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The dynamics of passively advected particles in either integrable or chaotic point vortex systems 
and in two-dimensional (2-D) turbulence is studied. For point vortices, it is shown that the regular 
or chaotic nature of the particle trajectories is not determined by the Eulerian chaoticity of the vortex 
motion, but rather by pure Lagrangian quantities, such as the distance of an advected particle from 
the vortex centers. In fact, each point vortex turns out to be surrounded by a regular island, where 
the advected particles are trapped and their Lagrangian Lyapunov exponent is zero, even though the 
vortex itself may perform a chaotic trajectory. In the field between the vortices, passive particles 
undergo chaotic advection with an associated positive Lyapunov exponent. For well-separated 
vortices, even at large times, the advected particles do not cross the boundary between the chaotic 
sea and the regular islands surrounding the vortices. A similar situation holds in the case of 
forced-dissipative 2-D turbulence, where particles trapped in the interior of the coherent structures 
have a null Lagrangian Lyapunov exponent, while those in the background turbulent sea move 
chaotically. This gives clear evidence of the important role played by chaotic advection, even in 
complex Eulerian flows. 

I. INTRODUCTION 

Understanding the dynamics of passive tracers in lami- 
nar and turbulent flows has important implications on both 
applied and fundamental research. In past years, this subject 
has been intensively studied by using several different meth- 
ods. The classic viewpoint, based on the concepts of turbu- 
lent diffusion,’ has been recently complemented by the ap- 
proach based on dynamical system theory; this latter theory 
has led to the discovery of chaotic advection and of the phe- 
nomenon of tracer dispersion in simple laminar Eulerian 
flows; see, e.g., Refs. 2-5 for recent reviews. In the present 
paper, we consider the problem of chaotic advection in a 
system of point vortices and in two-dimensional (2-D) turbu- 
lence. The goal of the work is to determine whether and how 
the concepts of chaotic advection may be used to study Eu- 
lerian flows with complex time evolution, as well as to un- 
derstand the effects of coherent structures on the particle 
motion. A physical motivation for this work may be found, 
e.g., in the discussion given in Ref. 3. 

We remark that is highly nontrivial to extract informa- 
tion on the Lagrangian properties (e.g., diffusion and mix- 
ing), starting from an Eulerian point of view. For instance, 
there are situations where the velocity field is regular-i.e., 
absence of Eulerian chaos-but the corresponding motion of 
fluid particles is chaotic; see, e.g., Refs. 6-14 for some ex- 
amples of particle advection studies in given time-dependent 
Eulerian flows. On the other hand, it has been shown that a 
chaotic Eulerian velocity field may generate a regular La- 
grangian behavior, in the sense that two fluid particles ini- 
tially very close do not separate at an exponential rate.14 The 

above properties make it rather problematic to infer the 
“true” nature of the Eulerian velocity field, starting from 
Lagrangian observations. For this reason, it is important to 
know the effects of the most common Eulerian structures on 
particle advection; in particular. the role of coherent vortices 
should be carefully evaluated. 

The equations of motion of a fluid particle initially lo- 
cated at x(0) in the Eulerian velocity field u(x,t) are given by 

dx 
-jy =u(x,t), 

with the initial condition x(0). For a two-dimensional incom- 
pressible fluid (i.e., V-u=O) Eq. (1) assumes the Hamil- 
tonian form [x=(x,y) and u=(u,u)]: 

dx &,9 dy a$ - =- - =-- 
dt dy ’ dt dx ’ 

where the Hamiltonian (// is the streamfunction related to the 
velocity field by 

WJ w cl=:, 
dY u=-zL. (3) 

Equations (1) or (2) also define- the motion of test par- 
ticles, such as powder grains embedded in the fluid, under 
the condition that the particles are small enough not to per- 
turb the velocity field, but also large enough not to perform a 
Brownian motion. Particles of this type are the tracers used 
for flow visualization in fluid mechanics experiments. In the 
present paper, we consider only the case of tracers with the 
same density of the fluid; the more general case of impurities 
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with density different from the fluid has been treated, e.g., in 
Refs. 15 and 16 for particularly simple choices of the stream- 
function. 

A first observation concerns the difference between Eu- 
lerian and Lagrangian chaos. The former indicates the cha- 
otic behavior (in the sense of sensitive dependence on initial 
conditions) of the equations governing the time evolution of 
the velocity field. Conversely, the term Lagrangian chaos in- 
dicates the sensitive dependence on initial conditions of the 
solutions of Eq. (1) in a given velocity field. In general, a 
quantitative measure of the degree of chaoticity is given by 
the value of the largest Lyapunov exponent; see, e.g., Refs. 
17 and 18 for introductions to chaotic dynamics. The pres- 
ence of Lagrangian chaos, even in the absence of Eulerian 
chaos, indicates that some gross properties of mixing and 
diffusion are not strongly related to the presence of Eulerian 
turbulence. An intriguing issue considered here is to under- 
stand whether the properties of particle dynamics in 2-D tur- 
bulence are necessarily related to the presence of Eulerian 
turbulence or they are due just to the phenomenon of La- 
grangian chaos as found even in simple models of chaotic 
advection. 

The remainder of this paper is organized as follows. 
In Sec. II we discuss the chaoticity of passive particle 

trajectories in the regular and chaotic velocity fields gener- 
ated by the motion of three and four point vortices. We find 
that the presence of Lagrangian chaos is not related to the 
regular or chaotic nature of the Eulerian flow, but rather to 
the distance of the advected particles from a vortex center 
(that is, by a purely Lagrangian condition). 

In Sec. III we consider the motion of an ensemble of 
advected particles in the same velocity fields considered 
above, and we discuss the properties of the regular islands 
surrounding the moving vortices. 

In Sec. IV we study the chaoticity of particle trajectories 
in a numerical simulation of forced-dissipative 2-D turbu- 
lence and we compare the results with those obtained for 
point vortices. 

Summary and conclusions are given in Sec. V, together 
with some general comments on the relationships between 
Eulerian and Lagrangian properties. 

II. ADVECTION IN POINT VORTEX MODELS 

In this section we consider the motion of passively ad- 
vetted particles in the velocity field generated by three or 
four point vortices in the infinite domain. The dynamics of 
systems of point vortices has been thoroughly studied since 
the pioneering work of Kirchhoff;r9, see, e.g., Ref. 20 for a 
review. The motion of a system of N point vortices with 
vorticities l?r, I, ,..., I’, and positions [xi(t),yi(t)], 
i=l , . . . ,N, is described by the Hamiltonian system, 

dXi rjrH 
rizzF9 

I 

dyi dH 
I’idt=--&> 

where 

&4 

(4b) 

H= -:7; gm rirj In ‘ij, 
IfI 

and r~=(xi-~j)2+(yi-yj)‘. In the case of point vortices 
on the torus or on the sphere, it is sufficient to substitute the 
In rrj in Eq. (5) with the appropriate Green’s function G(rij); 
see, e.g., Ref. 21. 

In general, the motion of N point vortices may be de- 
scribed in an Eulerian phase space with 2N dimensions. A 
system of three vortices with arbitrary values of ri is 
integrable;m the vortex motion is in this case regular (i.e., 
there is no exponential divergence of nearby trajectories in 
phase space). For N24, apart nongeneric initial conditions 
and/or values of the parameters ri, the system appears, in 
general, to be chaotic.m’22 In the following, we study the 
motion of a passively advected particle located in 
[x(f),y(t)] in the velocity field defined by Eqs. (4) and (5), 
by numerically integrating the equations (l), which in the 
present case, become 

(64 

(6b) 

where RF= (x--x~)~-~- (y -yi)‘. A similar problem has been 
considered in Ref. 23. In the following, for the point vortex 
system we use the natural time and space units, which are 
fixed by the values of the parameters l?i. Note that the La- 
grangian phase space of the passive particle motion has two 
dimensions (x and y); the total phase space of the system of 
N vortices plus the advected particle has thus 2N+2 dimen- 
sions. 

First let us consider the motion of advected particles in a 
three-vortex (integrable) system. In this case, the streamfunc- 
tion for the advected particle is periodic in time and the 
expectation is that the advected particles may display chaotic 
behavior. Here we have chosen r1=Tz=r3= 10. The motion 
of the vortices and of the advected particles has been com- 
puted by a fourth-order Runge-Kutta integrator with time 
step At=5X10e3. Figures l(a) and l(b) show two typical 
trajectories of passive particles that have initially been 
placed, respectively, in close proximity of a vortex center or 
in the background field between the vortices. The two trajec- 
tories display very different behavior. The particle seeded 
close to the vortex center displays a regular oscillatory mo- 
tion around the moving vortex; by contrast, the particle in the 
background field undergoes an irregular and aperiodic trajec- 
tory. 

In order to provide a quantitative confirmation of the 
above observation, we have calculated the maximum 
Lyapunov exponent of the Lagrangian motion (6) for both 
cases. Given two infinitesimally close trajectories x(t) and 
x(t) -Fez(t), solutions to (l), in the limit e-+0 the time evo- 
lution of the separation vector z(t) is given by the linearized 
equation; 
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FIG. 1. Particle trajectories in the three-vortex system. The Eulerian dynam- 
ics is, in this case, integrable (ha=t)). Panel (a) shows a regular trajectory 
and panel (b) shows a chaotic Lagrangian trajectory. The different behavior 
of the two particIes is due to different initial conditions, 

dz au 
.--E-z 
dt dx ’ (7) 

where &JaX is the Jacobian with components aUi/dXj, i,j 
=1,2. The maximum Lagrangian Lyapunov exponent X, is 
then defined as 

1 IZWI 
XL=!:: h,(t)=~~ir 7 In,z(o), . (8) 

For a Hamiltonian system such as (2), a regular, predictable 
Lagrangian behavior is associated with X,=0, while chaotic 
Lagrangian dynamics and unpredictable particle trajectories 
are associated with a value X,>O. 

The practical evaluation of A, may be obtained by two 
different numerical algorithms, either by the direct imple- 
mentation of (7) and (8), see Ref. 24, or by the method of 
Benettin et al. ,s which is based on integrating the motion of 
two nearby particles (a “true” particle and a “ghost” par- 
ticle), and on periodically replacing the ghost particle with 

,066 
10’ 10’ IDS 

t 

FIG. 2. Values of the quantity A,(t) for the two trajectories shown in Fig. 1. 
The solid curve is for the trajectory in Fig. l(a) and the dashed curve is for 
the particle path in Fig. l(b). The Lagrangian Lyapunov exponents are ob- 
tained as limits of A,(t) for t--+m. 

another one close to the real particle. In fact, both methods 
require a periodic normalization of the solution of (7), either 
for avoiding growth of ez(t) beyond the linear perturbation 
regime with the ghost particle method or to avoid numerical 
overflows due to the exponential increase of Iz(t)l when the 
Jacobian method is used. To this end, following Ref. 24, we 
integrate (7) on a period T, starting with a normalized vector 
z(O) []z(O)1=1], and then compute the quantity 

d(T)=; lnlz(T)I. (9) 

The vector z(T) is then normalized (being careful not to 
change its orientation) and the integration is performed on 
another period T. By repeating this procedure iz times, the 
original definition of the Lyapunov exponent is then recov- 
ered through 

where d,(T) indicates the quantity given by Eq. (9) in the 
kth period of duration T. 

Figure 2 reports the quantity AL(t) vs t for the two tra- 
jectories shown in Fig. 1. The exponent h, converges to zero 
for the particle close to the vortex center, indicating the non- 
chaotic nature of the particle motion. Conversely, h,(t) con- 
verges to a well-defined positive value A, for the particle in 
the background field between the vortices, confirming the 
chaotic nature of the Lagrangian motion when the advected 
particle is sufficiently far from the vortices. 

The Eulerian Lyapunov exponent h, is defined in a simi- 
lar way by considering the exponential divergence of two 
solutions of (4) in the 2N-dimensional phase space of the 
motion of the N vortices, i.e., 
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FIG. 4. Values of the quantity AL(t) for the two trajectories shown in Fii. 3. 
The solid curve is for the trajectory in Fig. 3(a) and the dashed cmve is for 
the particle path in Fig. 3(b). The dotted curve shows the quantity Aa for 
the Eulerian dynamics. The Lagrangian or Eulerian Lyapunov exponents are 
obtained as limits of h(t) for t-+m. 

FIG. 3. Particle trajectories in the four-vortex system. The Eulerian dynam- 
ics is in this case chaotic. Panel (a) shows a regular Lagrangian trajectory 
and panel (b) shows a chaotic Lagrangian trajectory. The different behavior 
of the two particles is due to different initial conditions. 

XE= lint As(t) = lim 1 In - 
llwl 

t-em t--r= t k-(O)1 ’ 
(11) 

where l(t) = [ cr (t), . . . , HzN( t) ] evolves, according to the lin- 
earization of (4), 

d5 dF -=- 
dt dp 57 (12) 

where p is the phase-space coordinate of the vortex system 
and F is the right-hand side of Eq. (4). Note that for both 
particle trajectories shown in Fig. 1, we have considered the 
same vortex dynamics, which is integrable, i.e., nonchaotic, 
with Xn=O. 

The above results confirm that the Lagrangian particle 
trajectories may be chaotic, even for a regular Eulerian flow. 
We now consider a case where the Eulerian flow is chaotic. 
To this end it is sufficient to consider a system [(4) and (S)] 
with N24. Figures 3(a) and 3(b) report the trajectories of 
two passive particles deployed, respectively, in proximity of 

a vortex center and in the background field between the vor- 
tices, for N=4 and l?1=r2=I’3=I’4=10. In the first case, the 
particle rotates around the moving vortex. The vortex motion 
is chaotic; consequently, the particle position is unpredictable 
on large times, as is the vortex position. Nevertheless, the 
Lagrangian Lyapunov exponent for this trajectory converges 
to zero, as shown in Fig. 4. Note that in this case the Eulerian 
Lyapunov exponent is positive, as shown in Fig. 4 as well. 

The regular motion of the advected particle around an 
irregularly moving center is not in contradiction with its zero 
Lagrangian Lyapunov exponent, as the positive Eulerian 
Lyapunov exponent refers to the vortex motion and the null 
Lagrangian Lyapunov exponent implies that two nearby par- 
ticles remain close during their motion, performing a regular 
orbit around the chaotically moving vortex. A sirnilar behav- 
ior has been observed in the case of the Lorenz model.r4 The 
present results indicate that the existence of regular regions 
of Lagrangian motion, even in chaotic (or turbulent, see Sec. 
IV) Eulerian flows may be a general property of particle 
advection processes, 

Analogous to what has been observed for the three- 
vortex system, also for N=4, there are chaotic particle tra- 
jectories [see Fig. 3(b) and the corresponding Lagrangian 
Lyapunov exponent shown in Fig. 41. These results indicate 
once more that there is no strict link between Eulerian and 
Lagrangian chaoticity. In the present situation, the discrimi- 
nator between regular and chaotic behavior is the distance of 
the advected particles from the vortices. In general, we note 
that there is no particle ejection from the regular islands for 
(numerically) arbitrarily large integration times. This behav- 
ior suggests a true asymptotic nature of the regular islands, 
whose radius is determined by the minimum distance be- 
tween the vortex under consideration and the nearest hyper- 
bolic point (in a system of N-point vortices on the intinite 
plane, there are N-l hyperbolic points). The relationship 
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FIG. 5. Values of R&an) versus the initial particle distance from the closest 
vortex, for 100 particles seeded at random in the four-vortex system. The 
quantity tan=20 000 is the total simulation time for this experiment. For 
distances smaller than an empirically determined threshold value d,=Z, the 
motion is regular, while for larger values of d, the Lagrangian motion is 
chaotic. 

between the minimum distance of the nearest hyperbolic 
point and the size of the regular island has been directly 
verified for the system of three-point vortices, and it will be 
discussed in a forthcoming paper. A posterior-i, the above 
results seem to be qualitatively analogous to the existence of 
invariant curves separating regular and chaotic regions in 
nonintegrable Hamiltonian systems. The difference of the 
present case relies upon the fact that the Hamiltonian is not 
time periodic, and the size, position, and shape of the regular 
islands may aperiodically vary with time. 

In order to further characterize the coexistence of regular 
and chaotic Lagrangian behavior in vortex systems, we have 
evaluated the Lagrangian Lyapunov exponents for an en- 
semble of 100 initial conditions chosen at random in the 
vortex domain. The trajectories appear to be roughly divided 
in two classes: The regular trajectories where h,(t)+0 and 
the chaotic ones where h,(t)--+X,>O. In Fig. 5 we show the 
value of AL(tfin) at the maximum simulation time t,,=20 000 
versus the initial distance d of each particle from the closest 
vortex. The particle motion is regular up to a threshold dis- 
tance d, , as indicated by the very small value of A,(t& for 
d<d,. For initial distances larger than d,, the particles 
move in the chaotic region, and the Lagrangian Lyapunov 
exponent has a finite positive value. This behavior confirms 
the presence, around each vortex, of a region of regular La- 
grangian motion. Note that A,(t,,j cannot be strictly equal to 
zero in the regular regions due to the finite simulation time. 
The regular nature of the Lagrangian motion in this case is 
indicated by the fact that for these particles AL(t) decreases 
as a power law and that h&a,) is comparable with l/ten. 

l f 
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FIG. 6. Positions of 1000 Lagrangian particles initially seeded in proximity 
of a vortex for the four-vortex system, at different instants of time. The 
labels a-g refer to the times t=O, 500, 1000, lSO0, 2000, 2500, and 3000 
natural t ime units. The initial distribution is the square cloud centered in 
(-20, - 20). The particles do not escape from the regular island surrounding 
the (irregularly moving) vortex. 

III. SPREADING OF AN ENSEMBLE OF ADVECTED 
PARTICLES 

The chaotic or regular nature of the trajectories (in the 
sense of a positive or null value of X3 determines the dis- 
persive or “compact” nature of clouds of particles advected 
by the Eulerian field. In fact, in the case X,=0 there is no 
divergence of nearby particles and absent or slow spreading 
of the particle clouds, even though the center of mass of the 
cloud may perform an irregular trajectory in the presence of 
a chaotic Eulerian velocity field. Conversely, in the case 
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FIG. 7. Positions of 10 000 Lagrangian particles initially seeded in the back- 
ground chaotic sea between the vortices for the four-vortex system, at dif- 
ferent instants of time. The labels u-d refer to the times t=O, 500, 1000, 
and 1500 natural t ime units. The initial distribution is the small square cloud 
centered in (0,2). The particle distribution undergoes stirring and folding as 
usually observed for chaotic systems. 
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FIG. 8. Average size of the particle cloud, u(f), versus time, for the two 
particle distributions shown in Figs. 6 and 7. The size of the cloud is con- 
stant over all times for the particles in the regular island (constant horizontal 
line). Conversely, at small times q(r) is exponentially growing for the 
particle cloud in the chaotic sea (upper curve). At large times, the chaotically 
moving particles fill the (Lagrangian) chaotic region, and a(t) saturates to 
the size of the allowed domain. 

X,>O, nearby particles undergo exponential divergence, and 
the cloud is rapidly stripped and dispersed, even in the pres- 
ence of a regular (e.g., time periodic) Eulerian field. 

To illustrate the above behaviors, in Figs. 6 and 7 we 
show the evolution of a particle cloud in the four-vortex 
field, for two different initial positions and sizes of the pas- 
sive cloud. In Fig. 6 we report the case of a square cloud 
with size 2.0, centered on one of the four vortices (a square 
cloud has been used just for computational simplicity). The 
different clouds shown in the figure correspond to different 
instants of time. The size of the cloud does not increase and 
the particles remain trapped close to the vortex; no particle is 
ejected from the regular island surrounding the vortex. Fig- 
ure 7 reports the case of a smaller cloud, with size 0.2, 
placed in the background chaotic region between the vorti- 
ces; again, the four clouds refer to four instants of time. In 
this case, the cloud is stirred and folded with the usual 
mechanisms observed in chaotic systems, and the particles 
are dispersed. Clearly, the behavior of the cloud is very dif- 
ferent in the two cases; this difference is accounted for by the 
values of the Lagrangian Lyapunov exponent. 

As a further illustration, in Fig. 8 we show the increase 
of the average size of the advected cloud u(t) as a function 
of time, 

d(t)=; g {[x”‘(t)-Xs(t)]2+[yqt)-yB(t)]2}, 
J=l 

(13) 

where [x”)(t),y”)(t)] is the position of the jth particle and 
[xs(t),ys(t)] is the position of the center of mass of the 
cloud. At small times, u undergoes exponential growth for 
the chaotic case, roughly one has g(t)=exp(2XLt). At large 
times, the particles of the chaotic cloud are dispersed in the 
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entire allowed domain, and the variance saturates at the size 
of the domain. Figures 9(a)-9(d) report the distribution of 
10 000 passive particles at different times, until saturation in 
CT is reached. The initial condition on the cloud is the same as 
in Fig. 7. 

From Fig. 9, a few observations may be drawn. First, we 
note that the passive particles remain inside an almost circu- 
lar region, centered on the point x, = (Xi= rlYixi)/( Zf= tl?i) 
(which does not move due to conservation laws). Passive 
particles that start inside this region, and far enough from 
each vortex, behave chaotically. Inside the chaotic domain, 
the particle distribution shown in Fig. 9 is not, however, 
completely uniform. In fact, from the figure, one may see 
that the four vortices are surrounded by four “holes” in the 
particle distribution. This result confirms the existence of a 
strong barrier separating the regular dynamics in proximity 
of each vortex, and the chaotic dynamics in the sea between 
the vortices (but inside the external separatrix). Particles 
seeded close to a vortex are trapped inside the regular is- 
lands, while particles seeded outside cannot penetrate the 
vortex islands. Each vortex carries the regular island with 
itself (from the point of view of passive particle advection), 
even though it may perform an irregular and chaotic trajec- 
tory on the plane. 

IV. ADVECTION IN 2-D TURBULENCE 

In previous sections, we have shown that the behavior of 
passive particles in point vortex systems depends upon the 
particle distance from the vortex centers. The presence of 
irregular trajectories is duet to the time-dependent nature of 
the Hamiltonian system (2), which, in general, also leads to 
chaotic behavior for simple Eulerian flows. One may wonder 
whether a much more complex Eulerian flow, such as 2-D 
turbulence, may give the same scenario for particle advec- 
tion: i.e., regular trajectories close to the vortices and chaotic 
behavior between the vortices. In this section, we show that 
this is indeed the case and that the chaotic nature of the 
trajectories of advected particles is not strictly determined by 
the complex time evolution of the turbulent flow. 

To this end, here we study the Lagrangian dynamics by 
integrating the equations of motion (2) of an ensemble of 
passively advected particles in the streamfunction obtained 
by numerically integrating the forced-dissipative Navier- 
Stokes equations in two dimensions. The Eulerian equations 
of motion are given by 

g +J(o,$)=F+D, (14) 

where (li is the streamfunction, o= A$ is the vorticity, and J 
is the two-dimensional Jacobian. The velocity vector is given 
by u=(Way, - c?$/c~x). The terms F and D indicate forc- 
ing and dissipation, respectively. In the case of two- 
dimensional turbulent flows, it is well known the presence of 
an inverse energy cascade from small to large scales and of a 
direct enstrophy cascade, enstrophy being the squared vortic- 
ity. Dissipation is thus required both at small scales (in order 
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FIG. 9. Positions of 10 000 Lagrangian particles at four late times. Panels (a)-(d) refer to the times t=2000, 2500, 3500, and 4000 natural time units. The 
Lagrangian particles tend to fill the entire chaotic region among the vortices, while not entering the regular regions surrounding the four moving vortices. Each 
“hole” in the particle distribution is centered on one of the four point vortices. 

,, 

to dissipate enstrophy and avoid ultraviolet divergences) and 
at large scales, in order to dissipate the energy piled up at 

A typical vorticity field of a two-dimensional turbulent 
these scales by the inverse cascade. 

flow is characterized by the presence of long-lived coherent 
vortices immersed in a low-energy background turbulent 
field, see e.g., Refs. 26-35. While the latter is reasonably 
well described by a classic Batchelor-Kraichnan statistical 
approach,36-38 the coherent vortices behave as individual en- 
tities, which cannot be treated with standard perturbative ap- 
proaches. In fact, the dynamics of the coherent vortices in 
freely decaying 2-D turbulence has been compared with the 
motion of point vortex systems, finding interesting 
similarities.3*-33 In forced turbulence, the vortices interact 
among themselves and with the background turbulent field, 
which is much more active than in the case of freely decay- 
ing turbulence. Additionally, while in decaying turbulence 
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the vortex sizes may assume a large spectrum of values, in 
forced turbulence all vortices have a similar size, which is 

Given the basic distinction between coherent vortices 
and background turbulence, we now want to explore the dif- 

determined by the value of the forcing wave number. 

ferences between the Lagrangian dynamics in the interior of 
coherent structures and in the background turbulence. Details 
on the Eulerian numerical simulations discussed here may be 
found in Refs. 26 and 27. To obtain the velocity field, the 
barotropic two-dimensional vorticity equation (14) has been 
integrated on a doubly periodic square lattice (2rr,27r) by a 
pseudospectral approximation. The forcing is defined by 
keeping constant the amplitude of a selected zonal mode 
(k,); the dissipation is provided by both a hyperviscosity at 
large wave numbers and by an E&man-type dissipation at 
small wave numbers. These types of forcing and dissipation 
have been widely discussed and employed in past numerical 
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FIG. 10. Trajectories of three example Lagrangian particles in 2-D turbu- 
lence. The solid line refers to a particle that is trapped into a coherent 
structure, the dashed line refers to a particle moving in the turbulent field 
among the vortices, and the dotted line indicates the trajectory of a particle 
that is ejected from a coherent vortex. 

simulations of 2-D turbulence.28-30”5 Because of the intrin- 
sic discrete nature of the Eulerian simulations, a proper in- 
terpolation scheme is needed in order to integrate the particle 
trajectories [Eq. (2)] and to compute the associated Lagrang- 
ian Lyapunov exponent 1, [Eqs. (7) and (S)]. The scheme 
adopted herein is based on a third-order spline interpolation 
and on a second-order Runge-Kutta time integration.“*39Y40 
Several different numerical experiments have been per- 
formed in order to obtain good confidence on the indepen- 
dence of the computed values on the resolution and on the 
interpolation scheme. Further details on the Lagrangian inte- 
grations may be found in Refs. 39 and 40. 

In the present numerical experiments, the resolution of 
the Eulerian field has been chosen to be 1282 grid points, and 
the forcing wave number has been chosen to be k,= 10, in 
order to obtain a vorticity field dominated by large coherent 
structures; see e.g., Refs. 26, 27, and 40 for graphic illustra- 
tions of these fields. The nondimensional kinetic energy of 
the field is I?,,,,-- -53.3, and the nondimensional Eulerian 
enstrophy is Z,,,,- -2600. The mean nondimensional Eule- 
rian time scale is T,=0.14 and the mean nondimensional 
Lagrangian time scale is T,=0.035. To obtain the particle 
trajectories and the Lyapunov exponents, we integrate an al- 
ready stabilized Eulerian flow for a 20 000 time step (where 
the time step is 6r=10-4), together with the motion of an 
ensemble of particles initially seeded in proximity of three 
different vortices. For simplicity, here we discuss only the 
results obtained for the simulations with resolution 1282. We 
have repeated the numerical experiments considered here 
with a higher resolution (25Cj2) and with different forcing 
wave numbers, obtaining the same types of behavior. To ex- 
plore the Lagrangian behavior, we have conducted a specific 
numerical experiment, where we have analyzed the trajecto- 
ries of 1500 particles seeded in the Eulerian flow. 

cal behaviors observed for the advected particles (for an in- 
teresting comparison with real geophysical flows, see, e.g., 
Fig. 1 of Ref. 41). Passive particles initially seeded in the 
deep interior of a vortex core (solid curve) undergo a regular 
oscillatory motion around the center of the moving vortex, as 
already observed for the simple point vortex system dis- 
cussed in the previous sections. Particles starting in the back- 
ground turbulence (dashed curve) undergo a complex and 
unpredictable motion, again in analogy with the results ob- 
tained in the case of the point vortices. Usually, particles 
seeded into the background field do not enter the cores of 
existing vortices, which display a strong impermeability to 
inward particle fhrxes.26V40 On the other hand, particles 
seeded inside coherent structures but close to the outer 
boundary of the vortex may be ejected from it: this is the 
case of the dotted curve in Fig. 10. Usually, particle ejection 
from the coherent structures is associated with filamentation 
during close vortex interactions; an analogous behavior may 
also be observed for closely interacting point vortices, and 
will be discussed in a forthcoming paper. 

Figure l-0 shows three trajectories that represent the typi- 

To properly characterize the nature of the particle mo- 
tions in 2-D turbulence, we have computed the Lagrangian 
Lyapunov exponents for a particle residing inside a coherent 
structure for the entire simulation time, for a particle moving 
in the background and for a particle that is ejected from the 
vortex during the simulation time. Figure 11 reports the 
quantity AL(t) given by (8) for the above three passive par- 
ticle trajectories. This quantity converges to zero for the par- 
ticle inside coherent structures, indicating a null value of XL 
and a regular Lagrangian motion of the advected particles 
inside the vortices. This result is completely consistent with 
the behavior of passive particles in point vortex systems, and 
it indicates the absence of Lagrangian chaos inside the co- 
herent structures of 2-D turbulence. In our opinion, this re 
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FIG. 11. Values of the quantity AL(t) versus time for the three typical 
particle trajectories in Z-D turbulence shown in Fig. 10. Here A,(t) con- 
verges to zero for the particle in the vortex (solid curve); it saturates to a 
constant positive value for a particle moving in the background and in the 
circulation cells (dashed curve). For the particle that is ejected from a vor- 
tex, AL(t) first decreases as t-. ’ and then saturates to a constant value after 
ejection (dotted curve). 
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sult is interesting, since it indicates the existence of islands 
of regular Lagrangian motion, even in turbulent Eulerian 
flows. 

By contrast, AL(t) converges toward a finite, positive 
value for the particle moving in the background turbulent 
field (dashed curve). This indicates the chaotic nature of par- 
ticle motion in this region of 2-D turbulent flows; this result 
is a clear indication that chaotic advection may play a rel- 
evant role also for particle dispersion in turbulent Eulerian 
flows. Note the similarity between the results found here for 
the case of 2-D turbulence and those obtained for simple 
point vortex models, a fact that suggests that the detailed 
structure and time evolution of the Eulerian flow is not cru- 
cial for determining the Lagrangian dynamics of the ad- 
vetted particles. In fact, the Lagrangian dynamics seem to be 
mainly determined by the overall separatrix structure of the 
Eulerian field (e.g., the position of the hyperbolic points). 

For the particles that are ejected from the vortices, the 
quantity AL(t) decreases toward zero as long as the particles 
remain in the vortices. After ejection, the particles move in 
the background, and their behavior is indistinguishable from 
that of particles initially seeded outside the vortices. The 
value of A,(t) may undergo an abrupt change when the par- 
ticle is ejected from the vortex. Later on, A,(t) converges to 
a finite positive value, confirming the chaotic nature of the 
particle motion in the background field. 

V. SUMMARY AND CONCLUSIONS 

The existence of unpredictable, chaotic trajectories of 
passively advected particles in simple laminar 2-D flows 
with a time-periodic streamfunction is a well-known result, 
which has been given the name of chaotic advection. Here 
we have considered the case of complex, non-time-periodic 
Eulerian flows (namely, point vortex systems and forced- 
dissipative 2-D turbulence), and we have studied the chaotic 
or regular nature of particle trajectories. 

In the case of point vortex systems, we have shown that 
the chaotic or regular nature of Lagrangian particle motions 
does not strictly depend on the detailed properties of the 
Eulerian advecting flow (being insensitive even to its regular 
or chaotic nature); it rather depends only on purely Lagrang- 
ian quantities, such as the particle distance from the vortex 
centers. In particular, we have shown that around each point 
vortex there is a regular island of particle trapping; here the 
passive particle dynamics is characterized by a null Lagrang- 
ian Lyapunov exponent. Sufficiently far from the vortices, 
the passive particles move chaotically and the Lagrangian 
Lyapunov exponent is positive. 

The above results indicate that regular regions of La- 
grangian advection may exist, even in complex Eulerian 
flows. This observation was already advanced in Ref. 14 in 
the case of the Lorenz model, which is, however, a somewhat 
pathological case from the point of view of Lagrangian 
chaos, due to the form of the velocity field. The results dis- 
cussed here on point vortex dynamics confirm the general 
existence of regular islands in complex, chaotic Eulerian 
flows and underline the difficulty of finding strict relation- 
ships between the Eulerian and Lagrangian description of the 
same fluid flow. 

In the case of 2-D turbulence, the analysis of 1500 par- 
ticle trajectories in a forced-dissipative, 128’ resolution nu- 
merical integration of the Navier-Stokes equations has re- 
vealed an analogous scenario, with a regular Lagrangian 
motion inside the coherent structures and chaotic advection 
of passive particles in the background turbulent field among 
the vortices. Again, we stress the fact that regular regions of 
Lagrangian motion may exist, even in turbulent Eulerian 
tlows. 

As a general conclusion, we note that the results reported 
here indicate that the detailed structure of the advecting Eu- 
lerian field seems to be of limited importance in determining 
the behavior of the passive tracers. In particular, the similar- 
ity of the results between point vortex systems and 2-D tur- 
bulence suggest that the exact time evolution of the velocity 
field is not crucial for the particle dispersion properties? be- 
ing sufficient a generic nonstationarity of the advecting held. 
In this sense, it is probably much more important the overall 
separatrix structure of the Eulerian field, namely the exist- 
ence and the position of hyperbolic and elliptic points. In 
general, one may also conclude that the same presence or 
absence of an Eulerian turbulent dynamics seems not to be 
crucial from the point of view of particle dispersion proper- 
ties. 
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