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The statistics of Lagrangian particles transported by a three-dimensional fully developed turbulent
flow is investigated by means of high-resolution direct numerical simulations. The analysis of single
trajectories reveals the existence of strong trapping events vortices at the Kolmogorov scale which
contaminates inertial range statistics up to 10τη . For larger time separations, we find that Lagrangian
structure functions display intermittency in agreement with the prediction of the multifractal model
of turbulence. The study of two-particle dispersion shows that the probability density function of pair
separation is very close to the original prediction of Richardson of 1926. Nevertheless, moments of
relative dispersion are strongly affected by finite Reynolds effects, thus limiting the possibility to
measure numerical prefactors, such as the Richardson constant g. We show how, by using an exit time
statistics, it is possible to have a precise estimation of g which is consistent with recent laboratory
measurements.

1. Introduction

Understanding the Lagrangian statistics of advected tracers in fully developed turbulence is
fundamental for developing stochastic models for dispersion and mixing in many physical ap-
plications [1–3]. Richardson’s study on atmospheric dispersion [4] was the first experimental
evidence of scaling law in fully developed turbulence. Despite the relevance of the problem,
there are still relatively few data on turbulent Lagrangian statistics, if compared with Eulerian
statistics. This is due to the intrinsic difficulty to experimentally measure Lagrangian trajec-
tories in a fully developed turbulent flow. In order to obtain an accurate description of particle
statistics, it is necessary to follow the trajectories for times comparable with the large-scale
eddy turnover time TL with a resolution of the order of the Kolmogorov time τη. The ratio
of these timescales is estimated as TL/τη ∼ Rλ, where the Taylor Reynolds number Rλ is of
order of hundreds for typical laboratory experiments (and more in geophysical flows). Recent
laboratory experiments were able to partially overcome these difficulties introducing new ex-
perimental techniques. By using a technique borrowed from high-energy physics, La Porta
et al. [5] were able to obtain Lagrangian trajectories at very high resolution (of the order of
one tenth of τη) in high Rλ turbulence. However, trajectories could be followed for few τη
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only. The acoustic Doppler technique developed by Mordant et al. [6] enabled them to obtain
Lagrangian statistics for times comparable with TL at a resolution of order of 5τη but for a
single velocity components and for a single particle. More conventional techniques, such as
the stereographic particle tracking method adopted by Ott and Mann [7], are able to follow
several trajectories simultaneously and for long time but only for small Rλ.

An alternative tool to investigate Lagrangian turbulence is represented by direct numerical
simulations (DNS) where the complete Lagrangian statistics is resolved at the price of a
moderate Rλ. In this contribution, we review recent results obtained from a set of DNS of
Lagrangian transport in high-resolution homogeneous isotropic turbulence.

2. Direct numerical simulations of turbulence

Simulations were done on the IBM-SP4 parallel computer at Cineca on a cubic lattice at
resolutions up to 10243 corresponding to Rλ � 280. The Navier–Stokes equations for an
incompressible (∇ · u) flow

∂t u + u · ∇u = −∇ p + ν�u + f (1)

are integrated on a triply periodic cubic box by means of a fully dealiazed pseudospectral code
with normal viscosity operator (see table 1 for numerical parameters). Energy is injected at
the average rate ε by keeping constant the total energy in each of the first two wave number
shells [8]. Starting from a zero-velocity initial condition, the system reaches a statistically
stationary state for the velocity field with a well-developed spectral flux and Kolmogorov
energy spectrum (see figure 1).

In stationary conditions, about two millions of Lagrangian tracers are injected into the flow
and their trajectories integrated according to

dX
dt

= u(X(t), t), (2)

over a time lapse of the order of TE (see animation 1, to which figure 2 refers). The Lagrangian
velocity v(t) = u(X(t), t) was calculated using linear interpolation on the Eulerian grid. Parti-
cles’ positions X(t) and velocities v(t) have been stored at a sampling rate 0.07τη. The forces
acting on the particle—pressure gradients ∇ p(X(t), t), viscous forces ν�u(X(t), t) and exter-
nal forcing—and the resulting particle acceleration a(t) = v̇(t) (i.e. the rhs of (1)) have been
recorded along the particle paths every 0.14τη.

The initial conditions of Lagrangian tracers are placed on the vertexes of small tetrahedrons
at the Kolmogorov scale. This allows us to study the statistics of multiparticle dispersion
and shape evolution [9]. In this contribution we will discuss the statistics of one-particle and
two-particle dispersion.

Table 1. Parameters of the numerical simulations. Microscale Reynolds number Rλ, root-mean-square velocity
urms, energy dissipation ε, Kolmogorov lengthscale η = (ν3/ε)1/4, large-eddy turnover time TE = L/urms,

Kolmogorov timescale τη = (ν/ε)1/2, total integration time T , box size L , grid spacing δx , resolution N and the
number of Lagrangian tracers Np .

Rλ urms ε η TE τη T L δx N Np

183 1.5 0.886 0.01 2.1 0.048 5 6.28 0.012 512 0.96 × 106

284 1.7 0.81 0.005 1.8 0.033 4.4 6.28 0.006 1024 1.92 × 106
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Figure 1. Energy spectrum and spectral flux (inset) for the Rλ = 284 simulation, averaged over one large-scale
eddy turnover time. The line represents the Kolmogorov spectrum E(k) = Cε2/3k−5/3 with C = 1.7.

3. Single particle dispersion

A first characterization of Lagrangian dispersion is given by the autocorrelation function. This
is defined from the Lagrangian velocities as

C L (τ ) ≡ 〈v(τ ) · v(0)〉
〈v2〉 , (3)

where the average is taken over many trajectories. Figure 3 shows that the decrease of the
autocorrelation is well approximated by an exponential function C L (τ ) � exp(−τ/TL ) which
defines the Lagrangian integral characteristic time TL � 1.3. The deviations of C L (τ ) from
the exponential function shown in figure 3 are a consequence of the fluctuation of large-
scale quantities (such as the total energy) in our single run simulation. We have checked that

Figure 2. Time evolution of 4800 Lagrangian tracers in the turbulent flow at Rλ = 284 (animation 1, size 5.7 Mbyte,
format MPEG-1).



4 L. Biferale et al.

Figure 3. Lagrangian velocity autocorrelation function in linear coordinates and lin-log (inset) for the Rλ = 284
run. For comparison the exponential fit exp(−τ/TL ) is also shown.

large-scale fluctuations do not affect small-scale statistics which evolve on much faster time
scales.

The exponential decay of the autocorrelation function is a fundamental result as it is at the
basis of the stochastic models of turbulent dispersion [2]. Nevertheless, the analysis of single
Lagrangian trajectories reveals that turbulent dispersion is much more complex than random
dispersion. Figure 4 shows the trajectory of a particle which remains trapped within a vortical
structure for a rather long time. By numerically tracking velocity and acceleration of single
particles, one recognizes that these trapping events are at the origin of extreme fluctuations in
velocity and acceleration statistics (as shown in the insets of figure 4), which are not described
by simple stochastic processes. The analysis of our simulations reveals that these events are not
infrequent and dominate the tails of probability density functions (pdf) of velocity fluctuations
and acceleration.

Figure 4. Trajectory and time series. Left panel: Three-dimensional trajectory of a trapping event in a vortex filament.
The sampling time is �t = 0.07τη and Rλ = 284. Acceleration and velocity fluctuations for this event reach values
as large as 30 and 2 rms, respectively (see right-hand panels).
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Figure 5. Probability density functions of velocity increments and acceleration for the Rλ = 284 run. Curves
refer to time increments τ = (97, 24, 6, 0.7)τη from inside to outside and to the acceleration. In the inset flatness
F(τ ) = 〈δτ v

4〉/(〈δτ v)2〉2 for the entire time interval (0.07τη, 2TE ). The saturation of F(τ ) at small time increments
is an indication of the high-numerical resolution.

Figure 5 shows the pdf of Lagrangian acceleration. In agreement to what was observed in
laboratory experiments at higher Rλ [5], the pdf is characterized by large stretched exponential
tails with flatness F � 40, comparable to the experimental value obtained at a similar Rλ. The
form of the acceleration pdf has recently been the object of intense research based on different
physical models. Of course, the form of the acceleration pdf cannot be universal as it is, at least,
parameterized by Rλ. In [10], the present authors have shown how the multifractal model of
turbulence [11] can be used to predict the acceleration pdf without additional free parameters.

Figure 5 also shows the pdfs of Lagrangian velocity increments δτ v = v(τ ) − v(0) at
different values of time lag τ from τ � τη to τ � 100τη. By increasing the time separation,
the pdfs become decreasingly intermittent and eventually saturate to a distribution very close
to Gaussian for τ � TL , as indicated by the flatness shown in the inset. Also in this case,
the form of the numerically obtained pdfs shown in figure 5 is in qualitative agreement with
experimental results [6].

The intermittency of Lagrangian time increments δτ observed in the pdf can be conveniently
quantified in terms of the scaling exponents ξp of the Lagrangian structure functions

S(L)
p (τ ) ≡ 〈(δτ v)p〉 � τ ξp . (4)

Dimensional analysis [1] predicts for the second-order structure function a linear scaling in
τ , S(L)

2 (τ ) = C0ετ (i.e. ξ2 = 1), with a universal dimensionless constant C0. There is still no
clear evidence of the linear scaling for the second-order structure function, even in the case of
high Reynolds number experiments [6], and as a consequence the value of C0 is still largely
uncertain [12]. In the following, we will propose an interpretation of this poor scaling in terms
of trapped trajectories such the one shown in figure 4.

Because Lagrangian velocity increments are intermittent, we cannot expect for the higher
order structure functions the dimensional scaling ξp = p/2. It is possible to give a prediction of
the Lagrangian scaling exponents in terms of the multifractal model of turbulence. The typical
velocity fluctuation on a time lag τ is given by δτ v � δ�v, where � is the scale of eddies with
characteristic time τ (�) � τ . Using that δ�v ∼ �h with probability P(h) ∼ �3−D(h) and that
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τ (�) ∼ �1−h [11], one ends with the prediction [13]:

ξp = min
h

[
ph + 3 − D(h)

1 − h

]
. (5)

The fractal dimension D(h) is expressed in terms of Eulerian velocity structure functions,
and it is thus given (from Eulerian experimental data or from phenomenological models).
The standard inequality in the multifractal model (following from the Kolmogorov 4/5-law)
D(h) ≤ 3h + 2 implies for (5) that ξ2 = 1 even in the presence of intermittency (this is a
consequence of the fact that in the second-order Lagrangian structure function, the energy
dissipation ε appears with the first power). For a comparison with our numerical data, in the
following, we will use for D(h) an empirical formula which fits very well the experimental
data [14].

The behaviour of the first S(L)
p (τ ) from our simulations is shown in figure 6 [15] for the

three components. Structure functions on different components deviate at large delays, as a
consequence of a certain degree of anisotropy at large-scales. This effect could be removed
only after averaging over many large-scale eddy turnover times. As it is evident from the inset
of figure 6, it is very difficult to extract the values of ξp from the logarithmic slope, in particular
for higher p. We thus decided to assume the scaling for the second-order structure function
ξ2 = 1 and to compute relative scaling ξp/ξ2 by using the so-called extended self-similarity
procedure [16]. As shown by the inset of figure 6, we observe a well-defined scaling in the
range of separations 10τη ≤ τ ≤ 50τη. The values of the relative exponents estimated with this
method, ξ4/ξ2 = 1.7 ± 0.05, ξ5/ξ2 = 2.0 ± 0.05, ξ6/ξ2 = 2.2 ± 0.07, are in good agreement

Figure 6. Log-log plot of Lagrangian structure functions of orders p = 2, 4, 6 (bottom to top) versus τ , along the
three spatial directions. At any order p, from top to bottom we have the x, z, y components, respectively. In the inset
on the bottom right, logarithmic local slopes of all orders are shown for the x-component, the most energetic one. In
the inset on the top-left, relative local slopes, with respect to the second order, are shown d log Sp(τ )/d log S2(τ ) for
p = 4, 6 and the x-component, together with the multifractal predictions (line). Data refer to Rλ = 284.
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with those predicted by the multifractal model (5) and with the experimental values obtained
in [6].

It is interesting to observe that at small time lag τ , from τη to 10τη, local slopes of all orders
tend to accumulate around the value 2. A possible interpretation of these strong deviations in
the scaling laws is in terms of entrapment events of Lagrangian trajectories within vortical
structures, as in the example of figure 4. The Lagrangian velocity in this case displays fluctu-
ations up to 5urms on a time scale τη, while the duration of the event can be as long as 10τη.
Thus for τη ≤ τ ≤ 10τη trapped particle see velocity fluctuations almost discontinuous (i.e.
h = 0) on a one-dimensional structure (i.e. D(h) = 1). Inserting these values in (5) one has
the prediction ξp = 2 for any p which is consistent to what is observed in figure 6.

4. Two-particle dispersion

Relative dispersion of two particles is historically the first issue quantitatively addressed in the
study of fully developed turbulence. This was done by Richardson, in a pioneering work on
the properties of dispersion in the atmosphere in 1926 [4], and then reconsidered by Batchelor
[17], among others, in the light of Kolmogorov 1941 theory [11].

Richardson’s description of relative dispersion is based on a diffusion equation for the
probability density function p(r, t), where r(t) = X2(t) − X1(t) is the separation of two
trajectories generated by (2). In the isotropic case, the diffusion equation can be written
as

∂p(r, t)

∂t
= 1

r2

∂

∂r
r2 K (r )

∂p(r, t)

∂r
, (6)

where the turbulent eddy diffusivity was empirically established by Richardson to follow the
‘four-thirds law’: K (r ) = k0ε

1/3r4/3. The scale dependence of diffusivity is at the origin of the
accelerated nature of turbulent dispersion: particle relative velocity grows with the separation
(see figure 7 for animation 2). Richardson’s empirical formula is a simple consequence of
Kolmogorov scaling in turbulence, as first recognized by Obukhov [23].

Figure 7. Evolution of a cluster of 8192 Lagrangian particles in a turbulent flow at Rλ = 284 (animation 2, size
4.4 Mbyte, format MPEG-1).
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Figure 8. Probability density functions of particle separations normalized with their variance at two different times
t = 0.2TL (red) and t = 0.4TL (green). Initial particle separation r0 = δx , Rλ = 284. The blue line represents the
Richardson distribution (7).

The solution of (6) for δ-distributed initial condition has the well-known stretched expo-
nential form

p(r, t) = A

(k0ε1/3t)9/2
exp

(
− 9r2/3

4k0ε1/3t

)
(7)

where A is a dimensionless normalizing factor. There are presently not so many numerical [18–
21], and very few laboratory experimental [7, 22] studies on relative dispersion in turbulence.
As a consequence, there is still no general consensus on the form of the pdf of two-particle
dispersion in turbulence. The first experimental data were obtained in geophysical contexts
(see [1] and [24] for a review) and were not able to confirm the stretched exponential form
(7). Recent laboratory experiments showed that in homogeneous isotropic turbulence the
Richardson model is consistent with the measurements [7].

Figure 8 shows the pdfs of pair separation normalized with their variance at two different
times. For intermediate times, which correspond to mean separations within the inertial range,
we observe a collapse of the p(r, t) which justifies the hypothesis of self-similarity, implicit in
(6). Moreover, the agreement with the Richardson distribution is remarkable. Some deviations
from (7) are observable as large separations (r ≥ 4rrms) where the statistics is affected by
finite-size effects.

The complete determination of the statistics of pair separation requires the measure of
a dimensionless coefficient, such as k0 in (6). Traditionally, previous investigations have
concentrated on the so-called Richardson constant g which enters the law for the evolution of
the variance

〈r2(t)〉 = gεt3. (8)

The value of g is still known with a large uncertainty. Recent experimental [7] and numerical
[20] investigations suggest a value g � 0.5, but at moderate values of Rλ. Figure 9 shows that
even at the present resolution, the behaviour of 〈r2(t)〉 at intermediate times (corresponding to
separations within the inertial range) still feels the initial separation r0. This makes the direct
determination of g very difficult, as shown in the inset of figure 9.
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Figure 9. Variance of relative dispersion versus time for three different initial separations r0 = (1, 1.54, 2)δx (bot-
tom to top). The line is the power law (8). Inset: compensated plot 〈r2(t)〉/εt3 for the three separations (same
colours).

An alternative approach for Lagrangian statistics is based on exit time statistics [25]. The
idea behind this method is to compute the doubling time Tρ(R) which takes for the separation
to grow from R to ρR (with ρ > 1). This is a first passage problem for the diffusion equation
(6) which can be solved to give (see Appendix)

〈Tρ(R)〉 = ρ2/3 − 1

2k0ε1/3ρ2/3
R2/3. (9)

The outstanding advantage of averaging at fixed-scale separations, as opposite to fixed time,
is that it removes crossover effects since all the sampled separations belongs to the same scale.
Figure 10 shows the mean exit time for the two runs at different Rλ. The improvement of the

Figure 10. Mean doubling time of pair separation 〈Tρ (R)〉 with ρ = 1.19 at resolutions N = 512 (�) and N = 1024
(∗). The line represent the dimensional scaling R2/3.
Inset: compensated plot 143(ρ2/3 − 1)3 R2/(81ρ2ε〈Tρ〉3) which gives the Richardson constant g.



10 L. Biferale et al.

Figure 11. Time evolution of the mean-square particle separation 〈[r(t) − r0]2〉, for the run with Rλ = 284. Curves
refer to four different initial separations r0 = (1, 2, 8, 16) δx from top to the bottom, respectively. Each curve has
been scaled with r2

0 . The two lines represent the scaling t2 and t3.

scaling with respect to figure 9 is evident. In the inset, 〈Tρ(R)〉 is compensated according to
(9) to give the value of g � 0.5.

Before ending this section, we would like to comment on the short-time behaviour of
the mean-square distance of particles’ pairs 〈r2(t)〉. According to Batchelor [17], before the
Richardson’s behaviour (8) sets in, there is a time range for which particles continue to move
with their initial velocities u(X1(0), 0), u(X2(0), 0), and do not change the underlying velocity
fluctuation. To be more precise, the provided initial separation r0 is much smaller than the
integral scale of the motion L , pair separation should behave as

〈[r(t) − r0]2〉 ∼ [
SE

2 (r0)
]
t2 t < t∗, (10)

while for times t � t∗ it should recover the Richardson law (9), where the dependency from
initial separation is no longer present. In the previous expression, the Eulerian second-order
structure function SE

2 (R) ≡ 〈[u(x0+R)−u(x0)]2〉 is measured at the initial relative distance r0,
and it clearly varies for r0 belonging to the Eulerian dissipative or inertial range. Observations
of Batchelor’s behaviour have recently been reported in experiments [22].

In figure 11, we show the time behaviour of the relative dispersion 〈[r(t) − r0]2〉 for parti-
cles’ pairs with four different initial separations r0 = (1, 2, 8, 16)δx , and for Rλ = 284. It is
useful to recall that in our run the Eulerian dissipative scales are well resolved, satisfying the
condition η ∼ δx , where δx is the grid spacing, so that at least initial separations of the order of
r0 = (1, 2)δx lie in the dissipative range. The collapse observed at short times for the two small-
est separations indicates that pair separation effectively grows as 〈[r(t) − r0]2〉 ∼ C1(εr2

0 )t2.
Contrarily, as the initial separations r0 = (8, 16) δx are at the edge of the dissipative range,
the related curves do not exactly collapse onto the others.

It can be noticed that for r0 = (1, 2)δx the t2 behaviour holds for a time t∗ of the order
of few τη. Such time slowly increases with the initial separation r0, in agreement with the
fact that in this regime, due to the exponential growth of particles’ separation, we should
have t∗ ∼ log(r0). For initial separations r0 = (8, 16) δx the time t∗ also grows with the initial
separation, but with a rate ∝ r2/3

0 . Finally, for larger times all curves deviate from Batchelor’s
t2 evolution (10), and tend to recover Richardson behaviour, whose direct observation, as
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previously remarked, is made difficult because of the contamination of the inertial range due
to the dissipative and integral scales. We remark again that this kind of finite-size effects
disappears when using the exit time statistics, as it is evident from figure 10.

5. Conclusions

In this contribution, we have reviewed recent developments in turbulent Lagrangian dispersion
achieved by means of high-resolution DNS. The advantage of DNS, with respect to present
laboratory experiments, is the possibility to obtain reliable statistics in a large range of separa-
tions, from the Kolmogorov to the integral time scale for many simultaneous trajectories. The
price to pay is a moderate Reynolds number which limits the extension of the inertial range.
We have shown that this limitation can be overcome by implementing alternative analysis
tools, such as extended self-similarity and exit time statistics.
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Appendix

Mean doubling time is obtained from a stationary solution of the Richardson diffusion equation
(6). Imagine that one particle per unit time is introduced at r = R/ρ, and there are, respectively,
reflecting and absorbing boundaries at r = 0 and r = R. The stationary solution in three
dimensions is

p(r ) =




C[ρ7/3 − 1] for 0 < r < R/ρ

C

[(
r

R

)−7/3

− 1

]
for R/ρ < r < R.

(A.1)

The number of particle in r < R is

N =
∫

|r|<R
p(r )dr = 4π

∫ R

0
r2 p(r )dr (A.2)

By using (A.1), one obtains

N = (14π/3)C(1 − ρ−2/3)R3. (A.3)

The current at r = R, i.e. the number of particle exiting from the boundary R per unit time,
is given by

J = − d

dt

∫
|r|<R

p(r )dr = (28π/3)Cε1/3k0 R7/3. (A.4)

The mean doubling time is the average time spent by a particle at r < R. It is given by the
ratio N/J and thus

〈Tρ(R)〉 = ρ2/3 − 1

2ε1/3k0ρ2/3
R2/3 (A.5)

which is (9).
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