),
r is the annual interest rate,
n is the number of years and
a is the amount on deposit at the end of the nth year

n

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
56

fig02_21.cpp
(1 of 2)

1 // Fig. 2.21: fig02_21.cpp
2 // Calculating compound interest.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7 using std::ios;
8 using std::fixed;
9
10 #include <iomanip>
11
12 using std::setw;
13 using std::setprecision;
14
15 #include <cmath> // enables program to use function pow
16
17 // function main begins program execution
18 int main()
19 {
20 double amount; // amount on deposit
21 double principal = 1000.0; // starting principal
22 double rate = .05; // interest rate
23

<cmath> header needed for
the pow function (program
will not compile without it).

29

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
57

fig02_21.cpp
(2 of 2)

24 // output table column heads
25 cout << "Year" << setw(21) << "Amount on deposit" << endl;
26
27 // set floating-point number format
28 cout << fixed << setprecision(2);
29
30 // calculate amount on deposit for each of ten years
31 for (int year = 1; year <= 10; year++) {
32
33 // calculate new amount for specified year
34 amount = principal * pow(1.0 + rate, year);
35
36 // output one table row
37 cout << setw(4) << year
38 << setw(21) << amount << endl;
39
40 } // end for
41
42 return 0; // indicate successful termination
43
44 } // end function main

pow(x,y) = x raised to the
yth power.

Sets the field width to at least
21 characters. If output less
than 21, it is right-justified.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
58

fig02_21.cpp
output (1 of 1)

Year Amount on deposit
1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28
6 1340.10
7 1407.10
8 1477.46
9 1551.33

10 1628.89

Numbers are right-justified
due to setwstatements (at
positions 4 and 21).

30

 2003 Prentice Hall, Inc. All rights reserved.

59

2.16 switch Multiple-Selection Structure

• switch
– Test variable for multiple values
– Series of case labels and optional default case
switch (variable) {

case value1: // taken if variable == value1
statements
break; // necessary to exit switch

case value2:
case value3: // taken if variable == value2 or == value3
statements
break;

default: // taken if variable matches no other cases
statements
break;

}

 2003 Prentice Hall, Inc. All rights reserved.

60

2.16 switch Multiple-Selection Structure

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

31

 2003 Prentice Hall, Inc. All rights reserved.

61

2.16 switch Multiple-Selection Structure

• Example upcoming
– Program to read grades (A-F)
– Display number of each grade entered

• Details about characters
– Single characters typically stored in a char data type

• char a 1-byte integer, so chars can be stored as ints

– Can treat character as int or char
• 97 is the numerical representation of lowercase ‘a’ (ASCII)

• Use single quotes to get numerical representation of character
cout << "The character (" << 'a' << ") has the value "

<< static_cast< int > ('a') << endl;

Prints
The character (a) has the value 97

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
62

fig02_22.cpp
(1 of 4)

1 // Fig. 2.22: fig02_22.cpp
2 // Counting letter grades.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 // function main begins program execution
10 int main()
11 {
12 int grade; // one grade
13 int aCount = 0; // number of As
14 int bCount = 0; // number of Bs
15 int cCount = 0; // number of Cs
16 int dCount = 0; // number of Ds
17 int fCount = 0; // number of Fs
18
19 cout << "Enter the letter grades." << endl
20 << "Enter the EOF character to end input." << endl;
21

32

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
63

fig02_22.cpp
(2 of 4)

22 // loop until user types end-of-file key sequence
23 while ((grade = cin.get()) != EOF) {
24
25 // determine which grade was input
26 switch (grade) { // switch structure nested in while
27
28 case 'A': // grade was uppercase A
29 case 'a': // or lowercase a
30 ++aCount; // increment aCount
31 break; // necessary to exit switch
32
33 case 'B': // grade was uppercase B
34 case 'b': // or lowercase b
35 ++bCount; // increment bCount
36 break; // exit switch
37
38 case 'C': // grade was uppercase C
39 case 'c': // or lowercase c
40 ++cCount; // increment cCount
41 break; // exit switch
42

cin.get() uses dot notation
(explained chapter 6). This
function gets 1 character from the
keyboard (after Enter pressed),
and it is assigned to grade.

cin.get() returns EOF (end-of-
file) after the EOF character is
input, to indicate the end of data.
EOF may be ctrl-d or ctrl-z,
depending on your OS.

Compares grade (an int)
to the numerical
representations of A and a.

break causes switch to end and
the program continues with the first
statement after the switch
structure.

Assignment statements have a
value, which is the same as
the variable on the left of the
=. The value of this statement
is the same as the value
returned by cin.get().

This can also be used to
initialize multiple variables:
a = b = c = 0;

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
64

fig02_22.cpp
(3 of 4)

43 case 'D': // grade was uppercase D
44 case 'd': // or lowercase d
45 ++dCount; // increment dCount
46 break; // exit switch
47
48 case 'F': // grade was uppercase F
49 case 'f': // or lowercase f
50 ++fCount; // increment fCount
51 break; // exit switch
52
53 case '\n': // ignore newlines,
54 case '\t': // tabs,
55 case ' ': // and spaces in input
56 break; // exit switch
57
58 default: // catch all other characters
59 cout << "Incorrect letter grade entered."
60 << " Enter a new grade." << endl;
61 break; // optional; will exit switch anyway
62
63 } // end switch
64
65 } // end while
66

Notice the default statement, which
catches all other cases.

This test is necessary because
Enter is pressed after each
letter grade is input. This adds
a newline character that must
be removed. Likewise, we
want to ignore any
whitespace.

33

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
65

fig02_22.cpp
(4 of 4)

67 // output summary of results
68 cout << "\n\nTotals for each letter grade are:"
69 << "\nA: " << aCount // display number of A grades
70 << "\nB: " << bCount // display number of B grades
71 << "\nC: " << cCount // display number of C grades
72 << "\nD: " << dCount // display number of D grades
73 << "\nF: " << fCount // display number of F grades
74 << endl;
75
76 return 0; // indicate successful termination
77
78 } // end function main

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
66

fig02_22.cpp
output (1 of 1)

Enter the letter grades.
Enter the EOF character to end input.
a
B
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

34

 2003 Prentice Hall, Inc. All rights reserved.

67

2.17 do/while Repetition Structure

• Similar to while structure
– Makes loop continuation test at end, not beginning
– Loop body executes at least once

• Format
do {

statement
} while (condition);

true

false

action(s)

condition

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
68

fig02_24.cpp
(1 of 1)

fig02_24.cpp
output (1 of 1)

1 // Fig. 2.24: fig02_24.cpp
2 // Using the do/while repetition structure.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11 int counter = 1; // initialize counter
12
13 do {
14 cout << counter << " "; // display counter
15 } while (++counter <= 10); // end do/while
16
17 cout << endl;
18
19 return 0; // indicate successful termination
20
21 } // end function main

1 2 3 4 5 6 7 8 9 10

Notice the preincrement in
loop-continuation test.

35

 2003 Prentice Hall, Inc. All rights reserved.

69

2.18 break and continue Statements

• break statement
– Immediate exit from while, for, do/while, switch
– Program continues with first statement after structure

• Common uses
– Escape early from a loop
– Skip the remainder of switch

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
70

fig02_26.cpp
(1 of 2)

1 // Fig. 2.26: fig02_26.cpp
2 // Using the break statement in a for structure.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11
12 int x; // x declared here so it can be used after the loop
13
14 // loop 10 times
15 for (x = 1; x <= 10; x++) {
16
17 // if x is 5, terminate loop
18 if (x == 5)
19 break; // break loop only if x is 5
20
21 cout << x << " "; // display value of x
22
23 } // end for
24
25 cout << "\nBroke out of loop when x became " << x << endl;

Exits for structure when
break executed.

36

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
71

fig02_26.cpp
(2 of 2)

fig02_26.cpp
output (1 of 1)

26
27 return 0; // indicate successful termination
28
29 } // end function main

1 2 3 4
Broke out of loop when x became 5

 2003 Prentice Hall, Inc. All rights reserved.

72

2.18 break and continue Statements

• continue statement
– Used in while, for, do/while
– Skips remainder of loop body
– Proceeds with next iteration of loop

• while and do/while structure
– Loop-continuation test evaluated immediately after the
continue statement

• for structure
– Increment expression executed
– Next, loop-continuation test evaluated

37

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
73

fig02_27.cpp
(1 of 2)

1 // Fig. 2.27: fig02_27.cpp
2 // Using the continue statement in a for structure.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11 // loop 10 times
12 for (int x = 1; x <= 10; x++) {
13
14 // if x is 5, continue with next iteration of loop
15 if (x == 5)
16 continue; // skip remaining code in loop body
17
18 cout << x << " "; // display value of x
19
20 } // end for structure
21
22 cout << "\nUsed continue to skip printing the value 5"
23 << endl;
24
25 return 0; // indicate successful termination

Skips to next iteration of the
loop.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
74

fig02_27.cpp
(2 of 2)

fig02_27.cpp
output (1 of 1)

26
27 } // end function main

1 2 3 4 6 7 8 9 10
Used continue to skip printing the value 5

38

 2003 Prentice Hall, Inc. All rights reserved.

75

2.19 Logical Operators

• Used as conditions in loops, if statements
• && (logical AND)

– true if both conditions are true
if (gender == 1 && age >= 65)

++seniorFemales;

• || (logical OR)
– true if either of condition is true

if (semesterAverage >= 90 || finalExam >= 90)
cout << "Student grade is A" << endl;

 2003 Prentice Hall, Inc. All rights reserved.

76

2.19 Logical Operators

• ! (logical NOT, logical negation)
– Returns truewhen its condition is false, & vice versa

if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;

Alternative:
if (grade != sentinelValue)

cout << "The next grade is " << grade << endl;

39

 2003 Prentice Hall, Inc. All rights reserved.

77

2.20 Confusing Equality (==) and
Assignment (=) Operators

• Common error
– Does not typically cause syntax errors

• Aspects of problem
– Expressions that have a value can be used for decision

• Zero = false, nonzero = true

– Assignment statements produce a value (the value to be
assigned)

 2003 Prentice Hall, Inc. All rights reserved.

78

2.20 Confusing Equality (==) and
Assignment (=) Operators

• Example
if (payCode == 4)

cout << "You get a bonus!" << endl;

– If paycode is 4, bonus given

• If == was replaced with =
if (payCode = 4)

cout << "You get a bonus!" << endl;

– Paycode set to 4 (no matter what it was before)
– Statement is true (since 4 is non-zero)
– Bonus given in every case

40

 2003 Prentice Hall, Inc. All rights reserved.

79

2.20 Confusing Equality (==) and
Assignment (=) Operators

• Lvalues
– Expressions that can appear on left side of equation
– Can be changed (I.e., variables)

• x = 4;

• Rvalues
– Only appear on right side of equation
– Constants, such as numbers (i.e. cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

 2003 Prentice Hall, Inc. All rights reserved.

80

2.21 Structured-Programming Summary

• Structured programming
– Programs easier to understand, test, debug and modify

• Rules for structured programming
– Only use single-entry/single -exit control structures
– Rules

1) Begin with the “simplest flowchart”
2) Any rectangle (action) can be replaced by two rectangles

(actions) in sequence

3) Any rectangle (action) can be replaced by any control
structure (sequence, if, if/else, switch, while, do/while or for)

4) Rules 2 and 3 can be applied in any order and multiple times

41

 2003 Prentice Hall, Inc. All rights reserved.

81

2.21 Structured-Programming Summary

Rule 3

Rule 3Rule 3

Representation of Rule 3 (replacing any rectangle with a control structure)

 2003 Prentice Hall, Inc. All rights reserved.

82

2.21 Structured-Programming Summary

• All programs broken down into
– Sequence
– Selection

• if, if/else, or switch
• Any selection can be rewritten as an if statement

– Repetition
• while, do/while or for
• Any repetition structure can be rewritten as a while statement

