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Predictability problem for two-dimensional decaying turbulence is addressed by means of numerical
simulations. Qualitative and quantitative comparisons with previous results obtained by closure
approximations are critically examined. It is found that, as for other features of two-dimensional
turbulence, the role of coherent vortices is essential for a correct interpretation of the results. A
Lagrangian, vortex-based, definition for the growth of incertitudes leads in general to an
enhancement of the predictability time. ©1997 American Institute of Physics.
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I. INTRODUCTION

A problem with an obvious interest in many fields, e.
weather forecasting, is the prediction of the future state o
system once known the evolution laws and the init
conditions.1 It is now part of the folklore of chaos that pre
dictability in the presence of deterministic chaos has sev
limitations because of the exponential divergence of the
tance between two initially close trajectories.

Typically one has that an uncertaintydx(0) on the state
of the system at timet50 increases as

udx~ t !u.udx~0!uelt, ~1!

wherel is the maximum Lyapunov exponent2. If one ac-
cepts a tolerancedmax on the predicted state of the system
then Eq.~1! implies that a system can be consider predicta
up to thepredictability time

Tp;
1

l
lnS dmax

d0
D , ~2!

whered05udx(0)u.
Relation ~2! tells us that the predictability time, if on

considers infinitesimal perturbations, is basically propor-
tional to the inverse of the Lyapunov exponent since
dependence on the precision of the measure and the th
old is very weak~logarithmic!.

However Eq.~2! is a very naive answer to the predic
ability problem and its validity is very limited since it doe
not take into account some important features of chaotic
tems.

The main reasons for the failure of Eq.~2! can be sum-
marized as follows:

~a! The Lyapunov exponentl is a global quantity. It mea-
sures theaverageexponential rate of divergence o
nearby trajectories. In general there exist finite-tim
fluctuations of this rate and it is possible to define
‘‘instantaneous’’ rateg t(t), the effective Lyapunov
724 Phys. Fluids 9 (3), March 1997 1070-6631/97/9(
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exponent, which depends on the particular point of
trajectoryx(t) where the perturbation is performed an
on the time delayt from the perturbation.3 Therefore
the predictability timeTp fluctuates, following theg
variations.4,5

~b! In dynamical systems with many degrees of freedo
the interactions among different parts of the system
play an important role in the growth of perturbation
In addition, one is often interested in the case of p
turbations concentrated on certain degrees of freed
while the prediction is on the evolution of other d
grees of freedom. For example in weather forecast
the uncertainties are on small scales while predictio
are on large scales. Therefore the mechanism of
transfer of the error through the different degrees
freedom of the system could be more important th
the rate of divergence of nearby trajectories.6

~c! In systems with many characteristic times, such as
eddy turnover times in fully developed turbulence,
the perturbations are not infinitesimal or if the thres
old of accepted error is not small,Tp is determined by
the detailed mechanism of the dynamics due to
nonlinear effects in the evolution equation fordx. In
this case, the predictability time could have no relati
with the maximum Lyapunov exponent andTp de-
pends in a non-trivial way on the system.7,8

~d! Even at very high Reynolds number, there exist w
defined coherent structures, such as vortex tubes, w
roughly move maintaining their shape. In this case
one is interested only in some qualitative behavio
one should reformulate the predictability problem. F
instance, a reasonable question is the prediction of
center and the orientation of the vortex tubes. In t
case one could hope to have a long predictability tim

In this paper we study the predictability problem in tw
3)/724/11/$10.00 © 1997 American Institute of Physics
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dimensional~2D! incompressible turbulence by means of n
merical simulations by using both infinitesimal and fin
perturbations on the initial condition.

Section II is a brief summary of the classical results
predictability in 2D turbulence. Section III contains the d
scription of the numerical simulations performed and
comparison with the classical results. A Lagrangian, vort
based, measure for the predictability is introduced and
cussed in Sec. IV. Section V is devoted to some conclusio
Finally, the Appendix contains a simple vortex model whi
links the Lagrangian and Eulerian pictures of the er
growth.

II. BRIEF SUMMARY OF PREVIOUS RESULTS

The first attempt to study the predictability problem
turbulence from an analytical point of view was done
Leith and Kraichnan.9,10Making use of different closure ap
proximations as the eddy damped quasi normal Markov
~EDQNM! or test field model~TFM! on the Navier–Stokes
equations, they examined the error growth both in the ene
and enstrophy cascade in three- and two-dimensional tu
lence. Their fundamental papers become the backbone
more recent approaches developed in recent years.11 For
completeness we recall here the main results obtained
closure approximations.

Given two realizations of the velocity fieldu(1)(x,t) and
u(2)(x,t), a suitable measure for the predictability is the er
field

du~x,t !5
1

A2
~u~2!~x,t !2u~1!~x,t !! ~3!

from which we define the error energy and error enstrop

ED~ t !5
1

2
^udu~x,t !u2&5E

0

`

ED~k,t !dk, ~4!

ZD~ t !5
1

2
^u“3du~x,t !u2&5E

0

`

k2ED~k,t !dk. ~5!

We assume that the two realizations are equivalent in
sense that they have the same energyE(k,t) and enstrophy
Z(k,t)5k2E(k,t) spectrum. The normalization in~3! is cho-
sen in order to obtain the saturation to the mean energy
mean enstrophy

ED→E5 1
2 ^uu~1!u2&5 1

2 ^uu~2!u2&, ~6!

ZD→Z5 1
2 ^u“3u~1!u2&5 1

2 ^u“3u~2!u2&, ~7!

for completely uncorrelated velocity fields.
The initial error is usually chosen to be confined at sm

scales, i.e.,ED(k,0)50 andZD(k,0)50 for k,k0, an as-
sumption physically justified by the finite resolution of an
measurement device and/or numerical simulation sche
Due to the non-linear coupling of different scales, the er
spreads to invade the larger, physically relevant, scales
a process which eventually overpowers the dissipation of
error by viscosity. In closure approximations it found that t
growth of the relative error spectrum
Phys. Fluids, Vol. 9, No. 3, March 1997
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r ~k,t !5
ED~k,t !

E~k,t !
5
ZD~k,t !

Z~k,t !
~8!

is almost independent of the particular form of the init
error spectrumED(k,0) andZD(k,0).

The error transfer towards large scale can be quanti
by the characteristic wavenumberkE(t) at which the error
spectrum is a given fraction of the reference spectrum. Le
and Kraichnan,10 definingkE such thatr (kE)50.5, found a
stationary similarity error spectrumr (k/kE) in which the
time dependence is only throughkE(t). The predictability
timeTp is finally defined in terms of the global relative erro
energy

r ~ t !5
ED~ t !

E~ t !
~9!

by the conditionr (Tp)51/4.
For an initial spectrum confined above a~large! wave

vector scalek0, lying in the enstrophy inertial range, the tim
necessary for a scalek,k0 to be affected is logarithmic in
k0 /k, hence the predictability of two-dimensional turbulen
increases without bound with the initial resolutio
(k0→`). This scenario is very different from what is foun
for three-dimensional turbulence, where the time for t
transfer of error between different scales is essentially gi
by the characteristic time of the largest scale involved a
hence independent of the distance on the energy cascad

The dependence of the predictability time on the er
injection scalek0 can be understood by dimensional analys
according to which the eddy turnover time is constant in
direct enstrophy cascade. The time for a scalek to be af-
fected by a perturbation initially located at scalek052nk is
in fact proportional to number of stepsn in the cascade.

III. NUMERICAL SIMULATIONS

The model equation for the study of two-dimension
turbulence is the incompressible vorticity equation with ge
eralized dissipation12,13

]v

]t
1

]~c,v!

]~x,y!
5~21!p11npn

pv ~10!

in which p is the order of the dissipation,p51 for ordinary
dissipation,p.1 for superviscosity or hyperviscosity. Th
quantityv is the vorticity field andc is the stream function
given bync52v.

The numerical method adopted is the stand
pseudo-spectral,15 dealiased code16 with a second-order
Adams–Bashforth time step integrator. The computatio
domain is theN3N square with sideL52p and periodic
boundary conditions.

For the numerical simulations we will adopt the hype
viscous version of~10! (p54), although it has been demon
strated that it is not completely equivalent to the stand
Navier–Stokes equation (p51), especially for what con-
cerns the small scale features of the vorticity field.14 Never-
theless these differences do not affect the content of
present paper, that is the comparison of different norms
the error field within a given model~i.e., a givenp).
725Boffetta et al.
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The initial condition, generated in spectral space with
initial energy spectrumE0(k) and random phases, is inte
grated for a sufficiently long time in order to generate coh
ent structures. The so obtained field configuration is take
the new initial configuration on which we make the pertu
bations, and the time is set tot50.

The perturbed field is obtained from the reference fi
by either randomizing the phase of the Fourier compone
above a given wavenumberk0, or by adding some noise o
strengthe in parts or in the whole physical space. In mo
simulation we used the first kind of perturbation in order
simulate finite resolution knowledge.9 However, we have
found that the perturbation growth is independent of the
tial form of the small perturbation.

The two fields, the referencev and the perturbedv8, are
integrated independently for a total timet tot and sampled
every time intervalDt for analysis purposes.

The local error field is defined following~3! as

dv~x,t !5
1

A2
~v8~x,t !2v~x,t !! ~11!

from which the error enstrophy and energy are obtained

ZD~ t !5E
0

`

dkZD~k,t !5
1

2E d2xudv~x,t !u2, ~12!

ED~ t !5E
0

`

dkED~k,t !5E
0

`

dkk22ZD~k,t !. ~13!

The relative total energy and enstrophy error are defined

r ~ t !5
ED~ t !

E~ t !
, z~ t !5

ZD~ t !

Z~ t !
. ~14!

The fractionsr (t) andz(t) give a global measure of the erro
varying between 0 for no error and 1 for error saturation

The method used for defining the distance between
reference and perturbed field can be a delicate point fo
high dimensional system like direct simulation of Navie
Stokes equation. This issue was already addressed in Re
where the infinitesimal~linear! error growth was computed
using several Eulerian norms. By Eulerian norm we me
the average of a local measure in the error field, such as
enstrophy of the error field. Our approach is different b
cause we are interested mainly in finite perturbations
simulations are performed until the error saturates and
reference and perturbed field are completely uncorrelated
for Eulerian norms the decorrelation time in principle d
pends on the distance used, moreover we shall see in the
section that due to the presence of coherent structures a
grangian measure, i.e., based on the position of cohe
structures, should be more appropriate.18

For infinitesimal perturbation, the error is expected
grow exponentially asr (t).r (0)exp(2lt). The largest
Lyapunov exponentl is an asymptotic quantity of the sys
tem. We are dealing with a dissipative system which u
mately collapses on the trivial fixed pointv50, therefore
from a mathematical point of viewl is negative. For non-
stationary systems it is thus more physical to introduce
726 Phys. Fluids, Vol. 9, No. 3, March 1997
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effective Lyapunov exponentgt(t) which measures the av
erage divergence of close trajectories over a given time
terval t:

gt~ t !5
1

2t
log

r ~ t1t!

r ~ t !
. ~15!

The Lyapunov exponent is recovered by taking the lim
r (t)→0 andt→`.

The effective Lyapunov exponent computed in our sim
lation shows a very little, if any, dependence ont due to the
fact that the viscous dissipation time scale is much lon
than simulation timet tot . Thusg t tot

(0) can be taken as th
Lyapunov exponent for decaying turbulence simulations.

The exponential error growth regime lasts until the se
ration of the two fields cannot be considered any more
finitesimal and a second regime sets in. Here the time e
lution is no more universal and depends on the sys
details. This regime, nevertheless, can be more relevan
characterize the predictability time defined through fini
rather than infinitesimal, errors.8

Several numerical experiments performed with differe
resolution, initial conditions and perturbations, show a g
neric picture which will be discussed in detail for two sim
lations at different resolutions whose parameters are sum
rized in Table I.

The results for the simulation at lower resolutio
(N5256) are averaged over four different realizations of
perturbed field. In Fig. 1~a! we report the evolution ofr (t)
and z(t) in a linear-log plot. The choice of the thresho
r (Tp)50.25 gives a predictability timeTp5177;80t0,
whereto is the eddy turnover time. From Fig. 1~a! we see
that for small times bothr (t) andz(t) have an exponentia
growth with growing rate;0.14, corresponding to an effec
tive Lyapunov exponentg;0.07. At later times,t.80, the
error curves bend since the error cannot be considered
more infinitesimal. Observe that about half of the predictab
ity time Tp is governed by non-infinitesimal error growt
behavior. Thus, as already demonstrated in several paper4–7

the predictability time is an independent measure of the e

TABLE I. Parameters for the simulation:N: resolution;p: order of the
hyperviscosity;np : generalized viscosity;E0(k): initial energy spectrum;
E: total energy;Z: total enstrophy;t0: eddy turnover time;Dt: sampling
time; t tot : total simulation time;ED : energy of the error field;ZD : enstro-
phy of the error field.

N 256 512

p 4 4
np 10214 10216

E0(k) k23u(k220) k23u(k240)
E(t50) 0.078 0.017
Z(t50) 4.12 1.74
t0 2.2 3.4
Dt 2.0 4.0
t tot 300.0 500.0
Initial error random phase,k0560 random phase,k05120
ED(t50) 2.531027 2.1310210

ZD(t50) 9.831024 3.231026
Boffetta et al.



s
FIG. 1. Relative energy (r ) and enstrophy (z) error growth for ~a! N5256 and~b! N5512 simulations.Tp indicates predictability times defined a
r (Tp)50.25. The dashed lines represent the exponential regimes withr (t);exp(0.14t) and r (t);exp(0.08t) respectively.
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growth in a chaotic system. It can be completely unrela
with the Lyapunov exponent and, in principle, it may depe
on the initial condition and initial error.

In Fig. 1~a! we also observe a decrease of the glo
error at very small times. This effect is due to the dissipat
which removes enstrophy and energy from the smallest
correlated scales which are filled by larger, correlated, sca
The effect lasts until it is overpowered by the error spread
to larger scales which decorrelates the two field. This eff
was already observed and discussed in Ref. 10. A simula
Phys. Fluids, Vol. 9, No. 3, March 1997
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performed without viscosity showed no initial decreasing
the error functions.

Figure 1~b! shows the analogous result for theN5512
simulation. The predictability time here is longer,Tp5395,
due to smaller initial error and slower dynamics.

Vorticity-based measurez(t) or energy-based measur
r (t) give the same qualitative behavior, upon an almost c
stant rescaling. The enstrophy error is always larger than
energy error reflecting the fact that the former emphasi
the smaller scales on which the error is initially injected. T
727Boffetta et al.



t
FIG. 2. Enstrophy spectrumZ(k) at t50 for theN5256 simulation. Dashed lines: enstrophy error spectraZD(k,t) at different times. The perturbed field a
t50 is obtained by randomizing the Fourier phases fork.60.
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fact thatz(t) saturates beforer (t) suggest that large scale
are the last scales that decorrelate.

This effect can be investigated more in detail by looki
at the enstrophy error spectrumZD(k,t) plotted in Fig. 2 for
different times. For comparison in Fig. 2 is also reported
~non-stationary! reference enstrophy spectrumZ(k,0) at the
initial time. As expected the error transfers to larger a
larger scales, again in qualitative agreement with the clos
computations.

IV. ERROR GROWTH AND VORTEX DYNAMICS

It is well known that decaying 2D turbulence is chara
terized by the presence of coherent vortex structures w
dominate the dynamics in the field.12,13 The error measure
based on the spectra, either of the error energy or of the e
enstrophy, described in the previous section neglects the
tial details of the field since all phase correlations are lost
closer look at the difference field reveals that it is conc
trated mainly within the vortices. This is because a sm
displacement of two vortices gives a large difference fie
For example in Fig. 3 it is shown the reference and the p
turbed vorticity field at the predictability timeTp for the
N5256 simulation. Although atTp we have, by definition,
25% of energy error and about 65% of enstrophy error,
two fields are remarkably similar for what concerns vort
populations. Most of the large coherent structures are pre
in both fields in almost the same positions. Only the ba
ground and the smallest vortices seem to be completely
correlated. Figure 3 also shows the difference fielddv(x) at
time Tp . The error is concentrated within the vortices in
typical bipolar configuration already observed in previo
728 Phys. Fluids, Vol. 9, No. 3, March 1997
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simulations.17,19It is therefore natural to address the proble
of predictability form the point of view of vortex motion18

rather than in the spectral space, where no universal beha
is known, at least at finite Reynolds numbers.

Vortex dynamics is well approximated by a conservat
dynamics in which each vortex carries its own vorticity a
moves according to the point vortex Hamiltonian syste
Dissipation effects take place mostly during merging p
cesses, a local inelastic collision in which two close, eq
sign, vortices merge to form a single larger vortex. So
vorticity is released during the collision and rapidly diss
pated. Vortex merging do not seem to be a simple, univer
vortex interaction, although it can be approximatively d
scribed in terms of energy conservation laws.20–22

Straining process is the other mechanism for vortex d
sipation. Straining is a kind of failed vortex merging
which one of the interacting vortices is stretched rapidly a
completely dissipated. Straining is observed to be m
likely for interactions between vortices different in size, t
smaller vortex being destroyed by the larger one, wh
merging seems to be the favorite in interactions between
most equal vortices.

In freely decaying turbulence, vortex populationNv(t)
decays as a consequence of vortex interactions, until a
state with a single dipole (Nv52) survives over a long dis
sipative time scale.23

For studying in detail vortex features, we employed
vortex trackingalgorithm which recognizes and follows vo
tices during the simulation evolution. The algorithm defin
a vortex as a connected regionDa in the computational do-
main. Vortex domainsDa are defined as follows: a loca
Boffetta et al.



FIG. 3. Gray-scale map of the vorticity fields (N5256) at timeTp5177.
White corresponds to positive vorticity regions, black to negative ones.~a!
Reference fieldv(x). ~b! Perturbed fieldv8(x). ~c! Error field dv(x).
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vorticity extremumza ~vorticity peak! whose value must be
greater~in absolute value! than a given global threshold; a
the connected grid cells whose vorticity is~in absolute value!
greater than a given fraction (e50.2) of the vorticity peak.
Given the vortex domainsDa , all the physical vortex quan
tities are computed by integrating inside the domains.
nally, vortex trajectories are reconstructed by matching p
positions at different times.

Most of the vortices experience several inelastic inter
tions during the simulation time. At the beginning of th
simulation, vortex tracking algorithm findNv(0)573 vorti-
ces, while at the end onlyNv(200)523 remain. Of the initial
vortices, 51 merged one or more times, 6 survived with
interactions and the last 16 were destroyed by strain
mechanism. Vortices carry most of the enstrophy of the fie
Phys. Fluids, Vol. 9, No. 3, March 1997
i-
k

-

t
g
:

about 82% att50 and 92% att5200. About 55.7% of the
initial enstrophy is dissipated during the simulation: 45.2
by vortices which merged, 7.9% is lost in straining proces
and the remaining 2.6% is dissipated by vortices which
not interact.

To emphasize the limits of the Eulerian measure for
error ~4,5!, consider the case of a vorticity field made
small blobs~vortices!. It is easy to realize that a displace
ment in the positions of the blobs which is comparable w
their size is sufficient to achieve the saturation of the err
Thus a definition of predictability based on Eulerian meas
reveals to be dependent on the vortex size. In general
expect that, in presence of vortices, an Eulerian based m
sure underestimates the predictability time. In the limiti
case of singular point vortices, for example, an infinitesim
729Boffetta et al.



FIG. 4. Mean vortex separationd(t). ~a! ResolutionN5256. For timest,150 the mean separation is below the resolutiondx52p/N;0.24 on the grid.
Observe that at the classical predictability timeTp;177, the separationd(Tp) is about one-tenth of the saturation level~dashed line!. ~b! Resolution
N5512.
ze
r
e
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error in the coordinates gives error saturation and hence
predictability time. This problem can be overcome by reso
ing to the natural Euclidean distance in the point vortic
phase space.

Following this analysis, in the case of decaying tw
dimensional turbulence~i.e., a flow whose dynamics is rule
by vortices!, it looks sensible to introduce a Lagrangia
based measure defined as
730 Phys. Fluids, Vol. 9, No. 3, March 1997
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d2~ t !5
1

(auGau(a uGau~xa82xa!2, ~16!

wherexa andxa8 are the coordinates of the two vortex pop
lations and the weightsGa are the vortex circulations

Ga5E
Da

d2xv~x!. ~17!
Boffetta et al.



and
FIG. 5. Vorticity peak absolute values versus vortex radii for the largest 133 vortices found in theN5512 simulation. Observe the absence of correlations
the rather large distribution of vortex population.
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This is nothing that one of the possible choices that can
made; in the appendix another Lagrangian measure a
considering a field of isolated vortices.

In Fig. 4~a! we observe that at the classical predictabil
time the mean vortex separation isd(Tp)50.40, well below
the saturation valuedmax;L/25p. This result seems to b
independent on the resolution, as is shown in Fig. 4b rela
to theN5512 simulation. Also in this case the mean vort
separation at the predictability timed(Tp)50.45 is well be-
low the saturation value.

We emphasize that the Lagrangian measured(t) and the
Eulerian measurer (t) of the error growth give different an
swers for the error level, and hence for the predictabi
time, defined as the time at which the error reaches a g
threshold, but they do not give different error growth laws,
least for small times where the error is infinitesimal a
grows exponentially with the largest Lyapunov exponent

These considerations seem to be insensitive to the r
lution at which the simulations are performed, as is clea
shown in Fig. 4. We think that theN5512 simulation has
high enough resolution for our purposes since in this case
observe a widespread distribution of vortex features. Thi
shown in Fig. 5 where the absolute value of the vortic
peaks versus the vortex radii are plotted for the 133 lar
vortices.

V. CONCLUSIONS

We numerically investigated the predictability proble
for two-dimensional decaying turbulence. A generic defi
tion of predictability time requires two ingredients: a me
sure of relative error between the reference and the pertu
field and a threshold value for this quantity.
Phys. Fluids, Vol. 9, No. 3, March 1997
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Within the limits of Eulerian based definitions for th
error, e.g., average energy or enstrophy of the error fi
predictability time estimates look quite similar and in qua
tative agreement with closure approximations.

We have shown that the Eulerian error growth is rul
by the error in the positions of vortices~see the Appendix!;
we have thus chosen this latter measure to define a Lagr
ian based predictability time. With this definition we ob
served an enhanced predictability which seems to be in
sitive to the initial ~small! error and to the numerica
resolution.

We stress that our results apply whenever the flow d
plays strong and long lived coherent structures and t
could be relevant for characterizing the predictability
many geophysical flows.
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APPENDIX: A SIMPLE VORTEX MODEL FOR ERROR
GROWTH

Here we introduce a simple vortex model, similar to t
one described in Ref. 21, for linking the Eulerian err
growth to vortex dynamics. Let us consider a tw
dimensional vorticity field given by the superposition ofNv
vortices. Each vortex is characterized by a vorticity distrib
tion parametrized by the positionxa of the center, the vor-
ticity peak za(t) and the radiusRa(t) ~defined as the dis-
731Boffetta et al.



FIG. 6. Relative spectrum at small times for simulations atN5256. The dashed line is the predictionr (k);k2.
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tance from the center at which the vorticity has a fractione
of the peak value!. The axisymmetric vortex shape is spec
fied by a function f (r ) constrained between the value
f (0)51 and f (1)5e. We also assume no background, i.
f (r )50 for r.1. The vorticity field is thus given by

vv~x!5(
a

za f S ux2xau
Ra

D . ~A1!

Assuming two vortex populations obtained one from t
other by a displacementda of each vortexa, the error field is

dvv~x!5
1

A2(a zaF f S ux2xau
Ra

D2 f S ux2xa2dau
Ra

D G .
~A2!

The enstrophy spectrum is obtained from the Fou
componentsvv(k) of the vorticity field

Z~k!5E uvv~k!u2duk . ~A3!

Assuming that the distance between two vortices
much larger than their radii, i.e., for a non-overlapping v
tex field, we can write

Z~k!5k(
a

za
2Ra

4 u f̂ ~Rak!u2, ~A4!

where f̂ (k) is the Fourier transform of the vortex shap
f (r ).

Under the same assumption, the error enstrophy s
trum becomes
732 Phys. Fluids, Vol. 9, No. 3, March 1997
,

r

s
-

c-

ZD~k!5k(
a

za
2Ra

4 u f̂ ~Rak!u2~12J0~dak!!, ~A5!

whereJ0(x) is the 0th-order Bessel function.
Assuming that the vortices are well localized structur

we havef̂ (Rak);const. for smallk (k,1/Ra). For not too
large separations,dak!1, we can approximate the Bess
function with J0(x);12x2/4. Then the relative spectrum
r (k)5ZD(k)/Z(k) can be written, in first approximation, a

r ~k!; 1
4 k

2^d2&, ~A6!

where the average square separation is taken with wei
za
2Ra

4 .
The vortex model leads tok2 behavior for the relative

spectrum for short time and smallk, which is effectively
found in simulations, as shown in Fig. 6.

Within this model it is possible to compute the glob
relative enstrophy errorz(t) by integrating~A4! and~A5! on
wavenumberk. An explicit form can be obtained in the cas
of Gaussian vorticesf (r )5e2r2u lneu:

zv~ t !5
(aza

2Ra
2@12exp~da

2 ln e/2Ra
2 !#

(
a

za
2Ra

2
~A7!

which is plotted in Fig. 7. The good agreement with t
global relative errorz(t) ~14! shows again that vortex pai
separationsda rule the error growth in two-dimensional tur
bulence.
Boffetta et al.



s
FIG. 7. Relative enstrophy errorzv(t) computed from the biggest vortices with Gaussian approximation.~a! ResolutionN5256; the number of vortices varie
from 73 att50 down to 23 att5200. ~b! ResolutionN5512. For comparison, the global enstrophy relative error is also shown~dashed line!.
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