
Chapter 1

ROOT SYSTEMS AND THEIR

CLASSIFICATION

1.1 Cartan Subalgebras

We consider a semisimple Lie algebra G and we introduce the fundamental concept of Cartan
subalgebra that will be the primary instrument to set up the reduction of the Lie algebra to a
canonical form and its identification in terms of a root system.

Definition 1.1.1. A Cartan subalgebra H ⊂ G is a subalgebra that satisfies the following two
defining properties:

i) H is a maximal abelian subalgebra
ii) ∀H ∈ H the map ad(H) is a semisimple endomorphism

First we prove that every semisimple Lie algebra G has a Cartan subalgebra (frequently abbre-
viated as CSA). Then we show that if H1 and H2 are two CSA.s then they are isomorphic.

LetH ∈ G be an element of the semisimple Lie algebra and let λ0, λ1, . . . λr be the eigenvalues
of ad(H): define

g(H, λi) = {X ∈ G/ad(H)X = λiX} (1.1.1)

the subspace of G pertaining to the eigenvalue λi. We have:

G =

r⊕

i=0

g(H, λi) (1.1.2)

Definition 1.1.2. An element H0 ∈ G is named regular if

dim g (H0, 0) = min︸︷︷︸
X∈G

(dim g (X, 0)) (1.1.3)

We have the

Theorem 1.1.1. If H0 is a regular element then g (H0, 0) is a Cartan subalgebra

Proof 1.1.1.1. We have to show that:

a) g (H0, 0) is a subalgebra
b) g (H0, 0) is a maximal abelian subalgebra
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c) if H ∈ g (H0, 0) then ad(H) is semisimple as an endomorphism.

We begin by observing that

[g (Z, λ) , g (Z, µ)] ⊂ g (Z, λ+ µ) (1.1.4)

which immediately follows from Jacobi identities. This implies that H = g (H0, 0) is a subalgebra.
Next we prove that H is abelian. To this effect let us denote by 0 = λ0, λ1, λ2, . . . , λr the different
eigenvalues of ad(H0) and set:

G
′ =

r⊕

i=1

g(H, λi) (1.1.5)

¿From eq. (1.1.4) it follows that [H , G
′] ⊂ G

′. ∀H ∈ H let us denote ad′(H) the restriction
of ad(H) to the subspace G

′ and name d(H) = det
[
ad′(H)

]
the determinant of such an endo-

morphism. By definition d(H) is a polynomial function on the finite dimensional vector space
(algebra) H, furthermore, by definition of the subspace G

′, the map ad′(H0) has only non van-
ishing eigenvalues, so that d(H0) 6= 0. If a polynomial function vanishes on an open set then it
is identically zero. Since d(H0) 6= 0 it follows that d(H) is not identically zero and that its zeros
are isolated. Calling S the set of elements of H for which d(H) 6= 0 we conclude that S is dense
in H. Let H ∈ S ⊂ H: since det

[
ad′(h)

]
6= 0 it follows that all the null eigenvectors of ad(H), if

any, are contained in H. Hence we have shown:

∀H ∈ S : g (H, 0) ⊂ H (1.1.6)

Since the element H0 is by hypothesis regular we conclude that g (H, 0) = H. Hence it is proved
that

∀H ∈ S , ∀H1 ∈ H : ad(H)(H1) = 0 (1.1.7)

Hence the restriction of ad(H) to the subalgebra H is nilpotent since it vanishes. Since S is dense
in H, by continuity it follows that

∀H ∈ H : adH (H) = 0 (1.1.8)

namely that
∀H1,H2 ∈ H : [H1 , H2] = 0 (1.1.9)

This concludes the proof that H ≡ g (H0, 0) is an abelian subalgebra. By definition it is also
maximal. Indeed if there existed an element X /∈ g(H0, 0) such that [X,H] = 0 we would have a
contradiction since, in particular [X,H0] = 0 which implies X ∈ g (H0, 0).

Let us now show that if λ is a non vanishing eigenvalue of ad(H0), then every endomorphism
ad(H) with H ∈ H maps the subspace g (H0, λ) into itself. Hence, denoting by adλ(H) the
restriction of ad(H) to this subspace we have that adλ(H) is a representation of H on g (H0, λ).
Since adλ(H) is a family of commuting endomorphisms (solvable algebra, in particular) we can put
all of them simultaneously in a triangular form, by choosing some appropriate basis −→e 1, . . . ,−→e s

of g (H0, λ).In this basis the semisimple part of adλ(H) will be the diagonal part:

adλ(H) =





α1(H) 0 . . . . . . 0
0 α2(H) 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 αs−1(H) 0
0 . . . . . . 0 αs(H)




+ nilpotent matrix (1.1.10)
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The diagonal elements αi(H) are linear functions on H with the property that α1(H0) = α2(H0) =
. . . = αs(H0) = λ. Let β(H) be any linear function on H that takes the value β(H0) = λ at H0.
Let Vβ be the subspace of g(H0, λ) spanned by the those basis vectors −→e i such that αi(H) = β(H)
(∀H ∈ H). By definition it follows that:

∀X ∈ Vβ ⇒ ∃k ∈ N / (ad(H) − β(H)1)
k
X = 0 (1.1.11)

Indeed, once we have subtracted the diagonal part, what remains is nilpotent. In general we
have:

G =
∑

i

Vβi
for suitable βi (1.1.12)

hence if κ ( , ) is the Killing form we can write:

∀H,H ′ ∈ H : κ (H , H ′) =
∑

i

βi(H)βi(H
′) dimVβi

(1.1.13)

We decomposeá la Jordan:
ad(H) = S(H)︸ ︷︷ ︸

semisimple

+ N(H)︸ ︷︷ ︸
nilpotent

(1.1.14)

and we recall that S(H) is polynomial in ad(H). By construction the endomorphism S(H) leaves
each Vbeta subspace invariant and:

S(H)X = β(H)X ; ∀X ∈ Vβ (1.1.15)

Furthermore since [Vα , Vβ ] ⊂ Vα+β it follows that S is a derivation of the algebra. But for a
semisimple Lie algebra every derivation is internal, hence ∃Z ∈ G such that ad(Z) = S(H). Since
S(H) commutes with all elements of H it follows that Z ∈ H. In other words Z = H and this
shows that ad(H) coincides with its semisimple part.

1.2 Root systems

Let H ⊂ G be a Cartan subalgebra of the semisimple Lie algebra G. Consider an element α ∈ H?

namely a linear functional:

α : H → C

∀H1,H2 ∈ H ; ∀λ, µ ∈ C : α (λH1 + µH2) = λα (H1) + µα (H2) (1.2.16)

Let us define the linear subspace G
α ⊂ G:

G
α : {X ∈ G \ [H , X] = α(H)X , ∀H ∈ H} (1.2.17)

If G
α 6= ∅ is not empty then we say that α ∈ H? is a root and G

α is named the corresponding
subspace of root α. Since, by definition, H is maximal abelian, then we have G

0 = H. On the
other hand from Jacobi identity we immediately obtain:

[
G

α , G
β
]
⊂ G

α+β ∀α, β ∈ H? (1.2.18)

Let us next denote by Φ the set of all non–vanishing roots and with κ ( , ) the Killing form. We
have the
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Theorem 1.2.1. The following statements are true:

i) G = H⊕ ∑
α∈Φ G

α (direct sum)

ii) dim G
α = 1, ∀α ∈ Φ

iii) Let α, β ∈ Φ be two roots such that α + β 6= 0, then the corresponding subspaces G
α and

G
β are mutually orthogonal with respect to the Killing form κ ( , ).

iv) The restriction of the Killing form κ ( , ) to H⊗H is non degenerate and for each root ∀α ∈ Φ
there exists an element ∃Hα ∈ H of the Cartan subalgebra such that

κ (H , H) = α(H) ∀H ∈ H (1.2.19)

v) If α ∈ Φ is a root then also its negative is a root:−α ∈ Φ. Furthermore we have:

[
G

α , G
−α

]
= constHα

α(Hα) 6= 0 (1.2.20)

Proof 1.2.1.1. We begin with point i) in the above list and we show first that the sum is direct.
If it were not this would mean that there exists a linear relation:

H? +
∑

i

Xαi
= 0 (1.2.21)

where H? ∈ H and Xαi
∈ G

αi . We can choose an element H ∈ H such that αi(H) 6= 0 for all
the roots αi. Indeed the subset N ⊂ H on which all the roots αi are different and non vanishing
is the complement of the union of a finite number of hyperplanes (α(H) = 0 ⇔ hyperplane 3 H).
HenceH with the required properties exists and, as a consequence, H? andXαi

belong to different
eigenspaces of ad(H). As such they are linearly independent which contradicts the assumption
of eq.(1.2.21). This shows that the sum of subspaces in statement i) is direct. On the other hand
since adG(H) is a set of semisimple endomorphisms it follows that G can be decomposed into
eigenspaces and the relation advocated in statement i) follows. Furthermore if α(H0) = 0 for all
roots ∀α ∈ Φ then H0 = 0. Indeed by hypothesis we have [H0 , X] = 0, ∀X ∈ G and since the
Lie algebra G is semisimple this implies H0 = 0.

Let us next proof the statement iii). To this effect we choose X ∈ G
α and Y ∈ G

β . With
this choice the endomorphism ad(x).ad(Y ) maps the space G

γ into G
α+β+γ and since α+ β 6= 0

we get:

G
γ

⋂
G

α+β+γ = 0 (1.2.22)

Therefore if we use a basis where every basis vector lies in some root subspace G
γ we immediately

see that:
κ (X , Y ) ≡ Tr (ad(X).ad(Y )) = 0 (1.2.23)

which is what we wanted to show
Next let us prove the statement iv). If H0 ∈ H satisfies the condition:

κ (H0 , H) = 0 ∀H ∈ H (1.2.24)

then as a consequence of statement iii) that we have already proved it follows that:

κ (H0 , X) = 0 ∀X ∈ G (1.2.25)
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This would imply that that the Killing κ ( , ) is degenerate in contradiction with Cartan’s criterion
for semisimple Lie algebras. Hence there are no vectors in H which are orthogonal to all vectors
of H, which proves the first part of statement iv). Next choose a basis {Hi} (i = 1, . . . rankG)
of the Cartan subalgebra H and set:

κij = κ (H , Hj) (1.2.26)

Writing ∀H ∈ H H = hiHi we obtain α(H) = hi αi where αi ≡ α(Hi). Statement iv)
advocates that we should be able to find an element Hα = αiHi such that κ (H , Hα) = α(H).
In the chosen basis this means Hi αj κij = hi αi which implies:

αj κij = αi (1.2.27)

Since κij is a non degenerate matrix we can always find its inverse and set

αj =
(
κ−1

)ji
αi (1.2.28)

which concludes the proof of statement iv).
Let us come to the proof of statement v). Let us assume that −α /∈ Φ. This would imply

that G
−α = ∅. In this case an element X ∈ G

α being orthogonal to all the other subspaces G
β

would imply that
κ (Xα , Y ) = 0 ∀Y ∈ G (1.2.29)

In this case the Killing form would be degenerate which is impossible for a semisimple Lie algebra
by Cartan criterion. So −α ∈ Φ. Let now H,Xα,X−α be arbitrary elements respectively in H,Gα

and G
−α. Then by properties of the Killing form we have:

κ ([Xα , X−α] , H) = κ (X−α , [H , Xα]H)

= κ (X−α , Xα) α(H)

= κ (X−α , Xα) κ (Hα , H) (1.2.30)

so that we are forced to identify:

[Xα , X−α] = κ (X−α , Xα) Hα = κ (X−α , Xα) αiHi (1.2.31)

which concludes the proof of statement v).
Finally let us prove statement ii). Let us assume that dim G

α > 1. In this case let us choose
Xα ∈ G

α and X−α ∈ G
−α such that:

κ (X−α , Xα) = 1 (1.2.32)

If dim G
α > 1 it follows that there exists ∃Dα ∈ G

α such that:

κ (Dα , X−α) = 0 (1.2.33)

Set Dn = (ad (Xα))
n
Dα for n = 0, 1, 2, . . .. We have Dn ∈ G

(n+1)α and hence

[Hα , Dn] = α(H) (n+ 1)Dn (1.2.34)

Furthermore by induction we can show that:

[X−α , Dn] = −n (n+ 1)

2
α(Hα) Dn−1 (1.2.35)
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For n = 0 we have [X−α , Dα] = κ (Dα , X−α)Hα = 0. On the other hand if eq.(1.2.35) is true
for n it follows that it is also true for n+ 1. Indeed:

[X−α , Dn+1] = [X−α , [Xα , Dn]]

= − [Xα , [Dn , X−α]] − [Dn , [X−α , Xα]]

= − n
n+ 1

2
α(Hα)Dn + (n+ 1)α(Hα)Dn

= − (n+ 1)
n+ 2

2
α(Hα)Dn (1.2.36)

which shows what we claimed. Therefore if D0 = Dα exists also all the other Dn do exist and
are non vanishing. This implies that there are infinite roots (n+1)α and correspondingly infinite
orthogonal subspaces G

(n+1)α this is manifestly absurd since the dimension of the semisimple Lie
algebra G is finite. Hence Dα cannot exist and the dimension of the subspace G

α = 1 as claimed.

This concludes the proof of the theorem

1.2.1 Final form of the semisimple Lie algebra

Using the result provided by theorem 1.2.1 we can now write a final general form of a semisimple
Lie algebra in terms of Cartan generators Hi and step operators Eα associated with the roots α.
To this effect we normalize the Cartan subalgebra (CSA) generators in the following way:

κ (Hi , Hj) = δij ⇒ Hα = αiHi

κ
(
Eα , E−α

)
= 1

κ (Hi , E
α) = 0 (1.2.37)

With this normalization the commutation relations of the complex semisimple Lie algebra take
the following general form:

[Hi , Hj ] = 0

[Hi , E
α] = αiE

α

[
Eα , E−α

]
= αiHi

[
Eα , Eβ

]
= N(α, β)Eα+β if α+ β ∈ Φ

[
Eα , Eβ

]
= 0 if α+ β /∈ Φ (1.2.38)

where N(α, β) is a coefficient that has to be determined using Jacobi identities.

1.2.2 Properties of Root systems

Let us now consider the properties of a root system associated with a semisimple Lie algebra.
We have the

Theorem 1.2.2. If α, β ∈ Φ are two roots, then the following two statements are true:

(i) 2 (α , β)
(α ,α) ∈ Z

(ii) β − 2α (α , β)
(α ,α) ∈ Φ is also a root.
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Proof 1.2.2.1. Let α, β ∈ Φ be two roots, and let us define the non negative integer j ∈ N by
means of the following conditions

γ ≡ β + j α ∈ Φ

γ + α /∈ Φ (1.2.39)

In other words j is the maximal integer n for which β + nα is a root.
We know that −α is a root and hence we can conclude that:

[
E−α , Eγ

]
= Êγ−α

[
E−α , Êγ−α

]
= Êγ−2α

. . . . . . . . . (1.2.40)

where Êγ−nα denotes some element in the one–dimensional subspace pertaining to the root
γ − nα. Since the number of roots is necessarily finite it follows that there exists some positive
integer g ∈ N such that:

[
E−α , Êγ−gα

]
= Êγ−(g+1)α = 0 (1.2.41)

In general, due to the one–dimensionality of the each root space we can set:
[
Eα , Êγ−(n+1)α

]
= µn+1 Ê

γ−nα (1.2.42)

where µn+1 is some normalization factor. From Jacobi identities we immediately obtain a recur-
sion relation satisfied by these normalization factors. Indeed:

[
Eα

[
E−α , Êγ−nα

]]
= −

[
E−α

[
Êγ−nα , Eα

]]
−

[
Eγ−nα

[
Eα , E−α

]]

= µn Ê
γ−nα + αi

[
Hi , Ê

γ−nα
]

= (µn + (γ , α) − n (α , α)) Êγ−nα (1.2.43)

which implies the recursion relation:

µn+1 = µn + (γ , α) − n (α , α) (1.2.44)

Since by hypothesis γ + α is not a root we have

[Eα , Eγ ] = µ0E
γ+α = 0 namely µ0 = 0 (1.2.45)

This allows to solve the recursion relation explicitly obtaining:

µn = n (α , γ) − n(n−1)
2 (α , α) (1.2.46)

Since, at the other end of the chain, we have assumed that γ− (g+1)α is not a root, we conclude
that µg+1 = 0 and hence:

(g + 1)
{
(α , γ) − g

2 (α , α)
}

= 0 (1.2.47)

This implies that 2 (γ , α)
(α , α) = g ∈ N Hence for each pair of roots αβ there exists a non negative

integer j ≥ 0 such that γ = β + jα is a root and

(α , β) = (α , γ) − j (α , α) =
(

g
2 − j

)
(α , α) (1.2.48)



Root systems 8

namely:

2
(α , β)

(α , α)
= g − 2j ∈ Z (positive or negative) (1.2.49)

This concludes the first part of our proof. Let us now consider the string or roots that we have
constructed to make the above argument:

β0 = γ = β + jα

β1 = γ − α = β + (j − 1)α

β2 = γ − 2α = β + (j − 2)α

. . . . . . . . . (1.2.50)

βg = γ − gα = β + (j − g)α (1.2.51)

Since 2 (γ , α)
(α , α) = g, it is evident by means of the replacement:

β 7→ β − 2α
(β , α)

(α , α)
(1.2.52)

the string (1.2.51) is simply reflected into itself βg 7→ β0, βg−1 7→ β1, . . .. So not only we proved
that if β and α are roots then the reflection of β with respect to α is a root but also that the
entire string of α through β is invariant under such reflection.

1.2.2.1 Angles between the roots

It is convenient to introduce the following notation of a hook product

〈β , α 〉 ≡ 2α
(β , α)

(α , α)
(1.2.53)

¿From theorem 1.2.2 we have learned that 〈β , α 〉 ∈ Z, but at the same time also 〈α , β 〉 ∈ Z.
Hence we conclude that

〈β , α 〉 〈α , β 〉 = 4 cos2 θαβ ∈ Z (1.2.54)

where θαβ is the angle between the two roots.
Explicitely, the table of possible ...

θαβ cos θαβ cos2 θαβ |β|2/|α|2 〈α, β〉 〈β, α〉
π/6

√
3/2 3/4 3 1 3

π/4
√

2/2 1/2 2 1 2
π/3 1/2 1/4 1 1 1
π/2 0 0 undet. 0 0
2π/3 −1/2 1/4 1 −1 −1

3π/4 −
√

2/2 1/2 2 −1 −2

5π/6 −
√

3/2 3/4 3 −1 −3

Table 1.1. Possible angles and ratio of norms between pairs of roots.

1.2.2.2 Root systems in rank 1 and 2

...
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1.2.3 Simple root systems

...

1.2.3.1 Decomposable root systems

...

1.2.3.2 Simple root systems

...

1.2.4 The Weyl group

...

1.2.5 The Cartan matrix

The Cartan matrix associated to a simple root system ∆ = {alphai}, i = 1, . . . , r, of a simple
Lie algebra of ramk r is defined by

Cij = 〈αi, αj〉 = 2
(αi, αj)

(αj , αj)
. (1.2.55)

According to eq. , there are only the following possibilities

Cii = 2 , ∀i ,
Cij = 0,−1,−2,−3 , ∀i 6= j . (1.2.56)

Notice that the Cartan matrix is in general not symmetric: 〈αi, αj〉 6= 〈αj , αi〉 unless the two
roots have the same length. So the Cartan matrix is symmetric only if all the simple roots have
the same length (in which case the algebra is said to be a simply-laced Lie algebra.

Example For instance, consider the root system B2 of Fig. ??. We have 〈α1, α2〉 = −1 and
〈α2, α1〉 = −2, so that the corresponding Cartan matrix is

C =

(
2 −1
−2 2

)
. (1.2.57)

Example: the Lie algebra A2 ∼ sl(3,C) ...

Example: the G2 algebra ...

1.3 Classification of the irreducible root systems

Having established that all possible irreducible root systems Φ are uniquely determined (up
to isomorphisms) by the Cartan matrix we can classify all the complex simple Lie algebras by
classifying all possible Cartan matrices.
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α1

α1

α2

α2

Figure 1.1. The root system G2.

1.3.1 Dynkin diagrams

Each Cartan matrix can be given a graphical representation in the following way. To each simple
root αi we associate a circle © as in fig.1.2 and then we link the i-th circle with the j-th circle

i

α1

i

α2

i

α3

i

α4

. . . i

αr−1

i

α`

Figure 1.2. The simple roots αi are represented by circles

by means of a line which is simple, double or triple depending on whether

< αi , αj >< αj , αi >= 4 cos2 θij =

{
1
2
3

(1.3.1)

having denoted θij the angle between the two simple roots αi and αj . The corresponding graph
is named a Coxeter graph.

If we consider the simplest case of two–dimensional Cartan matrices we have the four possible
Coxeter graphs depicted in fig. 1.3 Given a Coxeter graph if it is simply laced, namely if there

A1 ×A1
i i

A2
i i

B2 ∼ C2
i i

G2
i i

Figure 1.3. The four possible Coxeter graphs with two vertices

are only simple lines, then all the simple roots appearing in such a graph have the same length
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and the corresponding Cartan matrix is completely identified. On the other hand if the Coxeter
graph involves double or triple lines, then, in order to identify the corresponding Cartan matrix,
we need to specify which of the two roots sitting at the end points of each multiple line is the long

root and which is the short one. This can be done by associating an arrow to each multiple line.
By convention we decide that this arrow points in the direction of the short root. A Coxeter graph
equipped with the necessary arrows is named a Dynkin diagram. Applying this convention to
the case of the Coxeter graphs of fig. 1.3 we obtain the result displayed in fig. 1.4. The one-to-one

A1 ×A1
i i =

(
2 0
0 2

)

A2
i i =

(
2 −1
−1 2

)

B2
i> i =

(
2 −2
−1 2

)

C2
i< i =

(
2 −1
−2 2

)

G2
i> i =

(
2 −3
−1 2

)

Figure 1.4. The distinct Cartan matrices in two dimensions (and therefore the simple Algebras in rank

two) correspond to the Dynkin diagrams displayed above. We have distinguished a B2 and a C2 matrix

since they are the limiting case for ` = 2 of two series of Cartan matrices the B` and the C` series that

for ` > 2 are truly different. However B2 is the transposed of C2 so that they correspond to isomorphic

algebras obtained one from the other by renaming the two simple roots α1 ↔ α2

correspondence between the Dynkin diagram and the associated Cartan matrix is illustrated by
considering in some detail the case B2 of fig. 1.4. By definition of the Cartan matrix we have:

2
(α1 , α2)

(α2 , α2)
= 2

|α1|
|α2|

cos θ = − 2

2
(α2 , α1)

(α1 , α1)
= 2

|α2|
|α1|

cos θ = − 1 (1.3.2)

so that we conclude:

|α1|2 = 2 |α2|2 (1.3.3)

which shows that α1 is a long root, while α2 is a short one. Hence the arrow in the Dynkin
diagram pointing towards the short root α2 tells us that the matrix elements C12 is −2 while the
matrix element C21 is −1. It happens the opposite in the example C2.

1.3.2 The classification theorem

Having clarified the notation of Dynkin diagrams the basic classification theorem of complex

simple Lie algebras is the following:
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A`
i

α1

i

α2

i

α3

. . . i

α`−2

i

α`−1

i

α`

B`
i

α1

i

α2

i

α3

. . . i

α`−2

i

α`−1

> i

α`

C`
i

α1

i

α2

i

α3

. . . i

α`−2

i

α`−1

< i

α`

D`
i

α1

i

α2

i

α3

. . . i

α`−3

i

α`−2

�
�

@
@

i

i

α`−1

α`

Figure 1.5. The Dynkin diagrams of the four infinite families of classical simple algebras

E6
i

α1

i

α2

i

α3

iα4

i

α5

i

α6

E7
i

α1

i

α2

i

α3

iα4

i

α5

i

α6

i

α7

E8 i

α1

i

α2

i

α3

iα4

i

α5

i

α6

i

α7

i

α8

F4 i

α1

i

α2

> i

α3

i

α4

G2 i

α1

> i

α2

Figure 1.6. The Dynkin diagrams of the five exceptional algebras
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Theorem 1.3.1. If Φ is an irreducible system of roots of rank ` then its Dynkin diagram is either
one of those shown in fig.1.5 or for special values of ` is one of those shown in fig.1.6. There are
no other irreducible root systems besides these ones.

Proof 1.3.1.1. Let us consider a Euclidean space E and in E let us consider set of vectors:

U = {ε1 , ε2 , . . . , ε`} (1.3.4)

that satisfy the following three conditions:

(εi , εi) = 1

(εi , εj) ≤ 0 i 6= j

4 (εi εj)
2

= 0, 1, 2, 3 i 6= j (1.3.5)

Such a system of vectors is named admissible. It is clear that each admissible system of vectors
singles out a coxeter graph Γ. Indeed the vectors εi correspond to the simple roots αi divided by
their norm:

εi =
αi√
|αi|2

(1.3.6)

Our task is that of classifying all connected Coxeter graphs.
We proceed through a series of steps.

Step 1 We note that by deleting a subset of vectors εi in an admissible system those that are
left still form an admissible system whose Coxeter graph is obtained from the original one
by deleting the corresponding vertices and all the lines that end in these vertices

Step 2 The number of pairs of vertices that are connected by at least one line is strictly less
than the number of vectors εi namely strictly less than `. Indeed let us set ε =

∑`
i=1 εi and

observe what follows. Since all the εi are independent we have ε 6= 0 Hence

0 < (ε , ε) = `+ 2
∑

i<j

(εi , εj) (1.3.7)

If the i-th vertex is joined to the j-th vertex we have 4 (ei , εj)
2

= 1, 2, 3. Hence we can
conclude that, in this case:

2 (εi , εj) ≤ −1 (1.3.8)

On the other hand if the i-th vertex is not joined to the j-th vertex we have 2 (εi , εj) = 0.
Naming NJ the number of pairs of vertices joined by at least one line we conclude that:

0 < (ε , ε) < `−NJ ⇒ NJ ≤ `− 1 (1.3.9)

which is what we have asserted

Step 3 The Coxeter graph Γ cannot contain any loop. Indeed if a loop existed this would
constitute a subgraph Γ′ for which the number of pairs joined by a line NJ would be larger
than the number of vertices and this we have shown to be impossible.

Step 4 The number of lines that end up in any vertex can be at most three. Indeed let ε ∈ U
and let us denote η1, η2, . . . , ηk the vectors connected to ε by some link. In other words
we have (ε, ηi) < 0 (∀ηi). Since there are no loops in the graph it follows that no ηi can
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be connected to any other ηj , namely (ηi , η − j) = 0∀i 6= j. Since U is a set of linearly
independent vectors there must exist a unit vector η0 in the vector span of ε, η1, . . . , ηk which
is orthogonal to η1, . . . , ηk. Obviously the projection of such a vector η0 is non vanishing on
ε, namely (ε , η0) 6= 0. The set η0, η1, . . . , ηk makes an orthogonal basis for the linear span
of the vectors ε, η1, . . . , ηk and we can write:

ε =
k∑

i=0

(ε , ηi) ηi

1 = (ε , ε) =

k∑

i=0

(ε , ηi)
2

(1.3.10)

This reasoning implies that
∑k

i=1 (ε , ηi)
2
< 1 and hence

4

k∑

i=1

(ε , ηi)
2
< 4 (1.3.11)

On the other hand 4 (ε , ηi)
2

is precisely the number of lines that link ηi to ε so that eq.(1.3.11)
is precisely the statement we wanted to prove in Step 4

Step 5 The only connected Coxeter graph that contains a triple line is the G2 graph of fig.1.3.
This immediately follows from Step 4.

Step 6 Let {ε1, . . . , εk} ⊂ U be a subset of vectors corresponding to a simple line as in fig.1.7.

Then the subset U ′ ≡ {U − {ε1, . . . , εk}}
⋃ {ε} where ε ≡ ∑k

i=1 εi is still an admissible

i

ε1

i

ε2

i

ε3

. . . i

εk−2

i

εk−1

i

εk

Figure 1.7. A simple line Coxeter graph

system. Graphically the operation of making the transition from the admissible system U
to the admissible system U ′ corresponds to collapsing the entire simple line a single vertex.
That this statement is true can be proved in the following way. That the vectors composing
U ′ are linearly independent is obvious. By hypothesis of a simple chain we have:

2 (εi , εi+1) = −1 1 ≤ i ≤ k − 1 (1.3.12)

so that
(ε , ε) = k + 2

∑

i<j

(εi , εj) = k − (k − 1) = 1 (1.3.13)

and hence ε is a unit vector. Furthermore each η ∈ U − {ε1, . . . , εk} can be joined at most
to one of the vectors ε1, . . . , εk. Otherwise we would generate a loop. Hence we either have
(η , ε) = 0 or we have (η , εi) for some value of i. In any case we conclude 4 (η, εi)

2
= 0, 1, 2, 3

which is what makes U ′ and admissible system.

Step 7 A Coxeter graph cannot contain subgraphs of the form displayed in fig. 1.8 Indeed in
all these three cases, by using the property shown in Step 6 and collapsing a simple chain
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@
@

i

i

Figure 1.8. Prohibited subgraphs

we obtain a graph that contains a vertex where 4 lines converge. This was shown to be
forbidden in Step 4

Step 8 Relying on the properties we have so far proven we are left with four types of possible
Coxeter graphs, namely i) the simple chains of length ` corresponding to the A` Dynkin
diagrams of fig.1.5, ii) the G2 graph of fig.1.3 iii) the graphs of fig.1.9 with a double line and
finally iv) the graphs of fig.1.10 with a node.

i

ε1

i

ε2

. . . i

εp−1

i

εp

i

ηq

i

ηq−1

. . . i

η2

i

η − 1

Figure 1.9. Coxeter graph with a double link that is preceded by a simple chain of length p and followed

by a simple chain of length q

Step 9 If we consider the graphs of the type shown in fig.1.9 there are only two solutions namely:

p = 2 ; q = 2 ⇒ F4 Dynkin diagram
p = ` ∈ N ; q = 1 ⇒ B` or C` Dynkin diagrams

(1.3.14)

Indeed let us set ε =
∑p

i=1 i εi and η =
∑q

i=1 i ηi By hypothesis of simple chains we have
2 (εi , εi+1) = −1, 2 (ηi , ηi+1) = −1 and all the other pairs of vectors are mutually orthog-
onal. In this way we obtain:

(ε , ε) =

p∑

i=1

i2 −
p−1∑

i=1

i(i− 1) = p
p− 1

2

(η , η) =

q∑

i=1

i2 −
q−1∑

i=1

i(i− 1) = q
q − 1

2
(1.3.15)
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i

ε1

i

ε2

i

ε3

. . . i

εp−1

ψ

i�
�

@
@

i

ζr−1

····
····

iηq−1·······

i

ζ2

iη2

�
�

@
@

i

ζ1

iη1

Figure 1.10. Coxeter graph with a node. The unit vector in the node is named ψ while the unit vectors

along the three simple lines departing from the node are respectively named ε1, . . . , εp−1, η1, . . . , ηq−1,

ζ1, . . . , ζr−1. The graph is characterized by the three integer numbers p, q, r that denote the lengths of

the three simple lines departing from the node

and since by hypothesis of double line we have: 4 (εp , ηq)
2

= 2 it follows that

(ε , η)
2

= p2 q2 (εp , ηq)
2

=
1

2
p2 q2 (1.3.16)

On the other from the triangular Schwarz inequality of Euclidean geometry we have:

(ε , η) < (ε , ε) (η , η)

⇓
(p− 1) (q − 1) < 2 (1.3.17)

which for positive integers p, q admits only the two solutions advocated in eq.(1.3.14). The
first solution leads to the Dynkin diagram of the exceptional Lie algebra F4, while the second
solution leads to the two infinite series of classical Lie algebras B` and C`.

Step 10 Let us finally consider the Coxeter graphs of the type shown in fig.1.10. We claim that
the only possible solutions are:

(p, q, r) =






(`, 1, 1) ⇒ A` Dynkin diagrams ` ∈ N

(`− 2, 2, 2) ⇒ D` Dynkin diagrams 4 ≤ ` ∈ N

(3, 3, 2) ⇒ E6 Dynkin diagram
(4, 3, 2) ⇒ E7 Dynkin diagram
(5, 3, 2) ⇒ E8 Dynkin diagram

(1.3.18)

To prove this statement we follow a strategy similar to that used in the proof of Step 9 and
we define the following three vectors:

ε =

p−1∑

i=1

i εi ; η =

q−1∑

i=1

ii ηi ;
r−1∑

i=1

i ζi (1.3.19)
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Clearly ε, η, ζ are mutually orthogonal and ψ, the vector in the node is not in the subspace
generated by ε, η, ζ. Hence if in the linear span of {ψ, ε, η, ζ} we construct a vector γ that is
orthogonal to {ε, η, ζ} we obtain that (γ , ψ) 6= 0. Normalizing this vector to 1 we can write:

ψ = (ψ , γ) γ +
(ψ , ε)√
(ε , ε)

ε+
(ψ , η)√
(η , η)

η +
(ψ , ζ)√
(ζ , ζ)

ζ (1.3.20)

and we obtain:

(ψ , ψ) = 1 = (ψ , γ)
2

+
(ψ , ε)

2

(ε , ε)
+

(ψ , η)
2

(η , η)
+

(ψ , ζ)
2

(ζ , ζ)
(1.3.21)

that implies the inequality:

1 >
(ψ , ε)

2

(ε , ε)
+

(ψ , η)
2

(η , η)
+

(ψ , ζ)
2

(ζ , ζ)
(1.3.22)

By definition of the Coxeter graph in fig.1.10 we have:

(ψ , ε) = (p− 1) (εp−1 , ψ) ⇒ (ψ , ε)
2

=
(p− 1)2

4

(ε , ε) =
p(p− 1)

2
(1.3.23)

and similarly for the scalar products associated with the other chains. Inserting these results
into the inequality of eq.(1.3.22) we obtain the Diophantine inequality:

1

p
+

1

q
+

1

r
> 1 (1.3.24)

whose independent solutions are those displayed in eq.(1.3.18). To this effect it is sufficient
to note that eq.(1.3.24) has an obvious permutational symmetry in the three numbers p, q, r.
To avoid double counting of solutions we break this symmetry by setting p ≥ q ≥ r and then
we see that the only possibilities are those listed in eq.(1.3.18).

�

1.4 An isomorphic problem: the ADE classification of Kleinian groups

We begin by considering one parameter subgroups of the rotation group in three dimensions,
namely SO(3). These are singled out by a rotation axis, namely by a point on the two–sphere
S2. Explicitly let us consider a solution (`,m, n) to the sphere equation :

`2 +m2 + n2 = 1 (1.4.25)

The triplet of real numbers (`,m, n) parametrize the direction of a possible rotation angle. The
generator of infinitesimal rotations around such an axis is given by the following matrix

A = A`,m,n =




0 −n m
n 0 −`

−m ` 0



 = −AT (1.4.26)
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which being antisymmetric belongs to the SO(3) Lie algebra. The matrix A has the property
that A3 = −A and explicitly we have:

A2 =




−1 + `2 `m `n
`m −1 +m2 mn
`n mn −1 + n2



 (1.4.27)

Hence a finite element of the group SO(3) corresponding to a rotation of an angle θ around this
axis is given by:

O = exp[θA] = 1 + sin θ A + (1 − cos θ)A2 (1.4.28)

Setting

λ = ` sin
θ

2

µ = m sin
θ

2

ν = n sin
θ

2

ρ = cos
θ

2
(1.4.29)

the corresponding SU(2) finite group elements, realizing the double covering are:

U = ±
(

ρ+ iν µ− iλ
−µ− iλ ρ− iν

)
(1.4.30)

We can now consider the argument that leads to the ADE classification of the finite subgroups
of SU(2). Let us consider the action of the SU(2) matrices on C

2. A generic 2 × 2 matrix that
belongs to SU(2) can be written as follows

U =

(
α iβ

iβ α

)
(1.4.31)

in terms of two complex numbers α, β satisfying the constraint:

|α|2 + |β|2 = 1 (1.4.32)

the corresponding action of U on a C
2-vector −→z =

(
z1
z2

)
is given by the usual matrix multi-

plication U−→z . Each element U ∈ SU(2) has two eigenvectors −→z 1 and −→z 2, such that

U −→z 1 = exp[iθ]−→z 1

U −→z 2 = exp[−iθ]−→z 2 (1.4.33)

where θ is some (half)-rotation angle. Namely for each U ∈ SU(2) we can find an orthogonal
basis where U is diagonal and given by:

U =

(
exp[iθ] 0

0 exp[−iθ]

)
(1.4.34)

for some angle θ. Then let us consider the rays {λ−→z 1} and {µ−→z 2} where λ, µ ∈ C are arbitrary

complex numbers. Since −→z 1 · −→z 2 = −→z †
1
−→z 2 = 0 it follows that each element of SU(2) singles
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out two rays, hereafter named poles that are determined one from the other by the orthogonality
relation. This concept of pole is the basic item in the argument leading to the Kleinian groups
classification.

Let H ⊂ SU(2) be a finite, discrete subgroup of SU(2). Then the order of H is some positive
integer number:

|H| = n ∈ N (1.4.35)

The total number of poles associated with H is:

# of poles = 2n− 2 (1.4.36)

since n−1 is the number of elements in H that are different from the identity. Let us then adopt
the notation

pi ≡ {λ−→z i} (1.4.37)

for the pole or ray singled out by the eigenvector −→z i. We say that two poles are equivalent if
there exists an element of the group H that maps one into the other:

pi ∼ pj iff ∃γ ∈ H /γpi = pj (1.4.38)

Let us distribute the poles pi into equivalence classes:

Cα =
{
pα
1 , . . . , p

α
mα

}
; α = 1, . . . , r (1.4.39)

and name mα the cardinality of the equivalence class Cα, namely the number of poles it contains.
Each pole p ∈ Cα has a stability subgroup Kp ⊂ H:

∀h ∈ Kp h p = p (1.4.40)

that is a finite, abelian and cyclic of order kα. Indeed it must be finite since it is a subgroup
of a finite group, it must be abelian since in the basis −→z 1,−→z 2 the SU(2) matrices that preserve
the poles λ−→z 1 and µ−→z 2 are, of the form (1.4.34) and therefore it is cyclic of some order. The H
group can be decomposed into cosets according to the subgroup Kp:

H = Kp + v1Kp + . . .+ vmα
Kp mα ∈ N (1.4.41)

Consider now an element xi ∈ viKp belonging to one of the equivalence classes and define the
group conjugate to Kp through xi:

K(xp)i
= xiKp x

−1
i (1.4.42)

Each element h ∈ K(xp)i
admits a pole px:

h px = px (1.4.43)

that is given by:
px = xi p (1.4.44)

since
h px = xhpxx

−1 p = xhp p = x p = px (1.4.45)

Hence the set of poles {p, v1 p, v2 p, . . . vmα
p} are all equivalent and each of them has a stability

group Kpi
conjugate to Kp which implies that all Kpi

are finite of the same order:

∀vi p |Kpi
| = kα (1.4.46)
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Because of this we must have:

kαmα = n (1.4.47)

and both kα and mα depend only on the equivalence class. The total number of poles we have
in the equivalence class Cα (counting coincidences) is:

# of poles in class Cα = mα (kα − 1) (1.4.48)

since the numebr of elements in Kp different from the identity is kα − 1. Hence we find

2n − 2 =
r∑

α=1

mα (kα − 1) (1.4.49)

Dividing by n we obtain:

2

(
1 − 1

n

)
=

r∑

α=1

mα

(
1 − 1

kα

)
(1.4.50)

We consider next the possible solutions to the diophantine equation (1.4.50) and to this effect we
rewrite it as follows:

r +
2

n
− 2 =

r∑

α=1

1

kα

(1.4.51)

We observe that kα ≥ 2. Indeed each pole admits at least two group elements that keep it fixed,
the identity and the non trivial group element that defines it by diagonalization. Hence we have
the bound:

r +
2

n
− 2 ≤ r

2
(1.4.52)

which implies:

r ≤ 4 − 4

n
⇒ r = 1, 2, 3 (1.4.53)

On the other hand we also have kp ≤ n so that:

r +
2

n
− 2 ≥ r

n
⇒ r

(
1 − 1

n

)
≥ 2

(
1 − 1

n

)
⇒ r ≥ 2 (1.4.54)

Therefore there are only two possible cases:

r = 2 or r = 3 (1.4.55)

1.5 Identification of the classical and exceptional Lie algebras

In the previous sections we have classified the allowed Dynkin diagrams and hence the allowed
simple root systems. We have not shown that all of them do indeed indeed exist. This is what
we do in the present section by explicit construction. Furthermore we identify the classical or
exceptional complex Lie algebra that corresponds to each of the constructed root systems.
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Table 1.2. Comparison between the ADE classification of simply laced Lie Algebras and the ADE

classification of Kleinian subgroups of SU(2)

Simple Lie Algebras Kleinian groups

r rank # of conjugacy classes of poles

kα lengths of simple chains order of stability subgroups
in Dynkin diagram of poles

mα # of poles in the α-th
conjugacy class

The 1st case Choosing r = 2, the diophantine equation (1.4.51) reduces to:

2

n
=

1

k1
+

1

k2
(1.4.56)

Since we have k1,2 ≤ n, the only solution of (1.4.56) is k1 = k2 = n, with n arbitrary. Since the
order of the cyclic stability subgroup of the two poles coincides with the order of the full group
H it follows that H itself is a cyclic subgroup of SU(2) of order n. The two equivalence classes

are given by the two eigenvectors of the cyclic group generator.

A`
i

α1

i

α2

i

α3

. . . i

α`−2

i

α`−1

i

α`

Figure 1.11. The Dynkin diagram of A` type

1.5.1 The A` root system and the corresponding Lie algebra

The Dynkin diagram is that recalled in fig.1.11. We want to perform the explicit construction of
a root system that admits a basis corresponding to such a diagram.

To this effect consider the ` + 1–dimensional Euclidean space R
`+1 and let −→ε 1, . . . , −→ε `+1

denote the unit vectors along the `+ 1 axes:

−→ε 1 =





1
0
. . .
. . .
0




, −→ε 2 =





0
1
0
. . .
0




. . . −→ε `+1 =





0
0
. . .
. . .
1




(1.5.57)

Define the vector −→v = ε1 + ε2 + . . .+ −→ε `+1:

−→v =





1
1
1
. . .
1




(1.5.58)

and define I ⊂ R
`+1 to be the `+ 1 –dimensional cubic lattice immersed in R

`+1:

I =
{−→x ∈ R

`+1 /−→x = ni −→ε i , ni ∈ Z
}

(1.5.59)
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In the cubic lattice I consider the sublattice:

I
′ = I

⋂
E (1.5.60)

where E is the hyperplane of vectors orthogonal to the vector −→v :

E =
{−→y ∈ R

`+1 / (−→v , −→y ) = 0
}

(1.5.61)

Finally in the sublattice I
′ consider the finite set of vectors whose norm is

√
2:

Φ = {−→α ∈ I
′ / (−→α , −→α ) = 2} (1.5.62)

Theorem 1.5.1. The above defined set Φ is a root system and it corresponds to the A` Dynkin
diagram

Proof 1.5.1.1. To prove this proposition let us first summarize the properties of Φ. We have:

−→α ∈ Φ ⇒






1) −→α = ni −→ε i ni ∈ Z

2) (−→α , −→v ) = 0 ⇔ ∑`+1
i=1 n

i = 0

3) (−→α , −→α ) = 2 ⇔ ∑`+1
i=1

(
ni

)2
= 2

(1.5.63)

These diophantine equations have the following solutions:

−→α = −→ε i −−→ε j (i 6= j) (1.5.64)

The number of such solutions is equal to twice the number of pairs (ij) in ` + 1–dimensional
space1:

#α = 2
1

2
(`+ 1) (`+ 1 − 1) = ` (`+ 1) = (`+ 1)

2 − 1 − ` (1.5.65)

We verify that this finite set of vectors is a root system. First we check that for all pairs α, β ∈ Φ
their hook product is an integer. Indeed we have:

< α , β > = 2
(α , β)

(β , β)
= (α , β)

= (εi − εj , εk − ε`) = δik − δjk − δi` + δj` ∈ Z (1.5.66)

Secondly we check that the reflection of any candidate root β ∈ Φ with respect to any other
candidate root α ∈ Φ belongs to the same set Φ:

σα (β) = β − (α , β)

= εk − ε` − (δik − δjk − δi` + δj`) (εi − εj) (1.5.67)

If (k, `) are both different from (i, j) then σα(β) = β ∈ Φ, so the statement is true. If k = i then,
necessarily k 6= j and i 6= `, so that:

σα (β) = εk − ε` − (δik + δjl) (εi − εj) (1.5.68)

If j 6= ` then:
σα (β) = εk − ε` − (1) (εi − εj) = εj − ε` ∈ φ (1.5.69)

1 In the sequel we omit the arrow on the vectors since the notation is by now clear



Identification of simple Lie algebras 23

If j = ` then
σα (β) = εk − ε` − 2 (εk − ε`) = ε` − εk ∈ Φ (1.5.70)

which exhausts all possible cases.
Hence, in R

`+1 we have constructed a root system of ` (`+ 1) roots.
Consider the roots:

αi = (εi − εi+1) , (i = 1, . . . , `) (1.5.71)

These roots are clearly linearly independent and given a root α ∈ Φ it can be expressed as a
linear combination of the αi. Subdivide the set of roots into a positive and negative set according
to the following rule:

Φ = Φ+

⋃
Φ−

α ∈ Φ+ : {α = εi − εj , i < j}
α ∈ Φ− : {α = εj − εi , i < j}

(1.5.72)

Clearly positive roots can be written as follows:

α = εi − εj = αi + αi+1 + . . .+ αj−1 (1.5.73)

and, consequentely, have integer positive components in the {α, . . . , α`} basis. Negative roots
have negative integer components. It follows that {α, . . . , α`} form a basis of simple roots.
Let us compute the Cartan matrix:

(αi , αj) = (εi − εj , εj − εj+1) , i < j

= δij − δi+1,j − δi,j+1 + δi+1,j+1 (1.5.74)

If i = j (αi , αi) = 2
If j = i+ 1 (αi , αi+1) = −1
If j = i− 1 (αi , αi−1) = −1

Hence we have precisely the Dynkin diagram of fig.1.11.
This concludes the proof of our theorem �

Theorem 1.5.2. The root system A` corresponds to the complex Lie algebra SL (`+ 1,C) of trace-
less matrices in `+ 1 dimensions.

Proof 1.5.2.1. Note that the dimension of the SL (`+ 1,C) Lie algebra is:

dim SL (`+ 1,C) = (`+ 1)
2 − 1 (1.5.75)

since on the (`+1)× (`+1) matrix A we just impose one scalar condition, namely trA = 0. This
agrees with the number of roots in the system Φ

card Φ = ` (`+ 1) = (`+ 1)
2 − `− 1 (1.5.76)

if the rank of SL (`+ 1,C) is precisely `:

cardΦ = dim G − dimH (1.5.77)

H being the Cartan subalgebra.
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This is indeed the case. Let eij denote the (`+ 1)× (`+ 1) matrix whose entries are all zero
except for the ij-th entry which is one

eij =





0 0 . . . . . . . . . 0
0 0 . . . . . . . . . 0
. . . . . . 0 0 0 . . .
. . . . . . 0 1 0 . . . i-th
. . . . . . 0 0 0 . . .
0 0 . . . . . . . . . 0

j-th





(1.5.78)

and define:

Hi = eii − e`+1,`+1 (i = 1, . . . , `)

Eij = eij (i 6= j) (1.5.79)

Since:
eij · ekm = δjk eim (1.5.80)

we have:

[Hi , Hj ] = 0

[Hi , Ers] = δir eis − δsi eri − δ`+1,r e`+1,s + δs,`+1er,`+1

= (δir − δsi − δ`+1,r + δs,`+1) Ers (1.5.81)

Now observe that a basis for the space E of vectors orthogonal to v = (1, 1, . . . , 1) is provided by:

−→u i = −→ε i −−→ε `+1 (i = 1, . . . , `) (1.5.82)

Indeed this is a system of ` linearly independent vectors in an `–dimensional space. Hence we
can identify:

(δir − δsi − δ`+1,r + δs,`+1) = (−→ε r −−→ε s , −→u i) ; (r, s = 1, . . . , `+ 1) , (i = 1, . . . , `) (1.5.83)

This implies that to every Cartan subalgebra element h = ωr Hr we can associate the vector
−→ω ≡ ωr −→u r ∈ E and to every root −→ε r −−→ε s we can associate the linear functional:

[−→ε r −−→ε s] (−→ω ) = (−→ε r −−→ε s , −→ω ) (1.5.84)

With such identifications the SL (`+ 1,C) is cast into the canonical Weyl form of eq.s (1.2.38)
and our theorem is proved. �

1.5.2 The B` root system and the corresponding Lie algebra

...

1.5.3 The C` root system and the corresponding Lie algebra

...

1.5.4 The D` root system and the corresponding Lie algebra

...
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1.5.5 The exceptional root systems and the corresponding Lie algebras
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1.6 Real forms of the Lie algebras

...

1.6.0.1 The Weyl theorem
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