
Citation: Boffetta, G. Dimensional

Transitions in Turbulence: The Effects

of Rotation and Stratification.

Atmosphere 2023, 14, 1688. https://

doi.org/10.3390/atmos14111688

Academic Editors: Boris Galperin,

Annick Pouquet and Peter Sullivan

Received: 10 October 2023

Revised: 7 November 2023

Accepted: 10 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Dimensional Transitions in Turbulence: The Effects of Rotation
and Stratification
Guido Boffetta

Department of Physics and INFN, University of Torino, via Pietro Giuria 1, 10125 Torino, Italy;
guido.boffetta@unito.it

Abstract: The transition from two-dimensional to three-dimensional turbulence is a fascinating problem
which finds applications in the study of geophysical flows. This paper briefly reviews the research in this
field with emphasis on the role of rotation and stratification, two important ingredients of geophysical
flows at large scales. By means of direct numerical simulations of the Navier–Stokes equations, the
conditions for the emergence of a split cascade, with a simultaneous cascade of energy to both the large
and the small scales, are discussed.
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1. Introduction

Geophysical flows at large scales can often be considered as quasi-two-dimensional
(2D). While this is evident from a geometrical point of view, the effects of confinement
on the dynamics of the flow are less obvious, since the confinement is much larger than
the dissipative viscous scales and the flow is intrinsically three-dimensional (3D). Strictly
speaking, no real flow is two-dimensional. Nonetheless, when one considers a very thin
layer of fluid, one can safely assume that both the vertical velocity and the vertical depen-
dence of the fields are suppressed and the flow can be described by the 2D version of the
Navier–Stokes equation. We recall that the main difference between the 3D and the 2D
versions is the absence, for the latter, of the vortex stretching term which is responsible for
the non-conservation (and the amplification) of vorticity [1]. As a consequence, in two
dimensions the enstrophy (average square vorticity) is an inviscid invariant together with
the kinetic energy (average square velocity), and this prevents the viscous dissipation of
kinetic energy at small scales, which therefore flows to the large scales, producing the
inverse cascade.

Turbulent flows in quasi-2D geometries exhibit a rich and interesting phenomenol-
ogy which has stimulated several studies. Numerical simulations [2–4] and laboratory
experiments [5,6] have shown that, by changing the confinement, 2D and 3D phenomenolo-
gies coexist in a range of parameters with the simultaneous presence of an inverse and a
direct cascade of energy. The key parameter which controls the relative flux of the two
cascades is the ratio S between the confining scale and the characteristic forcing scale at
which energy is injected. In particular, it has been found that there exists a critical ratio
Sc above which the inverse cascade vanishes and the turbulent flow fully recovers the 3D
phenomenology [2]. We remark that in particular conditions, such as the presence of a
large-scale vortex, this transition can become more complex and displays bistability and
hysteresis [7,8].

The dimensional transition, and in particular the critical value Sc, is affected by other
physical ingredients, including rotation [9,10] and stratification, the presence of a magnetic
field, or more exotic features [11]. A rotation of the flow in the direction of confinement in
general favors bidimensionalization, i.e., boosts the inverse flux with respect to the non-
rotating case at fixed S, and increases the critical value Sc. Conversely, the presence of a
stable stratification of the density field in the Boussinesq approximation reduces the inverse
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energy flux and therefore decreases the critical value Sc. In this paper, we will review the
dimensional transition in turbulent flows both induced by spatial confinement alone and
with the presence of rotation or stratification. The results presented are obtained on the
basis of extensive direct numerical simulations of the Navier–Stokes–Boussinesq model.

Jack Herring made fundamental and pioneering contributions in the study of two-
dimensional turbulence by comparing the statistical theories with direct numerical sim-
ulations and recognizing the physical origin of the discrepancies observed in the direct
cascade of enstrophy [12] and its non-universality with respect to the forcing statistics [13],
highlighting one important difference between 2D and 3D turbulence. Remarkably, in an
important paper in 1989, Herring also observed the emergence of an inverse cascade in a
forced, stably stratified three-dimensional turbulent flow [14], thus anticipating by many
years the systematic studies of dimensional transition in turbulence which is the subject of
this contribution.

The remaining part of the paper is organized as follows. Section 2 introduces the math-
ematical model and the relevant dimensionless number of the problem, while in Section 3,
we report the results of numerical simulations. Section 4 is devoted to the conclusions.

2. Mathematical Models

We consider, in general, an incompressible flow in the presence of a stable stratification
in the (vertical) direction of the acceleration g = (0, 0,−g) with a constant density gradient
γ and in a frame of reference rotating with constant angular velocity Ω = (0, 0, Ω). The
flow is confined in a box of volume V = Lx × Ly × Lz, and, in order to preserve homo-
geneity, periodic boundary conditions are imposed in all the directions. In the Boussinesq
approximation, the equation of motion for the velocity field u(x, t) and the density φ(x, t)
are, respectively,

∂tu + u ·∇u + 2Ω× u = − 1
ρ0

∇p + ν∇2u− Nφe3 + f (1)

∂tφ + u ·∇φ = κ∇2φ + Ne3 · u (2)

together with the incompressibility condition ∇ · u = 0. In (1), ν is the kinematic viscosity,
κ is the scalar diffusivity, and N =

√
γg/ρ0 is the Brunt–Väisäla frequency associated with

the stratification. The field φ has the dimension of a velocity and is proportional to the
deviation of the density field from the linear stable profile, ρ = ρ0 + γ(φ/N − z). The flow
is sustained by the external forcing f (x, t), which is a stochastic Gaussian, white in time
noise, active only on the horizontal components ux, uy of the velocity, and depends on the
horizontal components x, y only. The forcing is localized in Fourier space in a narrow band
of wave numbers around k f = 2π/L f and injects energy into the system at a fixed rate
ε I [15].

The relevant dimensionless parameters are the thickness numbers

S =
Lz

L f
(3)

which quantify the vertical confinement with respect to the forcing scale, the Froude number

Fr =
(k2

f ε I)
1/3

N
(4)

ratio of the forcing frequency to the Brunt–Väisäla frequency, and the Rossby number

Ro =
(k2

f ε I)
1/3

Ω
(5)
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which is the ratio of the characteristic frequency at the forcing scale to the rotation rate.
We remark that, since the flow has periodic boundary conditions, the effect of a finite Lz is
that just of reducing the number of modes available in the z direction. Different boundary
conditions, such as those present in laboratory experiments, can change quantitatively the
results [16]. We also remark that the horizontal scales Lx and Ly are assumed to be much
larger than the other scales, and they will not play any role in the dynamics.

In the absence of forcing and dissipation, (1) and (2) conserve the total energy density,
given by the sum of kinetic and potential contributions

E = Ek + Ep =
1
2
〈|u|2〉+ 1

2
〈φ2〉 (6)

where 〈. . . 〉 ≡ 1
V
∫

d3x represents the average over the domain of volume V. From (1) and
(2), the balances of kinetic and potential energy can be written as

dEk
dt
≡ εα = ε f − εν − εx (7)

dEp

dt
= εx − εκ (8)

where εν = ν〈∂iuj∂iuj〉 (summation over repeated indices is assumed) is the viscous
dissipation rate and εκ = κ〈∂iφ∂iφ〉 is the diffusive dissipation rate. By introducing the
vorticity field ω = ∇ × u, the viscous dissipation can be written ad εν = 2νZ, where
Z = 〈|ω|2〉/2 is the enstrophy. The term εx = N〈u3φ〉 represents the exchange rate
between kinetic and potential energies. Although the sign of this exchange rate is not
defined a priori, the analysis of the Kármán–Howarth–Monin equations shows that it is
positive on average [17]. This indicates that part of the kinetic energy is converted to
produce potential energy in the flow, which is eventually dissipated by the last term in (8).
In the presence of an inverse cascade, the flow displays a long non-stationary transient
with the energy being transferred to large scales. Eventually the energy reaches the largest
scale (the box size) and starts to accumulate until the amplitude of this mode saturates by
the dissipation induced by viscosity [18,19]. Since in a turbulent flow the Reynolds number
(inverse of viscosity) is large, this effect appears for a very long time only, and the rate εα of
energy growth during this long transient is therefore used as a measure of the strength of
the inverse cascade.

Direct numerical simulations of the models (1) and (2) are performed in a box of
dimension Lx = Ly and Lz discretized on a uniform grid at resolution Nx × Ny × Nz by
a fully parallel pseudospectral code, with a standard 2/3 dealiasing scheme. Most of
the results are obtained at a resolution Nx = Ny = 512 and Nz = SNx/8 with S = Lz/L f
ranging from S = 0.25 to S = 8.0 and forcing wavenumber k f = 8. For the non-rotating,
non-stratified case we use also data from a simulation at Nx = Ny = 4069 and Nz = 64
with k f = 16. For rotating turbulence, we analyze six simulations at Rossby number
Ro = 0.1, 0.2, 0.67, 1.0, 1.33, 2.0, while for the stratified flow we have eight different Froude
numbers Fr = 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75. In all the simulations, the viscous and the
diffusive terms are replaced by a hyperviscous damping scheme of higher order [20]. More
details on the numerical simulations can be found in [17,20,21].

3. Numerical Results
3.1. Transition in the Absence of Rotation and Stratification

The simplest case is when rotation and stratification can be neglected. Formally, this
corresponds to having Ro−1 = Fr−1 = 0 (in terms of the physical parameters Ω = 0 and
N = 0). In this limit, (2) decouples from (1): φ becomes a passive scalar which can be
neglected since it does not affect the dynamics. The thickness scale controls the fate of
the energy injected in the flow at the scale L f . Extensive numerical simulations [2,4,20]
complemented with laboratory experiments [5,6] show that when the thickness is large
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(S > 1), the flow develops a 3D motion at the injection scale and energy is transferred to
small scales by a direct cascade, as in the usual 3D turbulence. In the limit of small S� 1,
the flow becomes essentially two-dimensional (i.e., vertical motions are suppressed) and
an inverse cascade of energy is observed [22]. Remarkably, for intermediate values of the
thickness number, one observes a split cascade with a fraction of the injected energy going
to the large scales and the remaining energy flowing to small scales. In this regime, the
fraction of energy flowing to large/small scales is controlled by the parameter S.

Figure 1 shows the fraction of energy transferred to large scales (i.e., the rate of kinetic
energy growth), which quantifies the strength of the inverse cascade as a function of S
from direct numerical simulations of a thin layer of fluid. As shown in similar works [4]
for S ≥ Sc ' 1/2, the inverse cascade disappears and all the energy flows to small scales
where it is dissipated by viscosity. As shown by Figure 1, for S = 1/8, about one-half of the
kinetic energy is transferred to the large scales.

We remark that the threshold Sc = 1/2 is not expected to be a universal value as it
depends on the details of the forcing and also on the precise definition of L f . Indeed, different
forcing schemes lead to different values of Sc at which the inverse flux vanishes [2,23].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1/8 1/4 3/8 1/2

ε
α
/ε

f

S

Figure 1. Growth rate of kinetic energy εα normalized with the energy input ε f as a function of the
thickness number S = Lz/L f . Simulations at resolution Nx = Ny = 512, Nz = 64S data from [17].

The kinetic energy spectrum in the split cascade regime at S = 1/4 is shown in Figure 2.
The spectrum is computed at a late time when the inverse cascade is well developed and
we are able to observe the presence of three different scaling laws. Only the two horizontal
components of the velocity are used to compute the spectrum, and the wavenumber is
restricted to the horizontal wavenumber k = (k2

x + k2
y)

1/2 on the plane kz = 0. This is
equivalent to the spectrum of the velocity field averaged over the vertical direction z.

At large scales, k < k f , we clearly see the inverse energy cascade with Kolmogorov
scaling k−5/3 [24]. At intermediate scales, k f < k < kz, we observe a steeper spectrum,
compatible with a direct enstrophy cascade. Finally, for k > k f , the flow becomes three-
dimensional, and a direct energy cascade, again with Kolmogorov scaling, is observed. We
remark that the intermediate, enstrophy cascade, spectrum is expected in a narrow range
of wavenumbers with ratio kz/k f = 1/S. Figure 2 also shows the spectrum of the vertical
component of the velocity. This is strongly suppressed at large scales, but it reaches the
horizontal spectrum at k ≥ kz, an indication of the recovery of isotropy at small scales.
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Figure 2. Two-dimensional energy spectra of the vertically averaged 2D horizontal velocity field (red,
solid line) and of the vertically averaged vertical velocity field (blue, dashed line) for a simulation at
S = 1/4. Resolution Nx = Ny = 4096, Nz = 64. Data from [20].

In order to better understand the phenomenology of the split cascade, it is useful to
consider the vorticity equation, obtained by taking the curl of (1):

∂tω + u ·∇ω = ω ·∇u + ν∇2ω fω (9)

where fω = ∇ × f . As discussed in the Introduction, in two-dimensions the vortex
stretching term in (9) identically vanishes, and therefore, in that case the enstrophy is a
second inviscid invariant. This is the main difference with respect to 3D turbulence where
the vortex stretching term is responsible for the increase in enstrophy which dissipates the
energy flowing to small scales.

In the case considered here, the flow is three-dimensional, and therefore enstrophy is
not expected to be conserved. Nonetheless, the appearance of a 2D-like phenomenology
suggests that, at large scales, the vortex stretching terms are dynamically suppressed and
therefore the “large scale enstrophy” is conserved. In order to quantify this effect, we
compute the different contributions to the enstrophy flux. By taking the Fourier transform
of (9) and multiplying by ω̂∗ (the conjugate of the Fourier transform), we define

ΠZ(k) =
∫
|q|≤k

ω̂∗(q) ̂(u ·∇ω)(q)dq (10)

as the enstrophy flux and

ΣZ(k) =
∫
|q|≤k

ω̂∗(q) ̂(ω ·∇u)(q)dq (11)

as the spectral enstrophy production. While ΠZ(k) represents the transport of enstrophy
across the wavenumber k by the nonlinear (advection) term, ΣZ(k) is the generation of
enstrophy at wavenumbers smaller than k due to the vortex stretching mechanism. The
results from the simulation are shown in Figure 3. For wavenumber k < k f , in the region of
the inverse energy cascade, both the enstrophy flux and production are close to zero, as
in the 2D case. In the intermediate range of wavenumber k f < k < kz, the production of
enstrophy (i.e., the vortex stretching term) is still negligible while the flux is constant, as in
a 2D direct enstrophy cascade. At large wavenumbers k > kz, the production of enstrophy
becomes significant, and therefore the flux is not constant anymore but grows following
the production term.
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The fact that enstrophy behaves at large scales as a quasi-invariant is remarkable
since it indicates that the development of the inverse energy cascade is not caused by the
two-dimensionalization of the flow but by the presence of a second sign-definite conserved
quantity at large scales. The development of an inverse energy cascade due to the presence
of a second inviscid invariant has been observed also in other turbulent systems, e.g., in
a homogeneous isotropic 3D flow with mirror symmetry broken such that helicity has a
well-defined sign at all wave numbers [25].
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Figure 3. Spectral enstrophy flux ΠZ(k) (red, solid line) and spectral enstrophy production ΣZ(k)
(blue, dashed line) for a simulation at S = 1/4. All quantities are normalized with the enstrophy
input η f . Resolution Nx = Ny = 4096, Nz = 64, data from [20].

3.2. Dimensional Transition in Rotating Turbulence

We now consider how the phenomenology described in the previous section changes
in the presence of rotation. To this aim we consider the case of finite Rossby number Ro in
the limit of infinite Froude number Fr. This corresponds to integrating (9) with N = 0 and
Ω > 0. The results of this section are to a large extent presented in [21].

It is well known that rotation in general favors the two-dimensionalization of the
flow, and the Taylor–Proudman theorem supports this idea. In turbulent flows, the on-
set of an inverse cascade in the presence of rotation has been observed in laboratory
experiments [26,27]. However, it is not obvious how, starting from a 3D turbulent flow, the
actual two-dimensionalization would occur. Different mechanisms have been proposed,
including (nearly) resonant triad interactions [28,29] and weak turbulence theory [30,31].

In the presence of confinement, it has been observed that a moderate rotation enhances
the fraction of energy which is transferred to large scales and that the split cascade survives
also for S > 1/2 [21]. Figure 4 displays the fraction of energy transferred to large scale
for different Rossby numbers. We observe that indeed εα increases by decreasing Ro and
that, for the strongest rotation (smallest Ro), a residual inverse cascade is present even for
S = 10. We remark that this result is consistent with the observation, based on asymptotic
techniques, that for sufficiently rapid rotation, the dimensional transition persists for large
S [10]. Moreover, in the limit of strong rotation it can be shown that 2D turbulence is stable
to vertically dependent perturbations [32,33]. In the case of fast rotation, it has been shown
that the inverse cascade is also sustained by the interaction among triads with the same
sign of helicity [34]. From the data in Figure 4, it is evident that Sc is a decreasing function
of Ro.
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Figure 4. Relative strength of the inverse cascade εα as a function of the confinement number S
for different values of the Rossby number. Ro = 0.67 (blue triangles), Ro = 1.0 (red squares), and
Ro = 1.33 (black circles). Simulations with Nx = Ny = 512 and Nz = 64S, data from [21].

Figure 5 shows the spectral enstrophy flux and the enstrophy production for a non-
rotating (Ro → ∞) simulation at S = 0.188 and a simulation with Ro = 2/3 and S = 4. By
comparing Figures 1 and 4, we see that the two flows have approximatively the same ratio
between the inverse and direct energy fluxes, and therefore it is interesting to compare
whether this is due to the same mechanism. Figure 5 shows that this is not the case. As
discussed in the previous section, in the non-rotating case (black lines) the vortex stretching
contribution to the flux is completely suppressed for k < kz, and a direct cascade with
an almost constant flux of enstrophy is observed for k f < k < kz. In the case of rotating
turbulence (red lines), we observe that the suppression of the vortex stretching term is
less sharp, and, consequently, there is no evidence of a direct cascade of enstrophy with a
constant flux. This suggests that a different mechanism for the split cascade is at work in
this case. In spite of these differences, it is interesting to observe that at small scales the
enstrophy production and the enstrophy flux of the two cases become indistinguishable.

3.3. Cyclonic-Anticyclonic Asymmetry in a Thin Layer

One of the distinctive features of rotating turbulence is the breakdown of the symmetry
between cyclonic (i.e., rotating in the direction of Ω) and anticyclonic vortices, i.e., an
asymmetric distribution of the vorticity ωz with a predominance of positive values. This
feature has been observed in many experiments and numerical simulations [35–40], both
in forced and decaying turbulence. Nonetheless, the origin of the asymmetry is still
not fully understood, and different types of arguments have been proposed to explain
the phenomenon [41,42]. A simple, natural way to quantify the asymmetry of ωz is by
computing the skewness of its distribution

Sk =
〈ω3

z〉
〈ω2

z〉3/2 . (12)

It is interesting to study how this asymmetry, due to the background rotation of the
flow, is influenced by the confinement in the direction of rotation. Indeed, in the limit of
a two-dimensional flow, S→ 0, rotation cannot induce an asymmetry in the distribution
of ωz since in this case the Coriolis term Ω× u disappears in the 2D version of (9). The
dependence of Sk on the confinement S for a turbulent flow rotating with Ro = 2/3 is
shown in Figure 6. We observe that indeed Sk→ 0 at small S, as expected for a purely 2D
flow. For S > 1, the numerical indication is that the skewness saturates at a value Sk ' 1,
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at least in the range of confinement studied. We remark that for all these values of S, an
inverse cascade is present in the flows, as shown by Figure 4.
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Figure 5. Spectral enstrophy fluxes ΠZ(k) (solid lines) and enstrophy productions ΣZ(k) (dashed
lines) for two simulations: Ro → ∞ and S = 0.188 (lower, black lines) and Ro = 2/3 and S = 4 (upper,
red lines). All quantities are normalized with the enstrophy input. Simulations at Nx = Ny = 512,
Nz = 64S. Data from [21].
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Figure 6. Skewness of the distribution of the vertical vorticity ωz as a function of the thickness
number S for Rossby number Ro = 2/3 (red squares) and as a function of the Rossby number Ro for
the thickness number S = 2 (blue circles). The error bars represent the error on the mean over the
duration of the simulation. Simulations at Nx = Ny = 512, Nz = 64S. Data from [21].

Figure 6 also shows the dependence of Sk on the Rossby number. We observe that in
this case, the behavior is non-monotonic with a maximum of asymmetry for intemediate
values of Ro.

3.4. Dimensional Transition in Stably Stratified Flows

In this section, we consider the effect of a stable density stratification on the dimen-
sional turbulent transition in a thin layer. We recall that stably stratified flows occur
naturally in many instances of geophysical flows, both in the ocean and in the atmosphere.
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Therefore, many laboratory experiments and numerical simulations have been devoted
to the study of stratified turbulence [43–45]. In particular, we remark that early numerical
simulations of stratified turbulence reported the existence of an inverse cascade [14], while
other simulations have observed a direct cascade [46,47], in particular in the limit of strong
stratification [48,49].

From these considerations, it is therefore interesting to study how stratification affects
the dimensional transition in a thin turbulent layer and in particular how critical thickness
Sc observed in non-stratified flows is affected. This problem has been addressed on the
basis of extensive direct numerical simulations of the models (1) and (2) with Ω = 0 and
for different values of the Froude number Fr and of the thickness number S. We remark
that the two limits of thin layer S→ 0 and of strong stratification Fr → 0 are not expected
to commute. In particular, if the limit Fr → 0 is taken first, one cannot expect that the 2D
limit is recovered when S→ 0 [17].

For each simulation at given values of the parameters (Fr, S), the growth rate of kinetic
energy is measured and used, according to (7), as a proxy for the inverse energy flux εα.
As shown in Figure 7, for each value of the stratification parameter Fr, the ratio εα/ε f is a
decreasing function of the thickness number S. This indicates that the presence of a stable
stratification in the flow reduces the intensity of the inverse cascade.

 0
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f
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Fr=0.4
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Figure 7. Relative inverse flux εα/ε f as a function of the thickness number S = Lz/L f for different
values of the Froude number Fr. Simulations at resolutions Nx = Ny = 512, Nz = 64S. Data
from [17].

The inverse flux is found to vanish at the critical thickness Sc(Fr), which becomes
smaller as the stratification increases. The critical value is bounded by the value in the
absence of stratification, Sc(Fr) ≤ Sc(∞) ' 1/2. Figure 8 shows the critical value Sc as a
function of the Froude number. For strong stratification, we observe approximatively a
linear behavior Sc ∼ Fr. A geometrical interpretation of this behavior is the following [17].
By introducing the characteristic vertical scale of the layered structures which characterize
a stratified flow Lv ' ε1/3

f L1/3
f /N [49], one has

Fr =
ε1/3

f L−2/3
f

N
=

Lv

L f
=

Lv

Lz
S (13)

The behavior seen in Figure 8 Sc ' Fr corresponds to Lv ' Lz and therefore suggests
that the inverse cascade is suppressed when the typical thickness of the layered structure
becomes small enough to fit in the fluid layer. In this case, the kinetic energy injected at L f
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is converted into potential energy by the term εx in (7) and is eventually dissipated at small
scales according to (8) [17].

 0

 0.25

 0.5

 0  0.2  0.4  0.6  0.8

S
c

Fr

Figure 8. Critical thickness number Sc for the suppression of the inverse cascade as a function of the
Froude number Fr. The line represents the fit Sc = 1.17Fr over the first four points. Simulations at
resolutions Nx = Ny = 512, Nz = 64S. Data from [17].

The analysis of spectral fluxes of both kinetic and potential energy confirms this
picture. Indeed, by increasing the stratification at fixed S, the inverse flux of kinetic energy
is reduced (as shown in Figure 7), while the direct flux of energy is enhanced in the range
of wavenumber k f < k < kz (remember that, since S < 1, kz > k f ). For k > kz, the analysis
of fluxes shows the development of a cascade of potential energy which subtracts kinetic
energy at large wavenumbers. This process is activated when the thickness of the vertical
structures Lv becomes smaller than Lz, and therefore the suppression of the inverse flux is
expected to be proportional to Fr, as shown in Figure 8. It is interesting to observe that the
scaling shown in Figure 8 for small Fr can be extended to the fluctuations of the vertical
velocity. Indeed, by incompressibility, one can write uz ' uxLv/Lx, and therefore (13)
implies that uz ∝ Fr for small Froude numbers. This scaling was already observed in a
remarkable paper by Herring on numerical simulations of stratified turbulence [14].

4. Conclusions

This paper briefly reviewed the recent studies on the transition between 2D and 3D
turbulence in a confined thin fluid layer in the presence of rotation or a stable density
stratification. It has been shown that confinement and rotation produce an inverse cascade
of energy by a similar mechanism which suppresses enstrophy production at large scales.
The presence of a density stratification, on the contrary, reduces the intensity of the inverse
cascade and the critical thickness at which the inverse flux vanishes.

A natural extension of the studies reported here is to include both rotation and stratifi-
cation in the fluid layer as it occurs in the oceans and in the atmosphere. Extensive studies
in this direction have shown that stratification helps rotation to transfer energy to the two-
dimensional modes [47,50] and, in particular conditions, can develop a Kolmogorov-like
spectrum [51]. Moreover, numerical simulations of the 3D Boussinesq equation in the
presence of both rotation and a stable stratification have shown that a small-scale energy
flux can coexist with a large scale dynamics dominated by quasigeostrophic motion [52].
The key parameter which controls the ratio between large-scale and small-scale fluxes is the
ratio Ro/Fr [44,53], and this ratio is found to be close to that estimated for the ocean when
using realistic values of the parameters [54]. These, together with other studies in recent
years [55–58], have achieved at least a partial understanding of the complex phenomenol-
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ogy which emerges when turbulence is coupled with the fundamental physical ingredients
of geophysical flows (confinement, rotation, and stratification). These results are there-
fore an important guide for the analysis of more complex models for the atmosphere and
the oceans.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is available from the author upon request.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Frisch, U. Turbulence: The Legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995.
2. Smith, L.; Chasnov, J.; Waleffe, F. Crossover from Two- to Three-Dimensional Turbulence. Phys. Rev. Lett. 1996, 77, 2467–2470.

[CrossRef] [PubMed]
3. Ngan, K.; Straub, D.; Bartello, P. Aspect ratio effects in quasi-two-dimensional turbulence. Phys. Fluids 2005, 17, 125102.

[CrossRef]
4. Celani, A.; Musacchio, S.; Vincenzi, D. Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 2010,

104, 184506. [CrossRef] [PubMed]
5. Xia, H.; Byrne, D.; Falkovich, G.; Shats, M. Upscale energy transfer in thick turbulent fluid layers. Nature Phys. 2011, 7, 321–324.

[CrossRef]
6. Byrne, D.; Xia, H.; Shats, M. Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid. Phys.

Fluids 2011, 23, 95109. [CrossRef]
7. De Wit, X.M.; Van Kan, A.; Alexakis, A. Bistability of the large-scale dynamics in quasi-two-dimensional turbulence. J. Fluid

Mech. 2022, 939, R2. [CrossRef]
8. van Kan, A.; Nemoto, T.; Alexakis, A. Rare transitions to thin-layer turbulent condensates. J. Fluid Mech. 2019, 878, 356–369.

[CrossRef]
9. Pestana, T.; Hickel, S. Regime transition in the energy cascade of rotating turbulence. Phys. Rev. E 2019, 99, 053103. [CrossRef]
10. van Kan, A.; Alexakis, A. Critical transition in fast-rotating turbulence within highly elongated domains. J. Fluid Mech. 2020,

899, A33. [CrossRef]
11. Alexakis, A.; Biferale, L. Cascades and transitions in turbulent flows. Phys. Rep. 2018, 767, 1–101.
12. Herring, J.; Orszag, S.; Kraichnan, R.; Fox, D. Decay of two-dimensional homogeneous turbulence. J. Fluid Mech. 1974, 66, 417.

[CrossRef]
13. Herring, J.; McWilliams, J. Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure:

The effects of intermittency. J. Fluid Mech. 1985, 153, 229–242. [CrossRef]
14. Herring, J.; Métais, O. Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 1989, 202, 97–115. [CrossRef]
15. Lindborg, E.; Brethouwer, G. Stratified turbulence forced in rotational and divergent modes. J. Fluid Mech. 2007, 586, 83–108.

[CrossRef]
16. Boffetta, G.; Musacchio, S.; Mazzino, A.; Rosti, M. Transient inverse energy cascade in free surface turbulence. Phys. Rev. Fluids

2023, 8, 034601. [CrossRef]
17. Sozza, A.; Boffetta, G.; Muratore-Ginanneschi, P.; Musacchio, S. Dimensional transition of energy cascades in stably stratified

forced thin fluid layers. Phys. Fluids 2015, 27, 035112. [CrossRef]
18. van Kan, A.; Alexakis, A. Condensates in thin-layer turbulence. J. Fluid Mech. 2019, 864, 490–518. [CrossRef]
19. Musacchio, S.; Boffetta, G. Condensate in quasi-two-dimensional turbulence. Phys. Rev. Fluids 2019, 4, 022602. [CrossRef]
20. Musacchio, S.; Boffetta, G. Split energy cascade in turbulent thin fluid layers. Phys. Fluids 2017, 29, 111106. [CrossRef]
21. Deusebio, E.; Boffetta, G.; Lindborg, E.; Musacchio, S. Dimensional transition in rotating turbulence. Phys. Rev. E 2014, 90, 023005.

[CrossRef] [PubMed]
22. Benavides, S.J.; Alexakis, A. Critical transitions in thin layer turbulence. J. Fluid Mech. 2017, 822, 364–385. [CrossRef]
23. Poujol, B.; van Kan, A.; Alexakis, A. Role of the forcing dimensionality in thin-layer turbulent energy cascades. Phys. Rev. Fluids

2020, 5, 064610. [CrossRef]
24. Boffetta, G.; Ecke, R. Two-Dimensional Turbulence. Ann. Rev. Fluid Mech. 2012, 44, 427. [CrossRef]
25. Biferale, L.; Musacchio, S.; Toschi, F. Inverse Energy Cascade in Three-Dimensional Isotropic Turbulence. Phys. Rev. Lett. 2012,

108, 164501. [CrossRef]
26. Yarom, E.; Vardi, Y.; Sharon, E. Experimental quantification of inverse energy cascade in deep rotating turbulence. Phys. Fluids

2013, 25, 85105. [CrossRef]

http://doi.org/10.1103/PhysRevLett.77.2467
http://www.ncbi.nlm.nih.gov/pubmed/10061961
http://dx.doi.org/10.1063/1.2139685
http://dx.doi.org/10.1103/PhysRevLett.104.184506
http://www.ncbi.nlm.nih.gov/pubmed/20482182
http://dx.doi.org/10.1038/nphys1910
http://dx.doi.org/10.1063/1.3638620
http://dx.doi.org/10.1017/jfm.2022.209
http://dx.doi.org/10.1017/jfm.2019.572
http://dx.doi.org/10.1103/PhysRevE.99.053103
http://dx.doi.org/10.1017/jfm.2020.443
http://dx.doi.org/10.1017/S0022112074000280
http://dx.doi.org/10.1017/S0022112085001239
http://dx.doi.org/10.1017/S0022112089001114
http://dx.doi.org/10.1017/S0022112007007082
http://dx.doi.org/10.1103/PhysRevFluids.8.034601
http://dx.doi.org/10.1063/1.4915074
http://dx.doi.org/10.1017/jfm.2019.29
http://dx.doi.org/10.1103/PhysRevFluids.4.022602
http://dx.doi.org/10.1063/1.4986001
http://dx.doi.org/10.1103/PhysRevE.90.023005
http://www.ncbi.nlm.nih.gov/pubmed/25215818
http://dx.doi.org/10.1017/jfm.2017.293
http://dx.doi.org/10.1103/PhysRevFluids.5.064610
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1103/PhysRevLett.108.164501
http://dx.doi.org/10.1063/1.4817666


Atmosphere 2023, 14, 1688 12 of 13

27. Campagne, A.; Gallet, B.; Moisy, F.; Cortet, P.P. Direct and inverse energy cascades in a forced rotating turbulence experiment.
Phys. Fluids 2014, 26, 125112. [CrossRef]

28. Smith, L.; Waleffe, F. Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys.
Fluids 1999, 11, 1608–1622. [CrossRef]

29. Chen, Q.; Chen, S.; Eyink, G.; Holm, D. Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid
Mech. 2005, 542, 139–164. [CrossRef]

30. Cambon, C.; Rubinstein, R.; Godeferd, F.S. Advances in wave turbulence: Rapidly rotating flows. New J. Phys. 2004, 6, 73.
[CrossRef]

31. Scott, J.F. Wave turbulence in a rotating channel. J. Fluid Mech. 2014, 741, 316–349. [CrossRef]
32. Gallet, B. Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech. 2015, 783, 412–447.

[CrossRef]
33. Seshasayanan, K.; Gallet, B. Onset of three-dimensionality in rapidly rotating turbulent flows. J. Fluid Mech. 2020, 901, R5.

[CrossRef]
34. Buzzicotti, M.; Aluie, H.; Biferale, L.; Linkmann, M. Energy transfer in turbulence under rotation. Phys. Rev. Fluids 2018, 3, 034802.

[CrossRef]
35. Moisy, F.; Morize, C.; Rabaud, M.; Sommeria, J. Decay laws, anisotropy and cyclone–anticyclone asymmetry in decaying rotating

turbulence. J. Fluid Mech. 2011, 666, 5–35. [CrossRef]
36. Bourouiba, L.; Bartello, P. The intermediate Rossby number range and two-dimensional-three-dimensional transfers in rotating

decaying homogeneous turbulence. J. Fluid Mech. 2007, 587, 139. [CrossRef]
37. Praud, O.; Sommeria, J.; Fincham, A.M. Decaying grid turbulence in a rotating stratified fluid. J. Fluid Mech. 2006, 547, 389–412.

[CrossRef]
38. van Bokhoven, L.J.A.; Cambon, C.; Liechtenstein, L.; Godeferd, F.S.; Clercx, H.J.H. Refined vorticity statistics of decaying rotating

three-dimensional turbulence. J. Turbul. 2008, 9, N6. [CrossRef]
39. Gallet, B.; Campagne, A.; Cortet, P.P.; Moisy, F. Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence

experiment. Phys. Fluids 2014, 26, 35108. [CrossRef]
40. Boffetta, G.; Toselli, F.; Manfrin, M.; Musacchio, S. Cyclone–anticyclone asymmetry in rotating thin fluid layers. J. Turb. 2021,

22, 242–253. [CrossRef]
41. Bartello, P.; Metais, O.; Lesieur, M. Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 1994, 273, 1–30.

[CrossRef]
42. Sreenivasan, B.; Davidson, P.A. On the formation of cyclones and anticyclones in a rotating fluid. Phys. Fluids 2008, 20, 085104.

[CrossRef]
43. Métais, O.; Bartello, P.; Garnier, E.; Riley, J.; Lesieur, M. Inverse cascade in stably stratified rotating turbulence. Dyn. Atmos. Ocean.

1996, 23, 193–203. [CrossRef]
44. Smith, L.M.; Waleffe, F. Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 2002, 451, 145–168.

[CrossRef]
45. Billant, P.; Chomaz, J.M. Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified

fluid. J. Fluid Mech. 2000, 418, 167–188. [CrossRef]
46. Waite, M.L.; Bartello, P. Stratified turbulence dominated by vortical motion. J. Fluid Mech. 2004, 517, 281–308. [CrossRef]
47. Marino, R.; Mininni, P.D.; Rosenberg, D.; Pouquet, A. Inverse cascades in rotating stratified turbulence: Fast growth of large

scales. Europhys. Lett. 2013, 102, 44006. [CrossRef]
48. Brethouwer, G.; Billant, P.; Lindborg, E.; Chomaz, J.M. Scaling analysis and simulation of strongly stratified turbulent flows.

J. Fluid Mech. 2007, 585, 343–368. [CrossRef]
49. Lindborg, E. The energy cascade in a strongly stratified fluid. J. Fluid Mech. 2006, 550, 207–242. [CrossRef]
50. Brunet, M.; Gallet, B.; Cortet, P.P. Shortcut to geostrophy in wave-driven rotating turbulence: The quartetic instability. Phys. Rev.

Lett. 2020, 124, 124501. [CrossRef]
51. Marino, R.; Mininni, P.D.; Rosenberg, D.L.; Pouquet, A. Large-scale anisotropy in stably stratified rotating flows. Phys. Rev. E

2014, 90, 023018. [CrossRef]
52. Pouquet, A.; Marino, R. Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 2013, 111, 234501.

[CrossRef] [PubMed]
53. Waite, M.L.; Bartello, P. The transition from geostrophic to stratified turbulence. J. Fluid Mech. 2006, 568, 89–108. [CrossRef]
54. Marino, R.; Pouquet, A.; Rosenberg, D. Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev.

Lett. 2015, 114, 114504. [CrossRef] [PubMed]
55. Bartello, P. Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 1995, 52, 4410–4428.

[CrossRef]
56. Herbert, C.; Marino, R.; Rosenberg, D.; Pouquet, A. Waves and vortices in the inverse cascade regime of stratified turbulence

with or without rotation. J. Fluid Mech. 2016, 806, 165–204. [CrossRef]

http://dx.doi.org/10.1063/1.4904957
http://dx.doi.org/10.1063/1.870022
http://dx.doi.org/10.1017/S0022112005006324
http://dx.doi.org/10.1088/1367-2630/6/1/073
http://dx.doi.org/10.1017/jfm.2013.652
http://dx.doi.org/10.1017/jfm.2015.569
http://dx.doi.org/10.1017/jfm.2020.541
http://dx.doi.org/10.1103/PhysRevFluids.3.034802
http://dx.doi.org/10.1017/S0022112010003733
http://dx.doi.org/10.1017/S0022112007007124
http://dx.doi.org/10.1017/S0022112005007068
http://dx.doi.org/10.1080/14685240701877271
http://dx.doi.org/10.1063/1.4867914
http://dx.doi.org/10.1080/14685248.2020.1855352
http://dx.doi.org/10.1017/S0022112094001837
http://dx.doi.org/10.1063/1.2966400
http://dx.doi.org/10.1016/0377-0265(95)00413-0
http://dx.doi.org/10.1017/S0022112001006309
http://dx.doi.org/10.1017/S0022112000001154
http://dx.doi.org/10.1017/S0022112004000977
http://dx.doi.org/10.1209/0295-5075/102/44006
http://dx.doi.org/10.1017/S0022112007006854
http://dx.doi.org/10.1017/S0022112005008128
http://dx.doi.org/10.1103/PhysRevLett.124.124501
http://dx.doi.org/10.1103/PhysRevE.90.023018
http://dx.doi.org/10.1103/PhysRevLett.111.234501
http://www.ncbi.nlm.nih.gov/pubmed/24476276
http://dx.doi.org/10.1017/S0022112006002060
http://dx.doi.org/10.1103/PhysRevLett.114.114504
http://www.ncbi.nlm.nih.gov/pubmed/25839278
http://dx.doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2
http://dx.doi.org/10.1017/jfm.2016.581


Atmosphere 2023, 14, 1688 13 of 13

57. Pouquet, A.; Marino, R.; Mininni, P.D.; Rosenberg, D. Dual constant-flux energy cascades to both large scales and small scales.
Phys. Fluids 2017, 29, 111108. [CrossRef]

58. Van Kan, A.; Alexakis, A. Energy cascades in rapidly rotating and stratified turbulence within elongated domains. J. Fluid Mech.
2022, 933, A11. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1063/1.5000730
http://dx.doi.org/10.1017/jfm.2021.1083

	Introduction
	Mathematical Models
	Numerical Results
	Transition in the Absence of Rotation and Stratification
	Dimensional Transition in Rotating Turbulence
	Cyclonic-Anticyclonic Asymmetry in a Thin Layer
	Dimensional Transition in Stably Stratified Flows

	Conclusions
	References

