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We perform direct numerical simulations of three-dimensional Rayleigh-Taylor turbu-
lence with a nonuniform singular initial temperature background. In such conditions, the
mixing layer evolves under the driving of a varying effective Atwood number; the long-time
growth is still self-similar, but no longer proportional to t2 and depends on the singularity
exponent c of the initial profile �T ∝ zc. We show that universality is recovered when
looking at the efficiency, defined as the ratio of the variation rates of the kinetic energy
over the heat flux. A closure model is proposed that is able to reproduce analytically the
time evolution of the mean temperature profiles, in excellent agreement with the numerical
results. Finally, we reinterpret our findings in the light of spontaneous stochasticity where
the growth of the mixing layer is mapped into the propagation of a wave of turbulent
fluctuations on a rough background.
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Introduction. Turbulent mixing is a mechanism of utmost importance in many natural and
industrial processes, often induced by the Rayleigh-Taylor (RT) instability which takes place when
a fluid is accelerated against a less dense one [1–5]. RT turbulence occurs in disciplines as diverse as
astrophysics [6–8], atmospheric science [9], confined nuclear fusion [10,11], plasma physics [12],
and laser-matter interactions [13,14] (see [4,5,15] for recent reviews). One important application
of RT instability is the case of convective flow, in which density differences reflect temperature
fluctuations of a single fluid and the acceleration is provided by gravity.

In the simplest configuration of Boussinesq approximation for an incompressible flow, RT
turbulence considers a planar interface which separates a layer of cooler (heavier, of density ρH )
fluid over a layer of hotter (lighter, of density ρL) fluid under a constant body force such as gravity.
The driving force is constant in time and proportional to gA, where g is the acceleration due
to the body force and A = (ρH − ρL)/(ρH + ρL) = βθ0/2 is the Atwood number, expressed in
terms of the thermal expansion coefficient β and the temperature jump θ0 between the two layers.
However, in some relevant circumstances one has to cope with time-varying acceleration (as in inertial
confinement fusion or in pulsating stars [16–18]) or with a varying Atwood number that emerges when
the mixing proceeds over a nonuniform background as in thermally stratified atmosphere [19–21].

In this work we address a question with both fundamental and applied importance: what happens
when the initial unstable profile is more general than the usual RT step function, as in the case
of nondifferentiable power-law density profile. As a result, the mixing layer will evolve in a
nonhomogeneous background. In particular, we investigate analytically and by using direct numerical
simulations in three dimensions the generic case when the initial unstable vertical temperature
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distribution is given by the power law:

T0(z) = −(θ0/2)sgn(z)

( |z|
L

)c

, (1)

where L is a characteristic length scale and −L � z � L. The exponent of the singularity belongs to
the interval −1 < c < 1, where the upper limit corresponds to a smooth profile and the lower limit
ensures that the potential energy density, −βgzT0(z), does not diverge near the interface among the
two miscible fluids at z = 0. The value c = 0 recovers the standard RT configuration.

We develop a closure model based on the Prandtl mixing length approach, which is able to
reproduce with good accuracy the evolution of the mean temperature profile at all scales and for all
values of the singularity exponent c. Besides the importance of testing the robustness with respect to
the initial configuration, the above setup allows us to investigate the idea that the mixing layer (ML)
growth can be mapped to a traveling wave in appropriate renormalized variables. This wave describes
the self-similar evolution of the probability distribution function (PDF) of turbulent fluctuations from
small to large scales in a rough background given by the initial singular profile [22,23]. Such a
description would then naturally explain the universality of the ML evolution and its spontaneously
stochastic behavior in the inertial range [24]. We introduce a shell model for the RT evolution to
illustrate and quantify the ML statistical properties.

Results for Navier-Stokes equations. We consider the Boussinesq approximation for an incom-
pressible velocity field u(r, t ) coupled to the temperature field T (r, t ) by a buoyancy term:

∂t u + u · ∇u = −∇p + ν∇2u − β gT , (2)

∂tT + u · ∇T = κ∇2T , (3)

where g = (0, 0, −g) is the gravity acceleration, and ν and κ are the kinematic viscosity and thermal
diffusivity, respectively. The choice to rely on Navier-Stokes-Boussinesq equations for studies of RT
at high Reynolds numbers is very widespread, and it is justified by the observation that the turbulent
Mach number has an upper bound [25], thus making RT turbulence an effectively incompressible (or
low compressible) phenomenon. On the other hand, it is known that, when detectable, compressibility
effects amount mainly to break the up-down symmetry of the mixing layer growth, with “spikes”
(downward falling temperature fluctuations) being on average faster than “bubbles” (upward rising);
nevertheless, such asymmetry is limited to the prefactor, while the scaling in time of the full mixing
layer width, which is our main interest here, is preserved [26,27].

The initial condition for the velocity at position r = (x, y, z) is u(r, 0) = 0, while for the
temperature field T (r, 0) = T0(z) we consider a generic power-law distribution given by (1). The
only inviscid parameter that relates spatial and temporal scales is ξ = βgθ0/L

c which has physical
dimensions of [length1−c/time2]. Thus, for a given lengthL, the corresponding integral temporal scale
is given by t∗ = ξ−1/2L(1−c)/2 = √

L/(βgθ0). The distribution (1) is unstable and the dimensional
argument provides the inviscid growth exponent λ � ξ 1/2k(1−c)/2 for the modes with wave number k,
where the dimensionless proportionality coefficient can be determined by solving the linear stability
problem [28]. This dispersion relation predicts that the instability is driven by the smallest scales for
all c < 1.

The nonlinear development of the RT instability produces a mixing zone of widthh(t ). Its evolution
can be determined on dimensional grounds [29–31] from (1) and (2) in the form

u(t )2/h(t ) � βgθ0(h(t )/L)c, (4)

where u(t ) is a large-scale velocity. Assuming that u � dh/dt , one ends with

h(t ) � L

(
t

t∗

)2/(1−c)

, u(t ) � U

(
t

t∗

)(1+c)/(1−c)

, (5)
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FIG. 1. Snapshots of the vertical section of the temperature field T for three simulations of RT turbulence
with power-law initial condition (1) with c = −0.25 (left), c = 0 (center), and c = 0.25 (right) at three different
times corresponding to the same mixing length h(t ) � 0.4Lz. High (low) temperature is represented by yellow
(blue).

where U = L/t∗ and t∗ was defined above. Notice that the first expression can be reinterpreted as a
standard RT diffusion

h(t ) = αcAc(t )gt2, (6)

where Ac(t ) = (βθ0)1/(1−c)(gt2/L)c/(1−c) is the time-dependent Atwood number and the prefactor
αc represents the generalization of the standard RT α coefficient [32].

In order to test the above predictions, we performed direct numerical simulations (DNS) of the
system of equations (2)–(3) in a periodic domain of size Lx × Ly × Lz with Ly = Lx and Lz = 4Lx

by means of a fully parallel pseudospectral code at resolution 512 × 512 × 2048 for initial conditions
(1) with different c and L = Lz. For all runs we have βg = 1/2, θ0 = 1, and Pr = ν/κ = 1. RT
instability is seeded by adding to the initial density field a white noise of amplitude 10−3θ0 and
statistical quantities are averaged over ten independent runs. Figure 1 shows examples of the vertical
section of the temperature field for three different initial conditions taken at three different times
corresponding to the same width of the mixing layer h(t ). We compute h(t ) on the basis of the mean
temperature profile T (z, t ) = ∫

T (x, y, z, t )dx dy as the region on which |T (z, t ) − T (z, 0)| > δθ0

with δ = 5 × 10−3 [33]. In Fig. 2 we show that the evolution of h(t ) is in good agreement with the
power law predicted by scaling (6) for the three different values of c. A small deviation is observed
for the largest c (which corresponds to the faster growth) probably because of the short range of
temporal scaling. This result confirms that the balance (4) gives the correct evolution of the mixing
layer, even over nonuniform backgrounds.

From (2)–(3) we derive the energy balance equation

−dP

dt
= βg〈wT 〉 = dE

dt
+ εν, (7)

which defines the conversion of available potential energy P (t ) = −βg
∫

zT (z, t )dz into turbulent
kinetic energy E(t ) = (1/2)〈u(r, t )2〉. εν = ν〈(∇u)2〉 is the viscous energy dissipation and 〈•〉
represents the integral over the whole volume. Equation (7) shows that not all the available potential
energy is converted into turbulent kinetic energy. It is therefore interesting to measure the efficiency
of the production of turbulent fluctuations, defined as [34,35]

� = −dE/dt

dP/dt
(8)

092601-3



BIFERALE, BOFFETTA, MAILYBAEV, AND SCAGLIARINI

(t − t0(c))/t∗

Σ
(t

)

1.0

0.5

0
6420

t/t∗

h
(t

)/
L

z

c
=

0.
25

c
=

0

c = −0.25

γ
=

2.
67

γ
=

2

γ =
1.6

10510.5

2

100

10−1

10−2

FIG. 2. Temporal evolution of the mixing layer h(t ). From left to right: c = −0.25 (green triangles), c = 0
(red squares), and c = 0.25 (blue circles). The three lines represent the power law predicted by the formula (5)
with γ = 2/(1 − c). Inset: Efficiency of kinetic energy production � = −(dE/dt )/(dP/dt ) as a function of
time for the three cases c = −0.25 (green triangles), c = 0 (red squares), and c = 0.25 (blue circles). The time
axis is shifted by a time t0 which depends on c defining the onset of the self-similar growth. The bars indicate
the typical amplitude of fluctuations around the mean value in the plateau region.

and to check how this is affected by the initial distribution. The inset of Fig. 2 shows the time
evolution of �, which starts from a value close to 1 unit. When the turbulent cascade develops we
observe a peak in the energy dissipation which is reflected in the minimum of �. This occurs at a
time t0(c) which depends on the initial condition and which is used to shift the different cases. In the
turbulent, self-similar regime, at t > t0, the efficiency of conversion of potential energy into kinetic
energy reaches an almost constant plateau � � 0.5 which is independent, within the errors, on the
initial density profile.

At the level of local quantities, the evolution equation for the mean temperature profile reads

∂tT + ∂zwT = κ∂2
zzT . (9)

Using a Prandtl mixing layer first-order closure with homogeneous eddy diffusivity K (t ), the heat
transfer is related to the local temperature gradient by [36]

wT = −K (t )(∂zT − cT /z). (10)

In the above expression, the correction term cT /z ensures that wT vanishes outside the mixing zone,
where T is given by Eq. (1). Neglecting the diffusive term, Eq. (9) can be recast into

∂tT = K (t )∂z(∂zT − cT /z). (11)

The effective diffusivity is expected to depend on time as uh, leading to K (t ) = bcLU (t/t∗)(3+c)/(1−c)

with a free dimensionless parameter bc. In this case a self-similar solution of (11) is obtained in the
form (see the Appendix)

T (z, t ) = −θ0

( |z|
L

)c

fc(η), η = z

L

(t/t∗)−[2/(1−c)]

√
(1 − c)bc

, (12)

where the function

fc(η) = 2 sgn(η)

�
(

1−c
2

) ∫ |η|

0
x−ce−x2

dx (13)

092601-4



RAYLEIGH-TAYLOR TURBULENCE WITH SINGULAR …

η

T
/(

(θ
0
/2

)Λ
c
(t

)c
)

86420−2−4−6−8

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

FIG. 3. Rescaled temperature profiles T /[θ0�c(t )c] averaged over ten independent runs vs the vertical
coordinate η (12), for c = 0 (squares), c = 0.25 (circles), and c = −0.25 (triangles) at three different times.
�c(t ) = √

(1 − c)bc(t/t∗)2/(1−c) is the time scaling factor of η in (12). The fitting parameters are b0 = 6 × 10−5,
b0.25 = 1.2 × 10−6, and b−0.25 = 7 × 10−4. The solid lines represent the function −|η|cfc(η), with fc(η) given
by Eq. (13).

is such that fc → ±1 as η → ±∞. For c = 0 (standard RT), the solution reduces to the error function
f0(η) = erf(η) which is known to be a good fit for standard RT evolution [36]. In Fig. 3 we show that
the homogeneous Prandtl approach works well also for c �= 0 by plotting the rescaled temperature
profiles, for the three different c’s considered, at three times as a function of the rescaled coordinate
η, as given by (12), superposed with the solution (13).

Results for shell models. Because of limitation in the resolution, DNS can access the turbulent
dynamics of the ML only in a limited range of scales. To get a more quantitative control of the
multiscale dynamical properties, we use a shell model for the RT instability that was introduced
in [24]. This system defines the dynamics at discrete vertical scales (“shells”) zn = 2−nL with
n = 1, 2, . . ., where the associated variables ωn, Rn, and Tn describe vorticity, horizontal, and vertical
temperature fluctuations, respectively. We modified the equations described in [24] by using the
complex nonlinearity of the Sabra model [37]. The resulting shell model retains scaling properties
of the original Boussinesq equations (2)-(3), along with some important inviscid invariants such as
energy, helicity, and entropy (see the Appendix). Having properties qualitatively similar to the full
system, the shell model allows for numerical simulations in a very large range of scales, thus serving
as a natural playground for testing theoretical ideas in turbulence [38].

At t = 0, the analog of initial conditions (1) must be chosen with vanishing vorticity and horizontal
temperature variations ωn(0) = Rn(0) = 0, while for the vertical temperature variables we choose

Tn(0) = iθ0

(
zn

L

)c

(14)

for all n. This initial condition leads to the same explosive dispersion relation λn = ξ 1/2k
(1−c)/2
n as

the full model (1)–(3) (see the Appendix). Phenomenological theory of the RT instability for the
shell model is essentially identical to the one of the full 3D system [30], with turbulent fluctuations
propagating from small to large scales. It is convenient to characterize the size of the ML with
the expression h(t ) = ∑ |Tn(t )/Tn(0) − 1|zn, which estimates the largest scale zn at which the
temperature profile Tn(t ) deviates from its initial value Tn(0). This definition is in the spirit of the
commonly used integral formulas for the ML width [7].
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FIG. 4. Evolution of the ML h in log-log scale for the shell model with different c. The parameters L, βg,
and θ0 were set to unity. The statistics was obtained from 103 evolutions, where a small random perturbation
was added to the variables Rn at shells n � 16. We use �t = t − t0 accounting for a small initialization time t0.
Inset: same curves presented as h/L̃ vs (�t /̃t∗)2/(1−c) and compared to the universal approximation (15) shown
with the dotted red line, where the larger deviation corresponds to c = 0.7.

By performing a large number of simulations with small dissipative coefficients and small
random initial perturbations at small scales, we accurately verify the scaling law (5) for c =
−0.25, 0, 0.25, 0.5, 0.7 in Fig. 4, where solid lines represent the numerical results (averaged over
realizations) and the green lines show the theoretical prediction. Here we use the small time shift t0
defining the typical time for the onset of self-similar growth.

The results in Fig. 4 provide with high accuracy the dimensionless prefactor αc for the power-law
growth of the ML [see Eqs. (5) and (6)]. Numerical results show that the dependence of αc on the
singularity exponent c can be fitted well with the formula αc ≈ αLα

−2/(1−c)
t . The quantities αL ≈ 50

and αt ≈ 20 have a simple physical meaning: they redefine the dimensional length and timescales,
L̃ = αLL and t̃ = αt t∗, which reduce the ML width expression to the universal form

h(t ) = L̃

(
t

t̃∗

)2/(1−c)

. (15)

This relation is validated in Fig. 4 (inset). The ML reaches the size L̃ at the time t̃ independently
of the singularity exponent c; this can be seen in Fig. 4 as an (approximately) common intersection
point of the green lines. In the limit c → 1 (constant temperature gradient with no singularity), the
graph h(t ) approaches the vertical line at time t̃∗, which means that unstable modes at all scales get
excited simultaneously.

It is argued [22,23] that spontaneous stochastic turbulent fluctuations develop in the inverse
cascade from small to large scales. In the limit of large Reynolds numbers, such behavior develops
for rough (i.e., nonsmooth) velocity fields, in close analogy to the 1/3 Hölder continuity condition
in the Onsager dissipation anomaly [39]. Nonsmooth temperature profile in the RT initial conditions
provides a natural rough background that can trigger similar effects in the RT turbulence. The
existence of the inverse cascade of fluctuations must reflect in the stochastic growth of the mixing layer
independently of the initial perturbation. Here, the stochastic component develops in the Eulerian
evolution of velocity and temperature fields, unlike for the turbulent Richardson dispersion where
spontaneous stochasticity is predicted—and observed—for the separation of two Lagrangian tracers
by a singular advecting velocity field [40].
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FIG. 5. PDFs (darker color for larger probability) for the ratios of temperature variables |Tn/Tn+1| as
functions of time: n = 5 (upper) and n = 10 (lower) panels in the case c = 0.25.

It is hard to analyze such phenomenon with the DNS due to numerical limitations. However,
it can be conveniently studied in our shell model using the renormalized (logarithmic) space-time
coordinates: −n = log2 zn and τ = log2 �t . To highlight the stochastic aspect, we choose to measure
the probability distribution function of the ratios among temperature fluctuations at adjacent shells,
|Tn/Tn+1|, which are the equivalent of velocity multipliers used in cascade description of fully
developed turbulence [41,42]. Figure 5 presents the time-dependent PDFs obtained numerically in
the case c = 0.25 starting from many initial conditions, different by a very small perturbation. These
results support the idea that the ML growth can be mapped to a stochastic wave in appropriate
renormalized variables (−n, τ ). The wave speed is constant and given by the exponent 2/(1 − c)
of ML width from Eq. (5). Such a wave represents a front of the turbulent fluctuations, which
propagates into a deterministic left state (delta function PDF) corresponding to the initial power-law
background (14), and leaves behind the stationary turbulent state on the right. This description
naturally explains the universality of the ML evolution and its spontaneously stochastic behavior in
the inertial range [24,43].

Conclusions. We have studied numerically and analytically Rayleigh-Taylor turbulence with
general power-law singular initial conditions, providing insight into situations when the mixing
proceeds over a nonuniform background, e.g., in thermally stratified atmosphere. We have shown
that independently of the singularity exponent, the asymptotic self-similar growth of the ML is
universal, if properly renormalized, i.e., by looking at the mixing efficiency and at the mean rescaled
temperature profile. We show that a closure model based on the Prandtl mixing layer approach
is able to reproduce analytically the time evolution of the mean temperature profiles. By using a
shell model we have provided numerical data supporting the above findings also at much larger
resolution both in time and scales. This model helped to understand the behavior of the prefactor in
the ML growth process. Finally, we have shown that RT evolution can be reinterpreted in terms of the
phenomenon known as spontaneous stochasticity where the growth of the mixing layer is mapped
into the propagation of a wave of turbulent fluctuations on a rough background.
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APPENDIX

1. Derivation of the mean profile solution, T (z, t )

Let us write (11) as

∂tT = K (t ) ∂z

[
|z|c∂z

(
T

|z|c
)]

. (A1)

Substituting T from (12) and dropping the common factor −θ0(|z|/L)c yields

∂tfc = K (t )

|z|c ∂z(|z|c∂zfc ), (A2)

where fc = fc(η), with η given by the second expression in (12) as

η(z, t ) = 1√
(1 − c)bc

z

L

(
t

t∗

)−2/(1−c)

. (A3)

We can write Eq. (A2) in the form

dfc

dη
∂tη = K (t )

(
c

z

dfc

dη
+ d2fc

dη2
∂zη

)
∂zη. (A4)

Using (A3) and the definition of

K (t ) = bc

L2

t∗

(
t

t∗

)(3+c)/(1−c)

(A5)

in Eq. (A4) leads, after a long but elementary derivation, to

d2fc

dη2
+

(
c

η
+ 2η

)
dfc

dη
= 0. (A6)

Denoting gc = dfc/dη we can recast the above expression into

dgc

dη
+

(
c

η
+ 2η

)
gc = 0. (A7)

The general solution of Eq. (A7) has the form

gc(η) = C|η|−ce−η2
(A8)

with an arbitrary prefactor C. Finally, the solution for fc(η) = ∫
gc(η)dη takes the form (13), where

C = 2/�( 1−c
2 ) is determined from the condition fc → ±1 as η → ±∞.

2. Shell model for RT evolution

We introduce the RT shell model equations in the form

ω̇n = −ωn+2ω
∗
n+1/4 + ωn+1ω

∗
n−1/2 + 2ωn−1ωn−2 + iβgRn/zn − νωn/z

2
n, (A9)

Ṙn = ω∗
nRn+1 − ωn−1Rn−1 + ωnT

∗
n − κRn/z

2
n, (A10)

Ṫn = ω∗
nTn+1 − ωn−1Tn−1 − ωnR

∗
n − κTn/z

2
n. (A11)

This system defines the dynamics at discrete vertical scales (“shells”) zn = 2−nL with n = 1, 2, . . .,
where the associated variables ωn, Rn, and Tn describe vorticity, horizontal, and vertical temperature
fluctuations, respectively.
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Equations (A9)–(A11) are analogous to those proposed in [24], except for the fact that here we used
the more popular Sabra model nonlinearity [37,38] for the vorticity, Eq. (A9), where ωn = un/zn and
un are the velocity shell variables for the Sabra model. Notice that usually in shell model literature the
equations are written using kn = 1/zn to denote scales in Fourier space. Equation (A9) without the
buoyancy term has energy E = ∑ |un|2, and the helicity H = ∑

(−1)n|unωn| as inviscid invariants
in agreement with 3D Navier-Stokes equations. Equations (A10) and (A11) possess the inviscid
invariant S = ∑ |Rn|2 + |Tn|2, which can be interpreted as the entropy.

One can show that the initial condition (14) with vanishing ωn(0) = Rn(0) = 0 lead to the
exponentially growing modes [24]. Let us consider small perturbations, �ωn and �Rn, and neglect
the dissipative terms. Then, Eqs. (A9) and (A10) linearized near the initial state read

�ω̇n = iβg

zn

�Rn, �Ṙn = −iθ0

(
zn

L

)c

�ωn. (A12)

Solution of these equations provides one unstable mode for each “wave number” kn = 1/zn with the
corresponding positive Lyapunov exponent

λn = ξ 1/2k(1−c)/2
n , ξ = βgθ0/L

c, (A13)

in direct analogy with the RT instability of the full 3D system.
In summary, the shell model (A9)–(A11) mimics spatial variations of the vorticity and temperature

fields at a wide range of scales zn in a way that closely reproduces important properties of the full RT
instability. Such description can be adapted for both two and three spatial dimensions, by tuning the
model coefficients to conserve the respective invariants [24]. It should be stressed that the resulting
models feature most phenomenological properties of the RT turbulence described by Chertkov [30].

For numerical analysis, we consider dimensionless formulation with the parameters L, βg, and
θ0 set to unity and very small dissipative parameters ν = κ = 10−10. We simulated numerically the
model with 30 shells. As c → 1, the growth of small-scale linear modes is depleted, affecting the
length of the power-law interval (see Fig. 4). For example, one has λn ∝ k0.05

n for c = 0.9. In this
case the power-law interval is not observed unless one considers the model with a larger number of
shells and much smaller dissipative parameters.
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