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Abstract

We study the statistics of pair dispersion in two-dimensional turbulence. Direct numerical
simulations show that the probability distribution function (pdf) of pair separations is in agree-
ment with the Richardson prediction. The pdf of doubling times follows dimensional scaling and
shows a long tail which is the signature of close approaches between particles initially seeded
with a large separation. This phenomenon is related to the formation of fronts in passive scalar
advection. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The concentration of a dilute solution of a passive tracer in an incompressible 
ow
obeys the scalar equation

@t�+ v · ∇�= ���+ f ; (1)

where v is the divergenceless velocity �eld, � is the molecular di�usivity, and f is
the external source of tracer 
uctuations. Eq. (1) can be solved by the method of
characteristics to obtain the solution

�(x; t) =
∫ t

−∞
ds f(�(s); s)

�̇(s) = v(�(s); s) +
√
2� �(s); �(t) = x : (2)
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The characteristics �(t) are the Lagrangian trajectories of the 
uid particles, and
√
2��

is the white-noise contribution due to molecular di�usion. There is an immense liter-
ature devoted to both Eulerian (1), and Lagrangian (2), descriptions of passive trans-
port in turbulence [1]. What is relevant to our purposes is to keep in mind the tight
relationship between these two complementary descriptions. As an instance, simulta-
neous two-point correlations of the scalar �eld can be written in terms of two-particle
Lagrangian statistics as

〈�(x1; t)�(x2; t)〉=
∫ t

−∞
ds1

∫ t

−∞
ds2 〈f(�(s1); s1)f(�(s2); s2)〉 : (3)

Properly choosing the form of the correlation function of the scalar forcing, e.g.
〈f(x1; t1)f(x2; t2)〉=�(|x1−x2|)�(t1−t2), and exploiting space homogeneity, expression
(3) can be further simpli�ed to the form

〈�(x; t)�(x+ R; t)〉=
∫ t

−∞
ds

∫
dr�(r)p(r; s|R; t) ; (4)

where p(r; s|R; t) is the probability density function for a pair to be at a separation r
at time s, under the condition that it has to have a separation R at time t.
Summarizing, the knowledge of the statistics of pair dispersion is su�cient to

determine the values of the correlations of passive scalar for a given forcing. On
the contrary, to extract the Lagrangian statistics from the Eulerian one it is neces-
sary to know the scalar correlation functions for di�erent forcings. In this sense, the
Lagrangian information is more fundamental, and hereafter we shall restrict to this one.

2. Statistics of pair dispersion

The dispersion of a particles’ pair in turbulence can be phenomenologically described
in terms of a di�usion equation for the probability distribution of pair separations

@p(r; t)
@t

=
@
@rj

(
K(r; t)

@p(r; t)
@rj

)
(5)

with a space- and time-dependent di�usion coe�cient K(r; t). In general, the description
by means of a di�usion equation is a drastic simpli�cation. The only case in which it
can be proven that particle separations obey (5) is when the advecting velocity �eld
is rapidly changing in time [2,3].
The original Richardson proposal, obtained from experimental data in the atmosphere,

is K(r; t) = K(r) ∼ r4=3 [4]. This leads to the well-known non-Gaussian distribution

p(r; t) ' t−9=2 exp(−Cr2=3=t) : (6)

From the Richardson distribution (6) one has immediately that the mean square
particle separation grows as

R2(t) ≡ 〈r2(t)〉 ∼ t3 : (7)
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The “t3” law, which is known as the Richardson law, has been observed, although with
large uncertainty, in direct numerical simulations [5] and, more recently, in laboratory
experiments [6].
The di�usion equation (6) is not the unique possibility which leads to the “t3”

law. Batchelor [7] assuming that the di�usion coe�cient should depend on average
quantities, proposed that K(r; t) = K(t) ∼ 〈r2(t)〉2=3 ∼ t2. In this case the distribution
of pair distances is Gaussian with a superballistic growing variance

p(r; t) ' t−9=2 exp(−Cr2=t3) : (8)

Of course, this is not the end of the story. Formally, any di�usion coe�cient of the
form K(r; t) ∼ ratb with 3a+2b=4 is compatible with the “t3” law but gives di�erent
distribution function [1,8]. Early experimental data were in favor of the Batchelor–
Gaussian distribution (8) [1], but recent laboratory experiments are more in the direction
of the Richardson original proposal [6].
The Richardson law can be derived by a simple dimensional argument which makes

use of the Kolmogorov similarity law for the Eulerian velocity increments in fully
developed turbulence. By de�nition one has

d
dt
1
2
R2(t) = 〈r · �v(L)(r)〉= 〈r �v(L)‖ (r)〉 ; (9)

where �v(L)(r) = v(x(t) + r)− v(x(t)) is the Lagrangian velocity increment and �v‖ is
its projection on the r direction. Assuming Kolmogorov scaling for Lagrangian velocity
di�erences, �v‖(r) ∼ r1=3, one obtains from (9) the Richardson law (7). The assumption
that the Lagrangian velocity di�erence has the same Kolmogorov scaling of the Eulerian
one relies on the intuitive idea that the main contribution to the separation rate follows
from eddies with size comparable with the separation itself.
Let us conclude this section with a remark. The description of relative dispersion

in terms of the di�usion equation (5) assumes a self-similarity in the process. Of
course this could not be the case, e.g. in intermittent three-dimensional fully developed
turbulence. As a matter of fact, in presence of intermittency of the velocity �eld, one
can expect a kind of “Lagrangian intermittency”, in the sense that di�erent moments
〈rp(t)〉 have di�erent scaling exponents:

〈rp(t)〉 ∼ t�p (10)

with �p 6=3=2p. This problem has been discussed in several papers [9–12] with di�erent
conclusions. Recent detailed investigations with a synthetic turbulent model gave the
evidence of Lagrangian intermittency with scaling exponents �p linked to the Eulerian
intermittent scaling exponents [13].

3. Pair dispersion in two-dimensional turbulence

Pair dispersion statistics has been investigated by direct numerical simulation of
the inverse energy cascade in two-dimensional turbulence. There are several reasons
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Fig. 1. Energy spectrum E(k). The dashed line is the Kolmogorov scaling E(k) ' k−5=3. In the inset is
shown the energy 
ux �(k).

for considering 2D turbulence. From an applicative point of view, two-dimensional
Navier–Stokes equations are among the simplest systems of geophysical interest. The
observed absence of intermittency [14,15] makes the 2D inverse energy cascade an
ideal framework for the study of Richardson scaling. Moreover, the dimensional-
ity of the problem makes feasible direct numerical simulations at high Reynolds
numbers.
The 2D Navier–Stokes equations for the vorticity !=∇× v =−� are

@t!+ J (!;  ) = ��!− �!+ � ; (11)

where  is the stream function and J denotes the Jacobian. The friction linear term −�!
extracts energy from the system to avoid Bose–Einstein condensation at the gravest
modes [16]. The forcing is active only on a typical scale lf and is �-correlated in time
to ensure the control of the energy injection rate. The viscous term has the role of
removing enstrophy at scales smaller than lf and, as customary, it is numerically more
convenient to substitute it by a hyperviscous term (of order eight in our simulations).
Numerical integration of (11) is performed by a standard pseudospectral method on a
doubly periodic square domain of N 2 =20482 grid points. All the results presented are
obtained in conditions of stationary turbulence.
In Fig. 1, we present the energy spectrum, which displays Kolmogorov scaling

E(k) = C�2=3k−5=3 over about two decades with Kolmogorov constant C ' 6:0. The
inertial range corresponds to the region of constant 
ux, also plotted in Fig. 1. Previ-
ous numerical investigation has shown that velocity di�erences statistics in the inverse
cascade is almost Gaussian with Kolmogorov scaling not a�ected by intermittency cor-
rections [15]. In this case we expect the Lagrangian statistics to be self-similar with
Richardson scaling [13].
In Fig. 2, we plot relative dispersion R2(t) obtained after averaging over 64 000 par-

ticle pairs for two di�erent initial conditions R2(0). The Richardson t3 law is observed
in a limited time interval, especially for the largest R2(0) run. It is remarkable that
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Fig. 2. Relative dispersion R2(t) for two initial separation R(0) = 1:5× 10−3(+) and R(0) = 3× 10−3(×).
The continuous line is the Richardson law R2(t) ' t3.

Fig. 3. Probability density function of relative separation at times t=0:2 and 5:0 rescaled with R(t)=〈r2(t)〉1=2.
The continuous line is the Richardson prediction (6), the dashed line is a Gaussian distribution.

the relative separation law displays such a strong dependence on the initial conditions
even in this high-resolution runs.
The probability density functions of pair separations is plotted in Fig. 3 at two

di�erent times. For short times (t = 0:2) in which the relative dispersion is in the
Richardson regime (see Fig. 2) we see that the Richardson distribution (6) �ts well
the numerical data. This is, we think, a clear evidence of the substantial validity of the
original Richardson description. Let us observe that until now this point was not clear:
recent laboratory data [6] pointed to the Richardson distribution but there were strong
deviations from (6). At long time t = 5:0 relative separation distribution is described
by a Gaussian distribution, but this has no relation with the Batchelor proposal (8)
because it is not in the scaling range. At time t = 5 the average separation is of the
size of the computational box and we have normal dispersion �a la Taylor.
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The Richardson pdf has a strong cusp at r=0 which signals the high probability for
a pair to reach a very small separation compared to the typical value R(t). As we shall
see later on, this e�ect is highlighted by considering the statistics of �rst exit times.

4. Doubling time statistics

We have seen in the previous section that the Richardson picture seems to be con-
�rmed in the inverse energy cascade in two dimensions. Nevertheless, we have seen
that it is di�cult to observe the Richardson scaling law even in our high-resolution
direct numerical simulations. To understand this e�ect consider a series of particle pair
dispersion experiments, in which a couple of particles is released at time t = 0 with
initial separation R(0). At a �xed time t one performs an average over all di�erent ex-
periments and computes R2(t). It is clear that, unless t is large enough that all particle
pairs have “forgotten” their initial conditions, the average will be biased. This is at the
origin of the 
attening of R2(t) for small times, which we can call a crossover from
initial condition to self-similar regime. Of course, at larger R(0) correspond longer
crossover regimes (see Fig. 2). A similar e�ect is observed for times of the order of
the integral time scale since some particle pairs might have reached a separation larger
than the integral scale and thus di�use normally, biasing the average, so that the curve
R2(t) 
attens again.
To overcome this di�culty we use an alternative approach based on statistics at

�xed scale [17]. The method has been successfully applied to the analysis of relative
dispersion in synthetic turbulent 
ow [13] and in experimental convective laminar 
ow
[18]. The method works as follows. Given a set of thresholds Rn = rnR(0) within
the inertial range, one computes the “doubling time” Tr(Rn) de�ned as the time it
takes for the particle pair separation to grow from threshold Rn to the next one Rn+1.
Averages are then performed over many dispersion experiments, i.e., particle pairs. The
outstanding advantage of this kind of averaging at �xed scale separation, as opposite
to a �xed time, is that it removes crossover e�ects since all sampled particle pairs
belong to the inertial range.
The scaling property of the doubling time statistics in fully developed turbulence

is obtained by a simple dimensional argument. The time it takes for the particle pair
separation to grow from R to rR can be dimensionally estimated as Tr(R) ∼ R=�v(L)‖ (R);
we thus expect for the inverse doubling times the scaling 〈Tr(R)〉 ' R2=3. From the
de�nition, doubling times depend on the threshold ratio r. It is then useful to consider
the normalized quantity

�(R) =
1

〈T (R)〉 log r ; (12)

which is called the �nite size Lyapunov exponent (FSLE) because is reduces to the
(Lagrangian) Lyapunov exponent in the limit of small separation R → 0 [19].
In Fig. 4, the FSLE is shown for the same simulation of Fig. 2. At small scales

R¡ 0:01 there appears a constant plateau corresponding to the Lagrangian Lyapunov
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Fig. 4. Finite size Lyapunov exponent (12) for the same trajectories of Fig. 2. The initial threshold is
R(0) = 0:0031 and the ratio is r = 1:2. The line is the theoretical Richardson scaling R−2=3.

exponent �(R) ' 19. At larger R, we observe the power law �(R) ' R−2=3 on a scaling
range which is well enhanced with respect to the relative dispersion of Fig. 2.
The scaling of doubling times gives also information about the two-point correlations

of passive scalar. Indeed, assuming that the correlation of the scalar forcing decays
rapidly to zero with a typical scale L, by means of Eq. (4) we obtain

〈�(x; t)�(x+ R; t)〉 '
∫ t

−∞
ds

∫
|r|¡L

drp(r; s|R; t) (13)

that is the average time that a particle pair released at a separation R spends below the
scale L. Thus, our results for doubling times enable us to express the scalar correlation
as

〈�(x; t)�(x+ R; t)〉 ∼ L2=3 − R2=3 (14)

for any L and R in the scaling range of the velocity �eld. Direct numerical simulations
of passive scalar advection, Eq. (1), in the Navier–Stokes 
ow generated by Eq. (11)
con�rm that the exponent of scalar correlations is indeed indistinguishable from 2

3 [20].
Beyond scaling properties of averaged quantities, the inspection of the pdf of

doubling times is very insightful to capture the main features of pair dispersion.
In Fig. 5 the pdf is shown of doubling times rescaled with their average values. The

normalized pdf’s at di�erent separations in the inertial range collapse, indicating the
self-similarity of the Lagrangian dispersion. Most important, there is a large number of
events for which the pair wanders for 20–30 times the average value before exiting.
This e�ect is a re
ection of the strong cusp observed in the pdf of pair separations.
In these events the particles which are initially at a separation lying well inside the
inertial range can approach each other as close as the di�usive scale. In the language of
the passive scalar �eld, since trajectories originating from widely separated regions of
space can carry very di�erent values of the concentration �eld �, these approaches
generate steep gradients of scalar across small scales. These structures, known as
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Fig. 5. Probability distribution functions of doubling times rescaled with the average doubling time 〈T (R)〉
for di�erent R in the inertial range.

“cli�s”, have been actually observed both experimentally [21–23] and numerically
[24,25] for the temperature �eld in a turbulent 
ow.

5. Conclusion

Passive scalar transport in turbulence can be described in two complementary ways.
It is possible to adopt the �eld description, and think in terms of correlation functions
of the scalar �eld, either to prefer the particle description, and thus ask questions about
the statistics of relative separations. These two aspects complete each other. We have
investigated the Lagrangian properties of transport in two-dimensional turbulence. Our
results show that pair dispersion statistics is not intermittent, since the velocity �eld
is self-similar and the geometric content of two-particle con�gurations is trivial. This
result makes contact with the analytical result that can be derived in the rapid-change
model, where two-point scalar correlations show no anomaly. This will not be the case
in three-dimensional turbulence, a case which is under current analysis.
Although on average particle pairs separate, probability density functions of pair

separations and of doubling times clearly display the �ngerprint of frequent close ap-
proaches between particles. These events occur with a relatively high probability, and
are for the formation of quasi-discontinuities in the scalar �eld (the cli�s).
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