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Multiparticle dispersion in fully developed turbulence
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The statistical geometry of dispersing Lagrangian clusters of four particles (tetrahedra) is studied by
means of high-resolution direct numerical simulations of three-dimensional homogeneous isotropic
turbulence. We give evidence of a self-similar regime of shape dynamics characterized by almost
two-dimensional, strongly elongated geometries. The analysis of four-point velocity-difference
statistics and orientation shows that inertial-range eddies typically generate a straining field with a
strong extensional component aligned with the elongation direction and weak extensional/
compressional components in the orthogonal plane. © 2005 American Institute of Physics.

[DOL: 10.1063/1.2130751]

One of the most characteristic attributes of turbulence is
the efficient dispersion and mixing of advected Lagrangian
particles.1 Even though turbulent dispersion bears some simi-
larities to Brownian motion, especially at very large scales
and for long times, it has a much richer structure at small
scales. This is already visible at the level of single particle
dispersion, which is characterized by nontrivial time correla-
tions of the velocity experienced by the particle along its
trajectory (see, e.g., Refs. 2—-4). The statistics of pair disper-
sion display interesting properties as well (see, e.g., Refs.
5-10), yet the complexity of Lagrangian turbulence is par-
ticularly evident when looking at the dispersion of three or
more particles. This calls for the description of the geometri-
cal properties of Lagrangian dispersion—the “shape” of the
particles’ cloud as well as its “size.” The geometrical char-
acterization of dispersion proved extremely important for the
understanding of the problem of passive scalar advection'!
and provided the basis for the efficient modeling of the
small-scale velocity dynamics itself."*™" Previous studies
dealt with two-dimensional ﬂows,16’]7 synthetic ﬂows,l&19 or
three-dimensional  turbulence at moderate Reynolds
numbers.*?*?" In this Letter we study multiparticle
Lagrangian statistics by means of high-resolution direct nu-
merical simulations of three-dimensional Navier-Stokes tur-
bulence. Simulations were done at resolutions of 1024% cor-
responding to a Reynolds number R, ~280 (see Ref. 22).
The other parameters of the numerical simulation are as fol-
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lows: energy dissipation e=0.81(8), viscosity »=8.8 X 1074,
Kolmogorov length scale #7=5X1073, integral scale
L=3.14, Lagrangian velocity autocorrelation time 7;=1.2,
Kolmogorov time scale 7,=3.3X 102, With the present
choice of parameters the dissipative range of length scales is
well resolved. Upon having reached a statistically stationary
velocity field, the Lagrangian tracers were seeded in the flow.
Their trajectories were integrated according to

‘;—’f — u(x(,1)

over a time lapse of the order of a few Lagrangian correla-
tion times, 7;. The velocity field, u, results from the time
integration of the three-dimensional Navier-Stokes equations
(for further details see Ref. 22).

A set of 3.84 X 10° particles were initially seeded in qua-
druplets forming 9.6 X 10* regular tetrahedra of the size of
the Kolmogorov scale, with centers of mass uniformly dis-
tributed over the domain. The evolution of the separations
between different particles in each tetrahedron provides a
way to quantify the shape evolution. As particles move with
the flow, the sizes of the tetrahedra grow in time and their
shapes deform, generating a variety of irregular objects. A
description of this process is then given in terms of the prob-
ability density functions (pdf) of sizes and shapes. Within the
inertial range of scales a self-similar evolution of size ac-
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FIG. 1. Evolution of the mean eigenvalues g; (+), g, (X) and g5 (*) of the
moment of inertia matrix I=pp’. The line represents the dimensional scal-
ing #*. In the inset, from top to bottom: evolution at small times of {In A(z))
(surface), (In R(z)) (distance), {In V(1)) (volume). The linear slopes of the
three curves in the range of times 7, <<t<<37, yield N{+\,, N, and \{+),
+\3, respectively.

cording to Richardson’s law and a stationary shape distribu-
tion are expected.

In order to characterize the shape dynamics quantita-
tively, it is useful to introduce the following change of
coordinates: ' Po=(X1+x5+x3+x,)/2, p1=_(x2—x1)/\e‘"2,
P=(2x3—x,-x,)/\6, p3=(3x,—x3—x,—x,)/\12. By virtue
of the statistical homogeneity of the velocity field as well as
of the initial distribution of the centers of mass, the Lagrang-
ian statistics do not depend on p,. The information about the
particle separations can be embodied in the square matrix
p whose columns are the three vectors p; with i=1,2,3.
Denoted by g; (g,=g,=g3) the eigenvalues of the moment
of the inertia matrix, I=pp” (that is positive defined), we

have that the size of the tetrahedron is r=./tr(l)

=\c"g1+g2+g3:y'§2i,j|xi—xj 2, whereas the volume can be
expressed as V=§ det(p)= %V’gl g-83. A convenient character-
ization of shapes is given in terms of the dimensionless
quantities I,=g,;/r*> (where obviously I;+I,+I;=1). For a
regular tetrahedron one has I,=1,=15=1/3. If the four points
are coplanar one has 73=0 and for a collinear configuration
I,=13=0.

Figure 1 shows the temporal evolution of the mean ei-
genvalues of pp’ for the smallest regular tetrahedra with
2:/(0)=x*/2. Two very different regimes are evident; at
small times #<< 7, the evolution of tetrahedra is governed by
the dissipative range of turbulence. Because of the smooth-
ness and incompressibility of the velocity field in this range,
the volume of each tetrahedron is approximately preserved
and so is its average value which is shown in Fig. 1. In the
viscous range the shape dynamics are essentially character-
ized by the Lagrangian Lyapunov exponents;23 as a conse-
quence the mean square separation > grows exponentially in
time. From the average growth rate of the logarithms of the
separations, R(r)=|p,|, areas A(1)=\3/2|p, X p,| and vol-
umes V(t)=%|p, X p, X ps| at small times, we can obtain an
estimation of the Lagrangian Lyapunov spectrum as shown
in Fig. 1. We found two positive Lyapunov exponents, with
A\ 7,=0.12 and \,=N\,/4, in agreement with previous find-
ings at lower RA.24’25 The sum of the three Lyapunov expo-
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FIG. 2. Doubling times for the eigenvalues, g;, of the moment of inertia
matrix, pp’. In the inset: the same data rescaled on the horizontal axis with
the proportions g;:g,:23=40:8:1.

nents so obtained is close to zero for times up to 37,

The exponential growth brings particle separations out-
side the dissipative range, where the velocity field becomes
rough and the inertial range sets in. According to the
Kolmogorov-Richardson scaling, eigenvalues should grow
as g;~1. As previously reported,13 it is hard to extract a
clear scaling regime for the shape dynamics shown in Fig. 1.
The main reason for the lack of self-similarity is due to the
contamination of the inertial range by the dissipative range.
Indeed, because of the strong shape distortion taking place at
the crossover between the dissipative and inertial ranges (as
shown in Fig. 1 by the separation of the three eigenvalues), a
significant fraction of tetrahedra has one side in the dissipa-
tive range even at times much larger than 7,. In order to
overcome this problem we have utilized the technique of
doubling time statistics that has already been successfully
used to remove contaminations in the statistics of pair
dispersion.m’%’27 At variance with fixed-time statistics, dou-
bling times are essentially insensitive to the choice of the
initial size of the tetrahedron.'” Here, we focus on the dou-
bling times of the eigenvalues g;; we compute the times,
T(g,), taken by a tetrahedron to increase its value of g; by a
factor a. The result is shown in Fig. 2. The presence of a
scaling range T~ g'/3 is more clear and the self-similarity is
made evident by superimposing the three curves on top of
each other by a simple multiplicative factor on the g axis.
The ratio of the three eigenvalues in the scaling range is
81:8,:83=40:8:1, corresponding to shape indices I,=0.16
and I3~=0.02. The presence of a range where the doubling
times for different eigenvalues are the same is equivalent to
stating that the typical shape of the tetrahedron is preserved
while its size increases according to Richardson’s law.

In view of the existence of a self-similar regime for
shape evolution, one would expect that the statistics of the
shape indices, [;, should reach a time-independent distribu-
tion. However, a direct inspection of the data does not sup-
port this conclusion (not shown here, the results do not
present an appreciable scaling range in time in spite of the
relatively high R, as compared with Ref. 13). Once more this
lack of a scaling range in the time domain can be traced back
to the contamination by the dissipative range dynamics.

This difficulty can be overcome by selecting those tetra-
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FIG. 3. Probability density function of shape indices I, and I (inset) at
times t=357, (+) and =637, (X). The full lines are the pdfs for indepen-
dent, Gaussian distributed particle positions.

hedra with eigenvalues in the ranges 5X 10?77 <g,<5
X100, S5X10'972<g,<5X10%77,  5X9f<gy<5
X 10 7%. The thresholds are obtained by identifying the scal-
ing ranges in Fig. 2. This procedure removes about 60% of
the initial tetrahedra, mostly because gs falls below its lower
threshold. The probability density functions of the shape in-
dices 1,, I after the selection are shown in Fig. 3. The exis-
tence of an invariant regime appears now very clearly. In this
regime, the normalized probability density functions at dif-
ferent times collapse, and the mean values hence display a
plateau in time; for the third index, the mean value (I3)
=(.011%0.001 is not too far from the Gaussian value 0.03,
while the second index is concentrated on values much
smaller ({I,)=0.135+0.003 as opposed to 0.22)."** Those
values indicate a relative abundance of flat and elongated
configurations. The tendency to form almost two-
dimensional structures has mostly an “entropic” origin; in-
deed there are a large number of pancakelike tetrahedra (very
small I5) already for Gaussian, independent particle posi-
tions, as shown by the corresponding distribution in Fig. 3.
However, it has to be remarked that the pdf of /5 is signifi-
cantly more peaked at small values than the Gaussian one.
The preference for elongated structures (I, <<I,) has a clear
dynamical origin, since it has no equivalent in the Gaussian
ensemble.

An interesting issue that we do not address here is con-
nected with the possibility of subleading, anomalous scaling
in the tetrahedra distribution. In the simpler case of particles
advected by a Gaussian and white-in-time velocity field, it is
known that the asymptotic behavior of the multiparticle pdf,
when the initial points are close, is governed by an expansion
in zero modes and slow modes of a given evolution
operator.11 There, anomalous corrections emerge as sublead-
ing terms to the Richardson scaling. These corrections are
connected to the anomalous scaling of the structure functions
of a passive scalar field advected by the flow. Here, in the
presence of a real turbulent flow, one can expect that similar
properties may still hold."® In order to check this, one should
perform a delicate compensation between the evolution of
the pdf with different initial tetrahedra shapes, in order to
cancel the leading scaling terms and to highlight the sublead-
ing contributions.
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FIG. 4. Evolution of the mean eigenvalues of the “turbulent diffusion ten-
sor,” K, as a function of the tetrahedron size, r. In the inset, the eigenvalues
as a function of time.

The dynamics of the shape evolution can be elucidated
by analyzing the local geometrical properties of Lagrangian
velocities. In analogy with the relative coordinates p,
we introduce the relative velocity matrix w:'? W,=(u,
—ul)/\E, W2=(2u3—u2—u1)/\s"g, W;=QBuy-us-u,
—u,)/ V’E. Obviously, p=W. The geometrical aspects of La-
grangian velocity evolution can be described by the tetrahe-
dron “turbulent diffusion” tensor

1d 1
K=—-—pp’=-(Wp" + pW"). 1
S5 PP 2( p"+pW’) (1)

The trace tr(K)zéEi,j(u,-—u )(x;—x;) is proportional to the
longitudinal velocity difference multiplied by the separation
averaged over all pairs within the tetrahedron. The geometri-
cal information about the Lagrangian velocity fluctuations
may be obtained from the eigenvalues k;=k,= k3 of K,
which are shown in Fig. 4. On dimensional grounds these
should grow in time as #* or, equivalently, with the tetrahe-
dron size, r, as r*3: This is satisfied to a good accuracy for
all three eigenvalues, especially as a function of size. The
third eigenvalue, ks, is negative (notice that, strictly speak-
ing, this conflicts with the definition of K as a diffusion ten-
sor). Geometrically this means that the local velocity field
experienced by the tetrahedron has two extensional compo-
nents: a strong one and a weak one, k| > k,, with the latter
smaller by a factor of 10 than the former, and a weak com-
pressional component |k;| = k,. It is also interesting to study
the relative orientation of the eigenvectors of the matrix
I=pp’, i.e., the principal axes of inertia, and the eigenvec-
tors of the matrix K. We found that the directions of the
eigenvectors associated with g; and «; are preferentially
aligned. About 45% of the tetrahedra show a relative angle
smaller than 77/6 (for a uniform distribution on a unit sphere
one would have 13%). This agrees with the intuitive idea that
strongly extensional velocity differences result in intense
elongations approximately in the same direction. In the plane
orthogonal to the first principal axis of inertia, the eigenvec-
tors of I and K associated with the smaller eigenvalues are
also aligned albeit to a lesser degree (about 25% of relative
angles below 7/6).
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The overall geometrical picture that emerges is the fol-
lowing: Tetrahedra tend to be elongated, almost coplanar
objects, subject to a straining velocity field that has a strong
extensional part in the direction of elongation and relatively
weak compressive and extensional contributions in the or-
thogonal plane of approximately equal magnitude. The re-
cent advances in experimental techniques for particle track-
ing should soon allow precise measurements of shape
dynamics in real turbulent flows.”®* The joint effort on
the numerical and experimental side can shed further light on
the geometrical statistics of Lagrangian turbulence. This,
in turn, will lead to the development of new, more effec-
tive parametrizations of small-scale turbulence, a problem
of paramount importance for geophysical and industrial
applications.
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