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Abstract. We discuss single-particle and two-particle statistics in two-
dimensional turbulent convection in the Bolgiano–Oboukhov regime by means
of high-resolution direct numerical simulations. Relative separation of two
particles is found to be described well by a generalization of the Richardson
diffusion model. Single-particle velocity structure functions are dominated by
large-scale eddies and therefore a careful analysis based on ‘exit-time’ statistics
is necessary to identify turbulent contributions. Because the velocity field is not
intermittent, small-scale acceleration statistics is found to be in good agreement
with simple dimensional predictions.
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1. Introduction

Understanding the statistical properties of particle dispersion in turbulent flows is a basic
problem in turbulence research and it is of great relevance in many practical applications, being
the basis for the development of Lagrangian stochastic models [1]–[3]. The subject has recently
seen many improvements from the theoretical [4], numerical [5, 6] and experimental [7]–[9]
points of view, mainly due to the ever-growing capabilities of experimental set-ups and
computing machines.

In this paper, we present the results of the study of Lagrangian dispersion in two-
dimensional Boussinesq convective turbulence from extensive direct numerical simulations. The
results cover both relative dispersion of particle pairs and Lagrangian velocity increments and
acceleration of single tracers. While in the first case, the theoretical prediction arising from
the Bolgiano–Oboukhov scaling of velocity is found to be closely followed, in the second
one, a careful analysis based on exit-time statistics is needed to disentangle the effect from
spurious, large-scale contributions. Acceleration statistics is found to follow closely a simple
Kolmogorov-like prediction.

The two-dimensional Boussinesq turbulent convection is described by the following set of
partial differential equations [10]:

∂tω +v · ∇ω = ν1ω − β∇T × g− αω,
(1)

∂t T +v · ∇T = κ1T,

where T is the temperature field and ω = ∇ ×v the scalar vorticity, g the gravitational
acceleration, β the thermal expansion coefficient and κ and ν are molecular diffusivity and
viscosity; α is a linear friction coefficient needed to obtain a stationary state and to avoid energy
condensation at large scales. Energy in (1) is injected by maintaining a mean temperature profile
〈T (r, t)〉 =G · r, with a constant gradient G pointing in the direction of gravity. The linear
mean temperature profile is physically relevant as it is observed in the intermediate region of
the convective boundary layer in the atmosphere [11].

Let us briefly recall the phenomenology of two-dimensional turbulent convection [12].
Suppose energy is mechanically injected in the system around a small scale `F, such that here
the buoyancy force is negligible. Energy flows toward larger scales as in the usual Navier–Stokes
(NS) case, until the inertial term is balanced by buoyancy. The scale `B where this happens is
called Bolgiano length scale and marks the beginning of the buoyancy-dominated range. For
`F � ` � `B, the inertial term is larger than the buoyancy force, and temperature behaves like a
passive scalar. At scales ` � `B temperature drives the system: the buoyancy and inertial terms
are balanced and energy is injected at all scales, causing a steepening in the energy spectrum.

By imposing a constant scalar flux εT and balancing between buoyancy and the nonlinear
term in (1) we obtain a prediction for the scaling of velocity and temperature fluctuations in the
Bolgiano regime (i.e. at scales ` � `B)

δ`v ' (βg)2/5ε
1/5
T `3/5

' vL

(
`

L

)3/5

,

(2)

δ`T ∼ (βg)−1/5ε
2/5
T `1/5

' TL

(
`

L

)1/5

,
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Figure 1. Kinetic energy spectrum (open circle) and temperature fluctuation
spectrum (closed circle) from a direct numerical simulation of (1) at resolution
10242. The lines represent the two-dimensional prediction based on the
Bolgiano–Oboukhov theory of turbulent convection.

where L represents the characteristic large scale, vL and TL are the typical large-scale
fluctuations of velocity and temperature and εT = T 2

L vL/L . Evaluating (2) at a large scale one
obtains the relation (βg)2εT = v5

L/L3.
Velocity structure functions Sp(`) = 〈(δ`v)p

〉 thus have scaling exponents ζp = hp with
h = 3/5. The second-order structure function gives the prediction for the energy spectrum
E(k) ' k−11/5 which is indeed clearly observed in our numerical simulations (see figure 1
and [13]). We recall that detailed numerical simulations have shown that velocity fluctuations
display self-similar statistics without intermittency corrections [14].

From the prediction (2) one can have an estimation of the Bolgiano scale `B at which
buoyancy and mechanical forcing are balanced. Denoting the kinetic energy input rate by εv

and equating the constant energy flux induced by this forcing with the buoyancy-induced flux
obtained from (2) one obtains

`B = (βg)−3/2ε5/4
v ε

−3/4
T . (3)

Because in the present setup we do not have mechanical forcing and the flow is forced by the
imposed temperature gradient, we have εv = 0 and the Bolgiano scale vanishes (i.e. is smaller
than any other scale).

The results discussed in the present paper are obtained by direct integration of Boussinesq
equations (1) by means of a standard, fully dealiased pseudospectral method in a doubly periodic
square domain at resolution 10242. As customary in two-dimensional turbulence, in most of our
simulations the viscous term in equation (1) has been replaced by a hyperviscous term of order
eight to broaden the convective inertial spectrum and obtain better scalings. A set of runs with
normal, Newtonian, viscosity have also been performed to check the robustness of the results on
the dissipation mechanism and for the study of small-scale quantities, such as the acceleration
statistics.
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Lagrangian trajectories are obtained by integrating ẋ(t) = v(x(t), t) with the velocity at
particle position obtained by linear interpolation from the nearest grid points. Some 64 000
pairs of particles are followed simultaneously, initially distributed on the integration domain
homogeneously. All the results presented in the following are obtained after averaging over
about 150 large-scale times in stationary conditions.

2. Two-particle dispersion

The first attempt to give a phenomenological description of particle pair separation in turbulence
dates back to 1926 and the original work of Richardson [15] who first obtained from different
experimental data that diffusion coefficient for relative dispersion increases with the separation
as K (r) = k0r 4/3. He also proposed a diffusive equation for the probability density function
of relative separation p(r, t) with the scale-dependent diffusivity K (r) which, in the two-
dimensional, isotropic case, reads

∂p(r, t)

∂t
=

1

r

∂

∂r
r K (r)

∂p(r, t)

∂r
. (4)

The solution to (4), with h = 1/3 and delta function initial condition, is the famous Richardson
distribution [16]

p(r, t) =
A

(k0t)3
exp

(
−

9

4

r 2/3

k0t

)
, (5)

where A is a normalizing number. From (5) one obtains that variance of separations grows faster
than ballistic: 〈R2(t)〉 ' (k0t)3. It was later recognized by Oboukhov [17] that the ‘four-thirds’
law is a simple consequence of Kolmogorov scaling in turbulence. Indeed, if the velocity field
scales as δv ∼ r h , one immediately obtains K (r) ∼ r 1+h and R(t) ∼ t

1
1−h under the assumption

that particle separation R depends only on eddies of size r ∼ R. For h = 1/3, Richardson’s
predictions are recovered. This simple argument reveals the deep connection between two-
particle Lagrangian dispersion and spatial velocity scaling in turbulence.

A similar argument can be developed for Bolgiano–Oboukhov scaling in turbulent
convection. In this case h = 3/5, therefore, K (r) = k1r 8/5, where k1 is a scale-independent
dimensional parameter. The solution to (4), again with delta-distributed initial condition, is in
this case

p(r, t) =
A

(k1t)5
exp

(
−

25

4

r 2/5

k1t

)
, (6)

which again gives the growth law for the variance of separation 〈R2(t)〉 ' (k1t)5, faster than
in the Kolmogorov scaling case [18]. In figure 2 we show the evolution of the variance of
particle separation computed in our numerical simulations. The dimensional scaling t5 is clearly
observed in the intermediate range of scales, corresponding to separation in the inertial range of
scaling (2).

Probability density functions (pdfs) of particle separations are shown in figure 3 for a time
inside the scaling range of figure 2. Together with prediction (6) we also plot, for a comparison,
the Richardson pdf (5) which clearly deviates from numerical data. Small deviations from (6)
are also observed, and are probably due to the limitation of model (4). Indeed, the possibility
to describe particle pair separation as a diffusion process rests on the basic assumption that the
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Figure 2. Variance of particle pair separation as a function of time. The line
represents the dimensional prediction t5. Inset: relative dispersion compensated
with the dimensional prediction. Initial separation is R(0) = δx/4.
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Figure 3. Probability distribution function of pair separation in lin–log plot at
time t = 0.2τL (see figure 2). The continuous line is the prediction (6), while the
dashed line is the Richardson pdf (5). Inset: linear plot.

velocity field is short-correlated in time. Of course, this is not the case for dynamically generated
velocity fields, where non-trivial time correlations are present.

A recently introduced measure of time correlation in self-similar flows is given by the
persistence parameter Ps [19], which may be seen as the ratio between the typical Eulerian and
Lagrangian correlation times and therefore as a Kubo number. A convenient measure of Ps is
given in terms of the statistics of the turning point ratio 9(r2/r1), defined as the probability
that the relative velocity between two particles changes sign when separation is r2, provided
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a previous turning point had taken place at distance r1. This probability can be related to
persistence by means of a simple stochastic model [19] and therefore it provides a way to
estimate Ps. The numerical evaluation of the distribution 9 from our data gives Ps ≈ 0.72 (not
far from what was measured for NS turbulence [20]). Ballistic motion thus plays an important
role for the relative dispersion in two-dimensional convective turbulence, nevertheless diffusion
model (4) gives a good approximation to numerical data.

3. One-particle dispersion

Two-particle statistics, discussed in the previous section, is determined by the spatial properties
of the flow. In this section, we discuss single-particle velocity increments δtv = v(t) − v(0)

which give information on the flow temporal correlation and are therefore of great importance
for a complete description of a turbulent flow.

Dimensional analysis in homogeneous, isotropic turbulence predicts that 〈δtv
2
〉 ' εt ,

ε being the energy dissipation rate [16]. This diffusive-like behavior is at the basis of stochastic
models of turbulent dispersion, but it is not expected to hold in the case of Bolgiano–Oboukhov
turbulent convection. We have extensively studied this problem in [13]; we report here the main
results for the sake of completeness.

To obtain a prediction for δtv, we must evaluate the contributions coming from eddies
of all sizes. After a time interval t , eddies with a characteristic time τr � t are effectively
decorrelated and give no contribution to δv. Therefore, let us consider eddies with τr ' t . The
characteristic size of these eddies is expected to be ` ' L(t/τL)1/(1−h) (where h is the velocity-
scaling exponent and τL is the large-eddy characteristic time τL ' L/vL) and their contribution
to velocity increments is thus

δtv ' vL(`/L)h
' vL(t/τL)h/(1−h). (7)

In addition to these eddies, we have still to consider large-scale eddies (whose decorrelation time
is much larger than t). Due to their relative slowness, their contribution to velocity fluctuations
is differentiable, i.e. δtv ' (∂tvL)t .

In the end, we are left with two contributions to the velocity fluctuations, one coming from
local eddies and one due to the large-scale eddies:

δtv ' τL(∂tvL)(t/τL) + vL(t/τL)h/(1−h). (8)

When t � τL (8) will be dominated by the minimum exponent, min(1, h/(1 − h)). When
the classical K41 theory is considered (h = 1/3) the dominant contribution to δtv is a local
one, resulting in diffusive-like scaling δtv ∼ t1/2. In free convection, h/(1 − h) = 3/2 which
corresponds to velocity increments ‘more than smooth’ and δtv is dominated by the infrared
linear term. Therefore, standard Lagrangian structure functions SL

p (t) = 〈(δtv)p
〉 are not good

statistical objects to look at, because they are unable to disentangle the Bolgiano–Oboukhov
contribution from the differentiable one. Figure 4 clearly shows that only large scales are
involved in this case.

Non-trivial contributions in more than smooth signals can be disentangled by using the
so-called exit-time statistics (or inverse statistics) [21]. The exit-time approach is based on
the time T (δv) needed to observe a particle change its velocity of δv along its trajectory
[22]. Let us consider the signal δv composed by two contributions as in equation (5). In the
limit of small t , the differentiable part ∝ t will always dominate, except when the derivative
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Figure 4. The second-order Lagrangian structure function versus time in
log–log plot. The two lines represent the ballistic behavior (t2) and the
Bolgiano–Oboukhov scaling t3; τη represents the dissipation time. Inset: the
Lagrangian structure function compensated with t2.

∂tvL vanishes. In this case the local part of the signal will be dominant. To correctly estimate
the statistics of exit times T (δv), we must therefore calculate the probability a tracer has to
encounter a point with ∂tvL = 0. For our signal with 16 h/(1 − h)6 2, its first derivative
is a one-dimensional self-affine signal with Hölder exponent ξ = (2h − 1)/(1 − h), which
vanishes on a fractal set of dimension D = 1 − ξ [23]. Therefore, the probability to observe
the more-than-smooth component is equal to the probability to pick a point on the fractal set of
dimension D, i.e.

p(T ∼ δv(1−h)/h) ∼ T 1−D
∼ (δv)(2h−1)/h. (9)

To compute the moments of exit times 〈T p(δv)〉, one must multiply the local term by the above
probability p to observe such an event. The result is the following bifractal distribution:

〈T p(δv)〉 ∼ δvχ(p) , with χ(p) = min
(

p,
p(1 − h) + 2h − 1

h

)
. (10)

For the Bolgiano–Oboukhov scaling (h = 3/5), one has χ(p) = min(p, (2p + 1)/3): low-order
moments (p 6 1) of the inverse statistics only see the differentiable part of the signal, while
high-order moments (p > 1) are dominated by the local fluctuations.

Figure 5 shows the scaling exponents of different moments of the exit times computed from
our simulations. Solid lines, representing the bifractal prediction (10), are closely followed. We
note that the possibility for moments of order greater than 1 to follow (10) is due to the absence
of intermittency in the velocity field of two-dimensional free convection (the temperature field
is known to be strongly intermittent [14], but it is not involved directly in our measurements).

4. Statistics of acceleration

In the limit of very small time increments, single-particle velocity increments give the statistics
of Lagrangian acceleration. In recent years, there have been great improvements in the study
of acceleration statistics in turbulence. Experimental [7, 24] and numerical [25] investigations
have demonstrated that in three-dimensional turbulence acceleration is an extremely fluctuating
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Figure 5. Exit-time scaling exponents χ(p) evaluated by fitting the p-moment
of exit times versus velocity increments δv. The two lines represent the bifractal
prediction (10). Error bars have been estimated by evaluating differences in the
observed exponents, while changing the fitting interval.

quantity with acceleration events up to 80 times the rms values. As a consequence of these
extreme fluctuations, the pdf of Lagrangian acceleration is very far from the prediction based
on Kolmogorov phenomenology which does not take into account intermittency in the velocity
fluctuations. On the contrary, in the case of two-dimensional, inverse cascade turbulence,
where intermittency is negligible [14, 26], one may expect to observe acceleration statistics
in agreement with predictions based on self-similarity of the velocity field.

Here, we consider the acceleration on Lagrangian tracers induced by the turbulent velocity
field generated by (1). The usual estimate in terms of velocity fluctuations at the smallest
active scale η is a ' δηv/τη ' (δηv)2/η. By using the scaling (2) one obtains a ∼ η1/5 which
implies that the typical acceleration decreases with η, i.e. with increasing Reynolds number. This
apparent paradox is removed if one considers, as in (8), also the contribution from large-scale
eddies. Since the acceleration is nothing but δtv/t in the limit of small t , from (8) one has that
the leading contribution is the first one which gives for the acceleration a ' v2

L/L . Assuming
a Gaussian distribution for the large-scale velocity fluctuations vL (which is, a posteriori, well
verified in our simulations), the prediction for the pdf of the acceleration is therefore simply
given by

p(a) = Ca−1/2e−αa, (11)

where C and α are normalizing numbers. We observe that the present derivation is substantially
different from the NS turbulence (i.e. h = 1/3), in which the local contribution is dominant.
Another important peculiarity here is that the variance of acceleration is independent of the
Reynolds number, while for NS turbulence one expects 〈a2

〉 ∼ Re1/2. Despite these differences,
the predicted form of the pdf in the two cases is close, as for NS the tails behave as
exp(−a8/9) [16].

Figure 6 shows the pdf of one component of the acceleration of Lagrangian tracers obtained
from our simulations. The line represents the exponential prediction (11) which fit very well the
data for a > 0.5arms. At very low values of a, (11) predicts a peak not observed in our data
and therefore overestimates the frequency of very small accelerations. This is not surprising,
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Figure 6. Probability density function of the x component of the Lagrangian
acceleration normalized with the rms value. Continuous line represents
prediction (11) (vertically shifted for better comparison).

as these events correspond to vanishing large-scale velocity fluctuations: in these conditions, as
also explained in the previous section, one has to take into account subleading contributions.

Acceleration is numerically evaluated by computing the rhs of the Boussinesq equation
written for the velocity field. A detailed analysis of the different contributions to the acceleration
shows that the dominant term here is the buoyancy one, at variance with the three-dimensional
NS case where acceleration is dominated by pressure gradients. Moreover, it is important
to remark that this is the first observation of acceleration pdf consistent with Kolmogorov-
like dimensional arguments, as in usual three-dimensional turbulence small-scale statistics is
strongly affected by intermittency corrections.

5. Conclusions

We have studied single-particle and two-particle Lagrangian statistics in two-dimensional free
convection turbulence. Apart from the physical relevance of convective flow, the choice of the
particular system is also motivated by the fact that the Bolgiano–Oboukhov scaling gives rise
to a wholly new phenomenology with respect to usual turbulence. Thanks to the absence of
intermittency in the velocity field, it is possible to make quantitative predictions on Lagrangian
statistical quantities on the basis of the self-similarity of the velocity field. These predictions are
confirmed by numerical results obtained from high-resolution extensive simulations.

A consequence of our results, of interest more general than the present problem, is that for
temporal statistics the issue of locality is more restrictive than for spatial statistics. From (8) we
see that for h > 1/2 (as in Bolgiano scaling) temporal velocity fluctuations (and accelerations)
are dominated by non-local effects, while spatial structure functions are still local. Therefore,
one has to be careful when connecting spatial and temporal statistics, in particular, in the case
of intermittent turbulence, in which the scaling exponent h fluctuates over a range of values.

As a final remark, we remember that the statistics of acceleration is an important ingredient
for modeling droplet growth in turbulent clouds. Indeed, the droplet collision kernel is expected
to be larger in regions of intense fluid acceleration as a consequence of both enhanced droplet
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relative velocity and enhanced droplet collision efficiency which are again functions of relative
velocity [27]. Therefore, the general characterization of Lagrangian statistics in turbulent
convection is a fundamental step in our understanding of cloud dynamics.

References

[1] Pope S B 1994 Lagrangian PDF methods for turbulent flows Annu. Rev. Fluid Mech. 26 23
[2] Sawford B 2001 Turbulent relative dispersion Annu. Rev. Fluid Mech. 33 289
[3] Yeung P K 2002 Lagrangian investigations of turbulence Annu. Rev. Fluid Mech. 34 115
[4] Falkovich G, Gawedzki K and Vergassola M 2001 Particles and fields in fluid turbulence Rev. Mod. Phys.

73 913
[5] Yeung P K 2001 Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations

J. Fluid Mech. 427 241
[6] Biferale L, Boffetta G, Celani A, Lanotte A and Toschi F 2005 Particle trapping in three-dimensional fully

developed turbulence Phys. Fluids 17 021701
[7] La Porta A, Voth G A, Crawford A M, Alexander J and Bodenschatz E 2001 Fluid particle accelerations in

fully developed turbulence Nature 409 1017
[8] Mordan N, Metz P, Michel O and Pinton J F 2001 Measurement of Lagrangian velocity in fully developed

turbulence Phys. Rev. Lett. 87 214501
[9] Ott S and Mann J 2000 An experimental investigation of the relative diffusion of particle pairs in three-

dimensional turbulent flow J. Fluid Mech. 422 207
[10] Siggia E D 1994 High Rayleigh number convection Annu. Rev. Fluid Mech. 26 137
[11] Young G S 1988 Convection in the atmospheric boundary layer Earth-Sci. Rev. 25 179
[12] Chertkov M 2003 Phenomenology of Rayleigh–Taylor turbulence Phys. Rev. Lett. 91 115001
[13] Bistagnino A, Boffetta G and Mazzino A 2007 Lagrangian velocity structure functions in Bolgiano turbulence

Phys. Fluids 19 011703
[14] Celani A, Mazzino A and Vergassola M 2001 Thermal plume turbulence Phys. Fluids 13 2133–5
[15] Richardson L F 1926 Atmospheric diffusion shown on a distance-neighbour graph Proc. R. Soc. Lond. A

110 709
[16] Monin A and Yaglom A 1975 Statistical Fluid Mechanics (Cambridge, MA: MIT Press)
[17] Oboukhov A M 1941 On the distribution of energy in the spectrum of a turbulent flow Izv. Akad. Nauk. SSSR

5 453
[18] Ogasawara T and Toh S 2006 Turbulent relative dispersion in two-dimensional free convection turbulence

J. Phys. Soc. Japan 75 104402
[19] Sokolov I M 1999 Two-particle dispersion by correlated random velocity fields Phys. Rev. E 60 5528
[20] Boffetta G and Sokolov I M 2002 Statistics of two-particle dispersion in two-dimensional turbulence Phys.

Fluids 14 3224
[21] Biferale L, Cencini M, Lanotte A, Vergni D and Vulpiani A 2001 Inverse statistics of smooth signals: the case

of two-dimensional turbulence Phys. Rev. Lett. 87 124501
[22] Aurell E, Boffetta G, Crisanti A, Paladin G and Vulpiani A 1996 Growth of non-infinitesimal perturbations

in turbulence Phys. Rev. Lett. 77 1262
[23] Frisch U 1995 Turbulence: The Legacy of A N Kolmogorov (Cambridge: Cambridge University Press)
[24] Mordant N, Delour J, Leveque E, Arneodo A and Pinton J-F 2002 Long time correlations in Lagrangian

dynamics: a key to intermittency in turbulence Phys. Rev. Lett. 89 254502
[25] Biferale L, Boffetta G, Celani A, Devenish B J, Lanotte A and Toschi F 2004 Multifractal statistics of

Lagrangian velocity and acceleration in turbulence Phys. Rev. Lett. 93 064502
[26] Boffetta G, Celani A and Vergassola M 2000 Inverse energy cascade in two-dimensional turbulence:

deviations from Gaussian behavior Phys. Rev. E 61 R29
[27] Shaw R A 2003 Particle–turbulence interactions in atmospheric clouds Annu. Rev. Fluid Mech. 35 183

New Journal of Physics 10 (2008) 075018 (http://www.njp.org/)

http://dx.doi.org/10.1146/annurev.fl.26.010194.000323
http://dx.doi.org/10.1146/annurev.fluid.33.1.289
http://dx.doi.org/10.1146/annurev.fluid.34.082101.170725
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1017/S0022112000002391
http://dx.doi.org/10.1063/1.1846771
http://dx.doi.org/10.1038/35059027
http://dx.doi.org/10.1103/PhysRevLett.87.214501
http://dx.doi.org/10.1017/S0022112000001658
http://dx.doi.org/10.1146/annurev.fl.26.010194.001033
http://dx.doi.org/10.1016/0012-8252(88)90020-7
http://dx.doi.org/10.1103/PhysRevLett.91.115001
http://dx.doi.org/10.1063/1.2432154
http://dx.doi.org/10.1063/1.1375145
http://dx.doi.org/10.1098/rspa.1926.0043
http://dx.doi.org/10.1143/JPSJ.75.104402
http://dx.doi.org/10.1103/PhysRevE.60.5528
http://dx.doi.org/10.1063/1.1498121
http://dx.doi.org/10.1103/PhysRevLett.87.124501
http://dx.doi.org/10.1103/PhysRevLett.77.1262
http://dx.doi.org/10.1103/PhysRevLett.89.254502
http://dx.doi.org/10.1103/PhysRevLett.93.064502
http://dx.doi.org/10.1103/PhysRevE.61.R29
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161125
http://www.njp.org/

	1. Introduction
	2. Two-particle dispersion
	3. One-particle dispersion
	4. Statistics of acceleration
	5. Conclusions
	References

