Predictability in two-dimensional decaying turbulence
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Predictability problem for two-dimensional decaying turbulence is addressed by means of numerical
simulations. Qualitative and quantitative comparisons with previous results obtained by closure
approximations are critically examined. It is found that, as for other features of two-dimensional
turbulence, the role of coherent vortices is essential for a correct interpretation of the results. A
Lagrangian, vortex-based, definition for the growth of incertitudes leads in general to an

enhancement of the predictability time. €997 American Institute of Physics.
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I. INTRODUCTION

A problem with an obvious interest in many fields, e.g.,
weather forecasting, is the prediction of the future state of a
system once known the evolution laws and the initial
conditions! It is now part of the folklore of chaos that pre-
dictability in the presence of deterministic chaos has severéb)
limitations because of the exponential divergence of the dis-
tance between two initially close trajectories.

Typically one has that an uncertainfix(0) on the state
of the system at timé=0 increases as

| ox(t)[=]ox(0) |, &)

where\ is the maximum Lyapunov exponénif one ac-
cepts a tolerancé, s on the predicted state of the system,
then Eq.(1) implies that a system can be consider predictable
up to thepredictability time

5max
b |’

where 8= 6x(0)|.

Relation (2) tells us that the predictability time, if one
considersinfinitesimal perturbationsis basically propor-
tional to the inverse of the Lyapunov exponent since the
dependence on the precision of the measure and the thresh-
old is very weak(logarithmig.

However Eq.(2) is a very naive answer to the predict-
ability problem and its validity is very limited since it does
not take into account some important features of chaotic sys(-d)
tems.

The main reasons for the failure of E@) can be sum-
marized as follows:

1
Tp~ Xln( (2 (©)

(@ The Lyapunov exponemnt is a global quantity. It mea-
sures theaverage exponential rate of divergence of
nearby trajectories. In general there exist finite-time
fluctuations of this rate and it is possible to define an
“instantaneous” ratey,(7), the effective Lyapunov
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exponent, which depends on the particular point of the
trajectoryx(t) where the perturbation is performed and
on the time delayr from the perturbatior. Therefore

the predictability timeT, fluctuates, following they
variations*®

In dynamical systems with many degrees of freedom,
the interactions among different parts of the system can
play an important role in the growth of perturbations.
In addition, one is often interested in the case of per-
turbations concentrated on certain degrees of freedom
while the prediction is on the evolution of other de-
grees of freedom. For example in weather forecasting
the uncertainties are on small scales while predictions
are on large scales. Therefore the mechanism of the
transfer of the error through the different degrees of
freedom of the system could be more important than
the rate of divergence of nearby trajectofies.

In systems with many characteristic times, such as the
eddy turnover times in fully developed turbulence, if
the perturbations are not infinitesimal or if the thresh-
old of accepted error is not small, is determined by
the detailed mechanism of the dynamics due to the
nonlinear effects in the evolution equation féx. In

this case, the predictability time could have no relation
with the maximum Lyapunov exponent anid, de-
pends in a non-trivial way on the systér.

Even at very high Reynolds number, there exist well
defined coherent structures, such as vortex tubes, which
roughly move maintaining their shape. In this case, if
one is interested only in some qualitative behaviors,
one should reformulate the predictability problem. For
instance, a reasonable question is the prediction of the
center and the orientation of the vortex tubes. In this
case one could hope to have a long predictability time.

In this paper we study the predictability problem in two-
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dimensional2D) incompressible turbulence by means of nu- Ea(k,t)  Zx(k,t)
merical simulations by using both infinitesimal and finite ~ r(k,t)= EkD _ Z(KD (8)
perturbations on the initial condition. ’ ’

Section Il is a brief summary of the classical results onis almost independent of the particular form of the initial
predictability in 2D turbulence. Section IIl contains the de-error spectruni, (k,0) andz,(k,0).
scription of the numerical simulations performed and the  The error transfer towards large scale can be quantified
comparison with the classical results. A Lagrangian, vortexDy the characteristic wavenumbkg(t) at which the error
based, measure for the predictability is introduced and dissPectrum is a given fraction of the reference spectrum. Leith
cussed in Sec. IV. Section V is devoted to some conclusiongnd Kraichnart defining ke such thatr (kg)=0.5, found a
Finally, the Appendix contains a simple vortex model whichstationary similarity error spectrum(k/kg) in which the
links the Lagrangian and Eulerian pictures of the errorfime dependence is only throudtk(t). The predictability

growth. time T, is finally defined in terms of the global relative error
energy
Ea(t)
r(t) 9

Il. BRIEF SUMMARY OF PREVIOUS RESULTS - E(t)

The first attempt to study the predictability problem in by the conditionr (T)=1/4.
turbulence from an analytical point of view was done by  For an initial spectrum confined above(large wave
Leith and Kraichnart:*® Making use of different closure ap- Vector scalek, lying in the enstrophy inertial range, the time
proximations as the eddy damped quasi normal Markoviafecessary for a scale<k, to be affected is logarithmic in
(EDQNM) or test field model TFM) on the Navier—Stokes Ko/k, hence the predictability of two-dimensional turbulence
equations, they examined the error growth both in the energiicreases without bound with the initial resolution
and enstrophy cascade in three- and two-dimensional turbiko— ). This scenario is very different from what is found
lence. Their fundamental papers become the backbone fé@r three-dimensional turbulence, where the time for the
more recent approaches developed in recent yéafar transfer of error between different scales is essentially given
completeness we recall here the main results obtained Bjy the characteristic time of the largest scale involved and

closure approximations. hence independent of the distance on the energy cascade.

Given two realizations of the velocity field)(x,t) and ~ The dependence of the predictability time on the error
u®(x,t), a suitable measure for the predictability is the errorinjection scale, can be understood by dimensional analysis,
field according to which the eddy turnover time is constant in the

direct enstrophy cascade. The time for a sdal® be af-
fected by a perturbation initially located at scilg=2"k is

1
= (y®?@ —y®
au(xt) Fz(u (X0 =u(x1) ) in fact proportional to number of stepsin the cascade.

from which we define the error energy and error enstrophy
. NUMERICAL SIMULATIONS

1 %
__ 2\ _
Ea()= 2<|5U(X’t)| ) fo Ealkiydk, “) The model equation for the study of two-dimensional
turbulence is the incompressible vorticity equation with gen-
1 ” i inatich2.13
ZA(t)=§(|V><5u(x,t)|2):J K2E , (k,t)dk. 5) eralized dissipatiotf
0

do  (P,w)
We assume that the two realizations are equivalent in the E’L A(X,Y)
sense that they have the same endfgly,t) and enstrophy
Z(k,t)=k2E(k,t) spectrum. The normalization i8) is cho-
sen in order to obtain the saturation to the mean energy a
mean enstrophy

=(—1)p+1vapw (10

in which p is the order of the dissipatiop,=1 for ordinary
n(a'ssipation,p>1 for superviscosity or hyperviscosity. The
quantity w is the vorticity field andy is the stream function
given by A = — w.

Ex—E=3(uP?)=3(|u?|?), (6) The numerical method adopted is the standard
pseudo-spectrdf, dealiased codé with a second-order

1 1
Zy=Z=3(|VxuDP)=5(|Vxu??), @) Adams—Bashforth time step integrator. The computational
for completely uncorrelated velocity fields. domain is theNX N square with sidd. =27 and periodic
The initial error is usually chosen to be confined at smallboundary conditions.
scales, i.e.EA(k,0)=0 andZ,(k,0)=0 for k<ky, an as- For the numerical simulations we will adopt the hyper-

sumption physically justified by the finite resolution of any viscous version of10) (p=4), although it has been demon-
measurement device and/or numerical simulation schemetrated that it is not completely equivalent to the standard
Due to the non-linear coupling of different scales, the erroMNavier—Stokes equationp& 1), especially for what con-
spreads to invade the larger, physically relevant, scales witherns the small scale features of the vorticity figldNever-

a process which eventually overpowers the dissipation of théheless these differences do not affect the content of the
error by viscosity. In closure approximations it found that thepresent paper, that is the comparison of different norms for
growth of the relative error spectrum the error field within a given modél.e., a givenp).
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The initial condition, generated in spectral space with anfABLE |. Parameters for the simulatioM: resolution; p: order of the

initial energy spectrunEO(k) and random phases is inte- hyperviscosity;v, : generalized viscosityEq(k): initial energy spectrum;
’ E: total energy;Z: total enstrophy;ry: eddy turnover timeAt: sampling

grated for a sufficiently long time in order to generate COher‘time; tyr: total simulation timeE, : energy of the error fieldZ, : enstro-

ent structures. The so obtained field configuration is taken ashy of the error field.
the new initial configuration on which we make the pertur-

bations, and the time is set te=0. N 256 512
The perturbed field is obtained from the reference field, 4 4
by either randomizing the phase of the Fourier components, 1074 10716
above a given wavenumbé&g, or by adding some noise of Eo(k) k™%6(k—20) k~%6(k—40)
strengthe in parts or in the whole physical space. In mostE(t=0) 0.078 0.017
. . : ; A Z(t=0) 4.12 1.74
simulation we used the first kind of perturbation in order to’_ 29 34
simulate finite resolution knowledgeHowever, we have Aot 2.0 4.0
found that the perturbation growth is independent of the ini+,, 300.0 500.0
tial form of the small perturbation. Initial error randonlghasekOZGO randonl%has%:lZO
The two fields, the referenae and the perturbea’, are ~ Ea(t=0) 2.5¢10° 21X10°
Z,(t=0) 9.8<10 3.2x10

integrated independently for a total tintg, and sampled
every time intervalAt for analysis purposes.
The local error field is defined following3) as

1 effective Lyapunov exponeng.(t) which measures the av-
Sw(x,1)= E(“"(X't)_‘”(x’t)) (1D erage divergence of close trajectories over a given time in-
terval 7:
from which the error enstrophy and energy are obtained as
1 . 1 | r(t+7) 15
ZA(t):fO deA(k,t)zzf d2x| Sw(x,1)|?, 12 YAU= 57100 = (15

. . The Lyapunov exponent is recovered by taking the limit
EA(t)=f dkEA(k,t)=f dkk2Z,(k,t). (13 r(t)—0 andr—c.

0 0 The effective Lyapunov exponent computed in our simu-
lation shows a very little, if any, dependencetodue to the
fact that the viscous dissipation time scale is much longer
EA(t) Za(1) than simulation time,,. Thus Vttm(o) can be taken as the

rit)= =K zZ(t)= 20 (14 Lyapunov exponent for decaying turbulence simulations.
The exponential error growth regime lasts until the sepa-

The fractiong (t) andz(t) give a global measure of the error ration of the two fields cannot be considered any more in-
varying between 0 for no error and 1 for error saturation. finitesimal and a second regime sets in. Here the time evo-

The method used for defining the distance between théution is no more universal and depends on the system
reference and perturbed field can be a delicate point for details. This regime, nevertheless, can be more relevant to
high dimensional system like direct simulation of Navier— characterize the predictability time defined through finite,
Stokes equation. This issue was already addressed in Ref. tather than infinitesimal, errofs.
where the infinitesimallinear error growth was computed Several numerical experiments performed with different
using several Eulerian norms. By Eulerian norm we meanesolution, initial conditions and perturbations, show a ge-
the average of a local measure in the error field, such as thgeric picture which will be discussed in detail for two simu-
enstrophy of the error field. Our approach is different be-lations at different resolutions whose parameters are summa-
cause we are interested mainly in finite perturbations andized in Table I.
simulations are performed until the error saturates and the The results for the simulation at lower resolution
reference and perturbed field are completely uncorrelated. AN =256) are averaged over four different realizations of the
for Eulerian norms the decorrelation time in principle de-perturbed field. In Fig. (&) we report the evolution of (t)
pends on the distance used, moreover we shall see in the nextd z(t) in a linear-log plot. The choice of the threshold
section that due to the presence of coherent structures a Le¢T;)=0.25 gives a predictability timerl,=177~80r,
grangian measure, i.e., based on the position of coheremthere 7, is the eddy turnover time. From Fig(a) we see
structures, should be more appropritte. that for small times both(t) andz(t) have an exponential

For infinitesimal perturbation, the error is expected togrowth with growing rate~0.14, corresponding to an effec-
grow exponentially asr(t)=r(0)exp(2at). The largest tive Lyapunov exponeny~0.07. At later timest>80, the
Lyapunov exponenk is an asymptotic quantity of the sys- error curves bend since the error cannot be considered any-
tem. We are dealing with a dissipative system which ulti-more infinitesimal. Observe that about half of the predictabil-
mately collapses on the trivial fixed poiai=0, therefore ity time T, is governed by non-infinitesimal error growth
from a mathematical point of view is negative. For non- behavior. Thus, as already demonstrated in several paplers,
stationary systems it is thus more physical to introduce théhe predictability time is an independent measure of the error

The relative total energy and enstrophy error are defined a
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FIG. 1. Relative energyr) and enstrophy Z) error growth for(a) N=256 and(b) N=512 simulations.T,, indicates predictability times defined as
r(Tp)=0.25. The dashed lines represent the exponential regimes (tjtty exp(0.14) andr(t)~exp(0.08) respectively.

growth in a chaotic system. It can be completely unrelategperformed without viscosity showed no initial decreasing in
with the Lyapunov exponent and, in principle, it may dependthe error functions.
on the initial condition and initial error. Figure Ib) shows the analogous result for the=512

In Fig. 1(a) we also observe a decrease of the globalsimulation. The predictability time here is longdf,= 395,
error at very small times. This effect is due to the dissipatiordue to smaller initial error and slower dynamics.
which removes enstrophy and energy from the smallest un- Vorticity-based measure(t) or energy-based measure
correlated scales which are filled by larger, correlated, scales(t) give the same qualitative behavior, upon an almost con-
The effect lasts until it is overpowered by the error spreadingtant rescaling. The enstrophy error is always larger than the
to larger scales which decorrelates the two field. This effecenergy error reflecting the fact that the former emphasizes
was already observed and discussed in Ref. 10. A simulatiothe smaller scales on which the error is initially injected. The
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FIG. 2. Enstrophy spectrui(k) att=0 for theN=256 simulation. Dashed lines: enstrophy error spegfik,t) at different times. The perturbed field at
t=0 is obtained by randomizing the Fourier phaseskioi60.

fact thatz(t) saturates before(t) suggest that large scales simulations:’*°It is therefore natural to address the problem
are the last scales that decorrelate. of predictability form the point of view of vortex motidf
This effect can be investigated more in detail by lookingrather than in the spectral space, where no universal behavior

at the enstrophy error spectrufm (k,t) plotted in Fig. 2 for  is known, at least at finite Reynolds numbers.

different times. For comparison in Fig. 2 is also reported the  Vortex dynamics is well approximated by a conservative
(non-stationary reference enstrophy spectrunfk,0) at the  dynamics in which each vortex carries its own vorticity and
initial time. As expected the error transfers to larger andmoves according to the point vortex Hamiltonian system.
larger scales, again in qualitative agreement with the closurpjssipation effects take place mostly during merging pro-

computations. cesses, a local inelastic collision in which two close, equal
sign, vortices merge to form a single larger vortex. Some
IV. ERROR GROWTH AND VORTEX DYNAMICS vorticity is released during the collision and rapidly dissi-

It is well known that decaying 2D turbulence is charac-Pated. Vortex merging do not seem to be a simple, universal,
terized by the presence of coherent vortex structures whickCrtex interaction, although it can be appro>§|mat|vely de-
dominate the dynamics in the field!3 The error measure Scribed in terms of energy conservation IS’ _
based on the spectra, either of the error energy or of the error  Straining process is the other mechanism for vortex dis-
enstrophy, described in the previous section neglects the spalPation. Straining is a kind of failed vortex merging in
tial details of the field since all phase correlations are lost. Avhich one of the interacting vortices is stretched rapidly and
closer look at the difference field reveals that it is concencompletely dissipated. Straining is observed to be more
trated mainly within the vortices. This is because a smallikely for interactions between vortices different in size, the
displacement of two vortices gives a large difference fieldsmaller vortex being destroyed by the larger one, while
For example in Fig. 3 it is shown the reference and the permerging seems to be the favorite in interactions between al-
turbed vorticity field at the predictability tim&, for the most equal vortices.

N=256 simulation. Although aT, we have, by definition, In freely decaying turbulence, vortex populatidh(t)

25% of energy error and about 65% of enstrophy error, thélecays as a consequence of vortex interactions, until a final
two fields are remarkably similar for what concerns vortexstate with a single dipoleN,=2) survives over a long dis-
populations. Most of the large coherent structures are preseftpative time scalé®

in both fields in almost the same positions. Only the back-  For studying in detail vortex features, we employed a
ground and the smallest vortices seem to be completely unvortex trackingalgorithm which recognizes and follows vor-
correlated. Figure 3 also shows the difference figdg(x) at  tices during the simulation evolution. The algorithm defines
time T,. The error is concentrated within the vortices in aa vortex as a connected regi@n, in the computational do-
typical bipolar configuration already observed in previousmain. Vortex domain®d, are defined as follows: a local

728 Phys. Fluids, Vol. 9, No. 3, March 1997 Boffetta et al.



250

200

150

100

50

150

200

150

100

504

150

0 50

vorticity extremumz,, (vorticity peak whose value must be
greater(in absolute valugthan a given global threshold; all
the connected grid cells whose vorticity(ia absolute valug
greater than a given fractiore€0.2) of the vorticity peak.
Given the vortex domainB ,, all the physical vortex quan-
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FIG. 3. Gray-scale map of the vorticity field® &256) at timeT,=177.
White corresponds to positive vorticity regions, black to negative ofaes.
Reference fieldv(x). (b) Perturbed fieldo'(x). (c) Error field dw(x).

about 82% at=0 and 92% at=200. About 55.7% of the
initial enstrophy is dissipated during the simulation: 45.2%
by vortices which merged, 7.9% is lost in straining processes
and the remaining 2.6% is dissipated by vortices which do
not interact.

tities are computed by integrating inside the domains. Fi- To emphasize the limits of the Eulerian measure for the
nally, vortex trajectories are reconstructed by matching peakrror (4,5), consider the case of a vorticity field made of
positions at different times. small blobs(vorticeg. It is easy to realize that a displace-
Most of the vortices experience several inelastic interacment in the positions of the blobs which is comparable with
tions during the simulation time. At the beginning of the their size is sufficient to achieve the saturation of the error.
simulation, vortex tracking algorithm finM,(0)=73 vorti-  Thus a definition of predictability based on Eulerian measure
ces, while at the end onl{,(200)= 23 remain. Of the initial reveals to be dependent on the vortex size. In general we
vortices, 51 merged one or more times, 6 survived withouexpect that, in presence of vortices, an Eulerian based mea-
interactions and the last 16 were destroyed by strainingure underestimates the predictability time. In the limiting
mechanism. Vortices carry most of the enstrophy of the fieldcase of singular point vortices, for example, an infinitesimal
Phys. Fluids, Vol. 9, No. 3, March 1997
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FIG. 4. Mean vortex separatiai(t). (a) ResolutionN=256. For times<150 the mean separation is below the resolutdar 277/N~0.24 on the grid.
Observe that at the classical predictability tiffig~177, the separatiod(T,) is about one-tenth of the saturation levelashed ling (b) Resolution

N=512.

error in the coordinates gives error saturation and hence zero ) 1 )
predictability time. This problem can be overcome by resort- ~ d“(t)= WE T ol (X = Xa)?,
a a

ing to the natural Euclidean distance in the point vortices ¢
phase space. wherex, andx|, are the coordinates of the two vortex popu-

Following this analysis, in the case of decaying two-lations and the weightE , are the vortex circulations
dimensional turbulencé.e., a flow whose dynamics is ruled
by vortices, it looks sensible to introduce a Lagrangian Fa:j d%Xw(X). (17
based measure defined as Do

(16)

730 Phys. Fluids, Vol. 9, No. 3, March 1997 Boffetta et al.



3.5 T T T T T
3k ° _
°
®o
25 | ]
0%0 0
° © °
o ©% 0¥ 00 . o
o0 go ® ®
= 2L o R o ¢ N
- ®o o °
8 g o® % o PN
@ © o 000 o ©
03 o ®
o ° o 4 o @
° 6o © @ %0 o
15 F ® ° o ° -
b © 0y 0% o® °
° ° 00 ¢ N o o
° °
& o o ° °
°
3 0
1F o @ 6% ° 6 © & 3 o 1
°
° 4 o O o °
0'5 1 i i 1 1
0.06 0.08 0.1 0.12 0.14 0.16 0.18

FIG. 5. Vorticity peak absolute values versus vortex radii for the largest 133 vortices foundNir=th&2 simulation. Observe the absence of correlations and
the rather large distribution of vortex population.

This is nothing that one of the possible choices that can be Within the limits of Eulerian based definitions for the
made; in the appendix another Lagrangian measure arisesror, e.g., average energy or enstrophy of the error field,

considering a field of isolated vortices. predictability time estimates look quite similar and in quali-
In Fig. 4(a) we observe that at the classical predictability tative agreement with closure approximations.
time the mean vortex separationd¢T,) =0.40, well below We have shown that the Eulerian error growth is ruled

the saturation valuél,,,,~L/2= 7. This result seems to be by the error in the positions of vorticésee the Appendix
independent on the resolution, as is shown in Fig. 4b relativeve have thus chosen this latter measure to define a Lagrang-
to theN=512 simulation. Also in this case the mean vortexian based predictability time. With this definition we ob-
separation at the predictability tintT,)=0.45 is well be-  served an enhanced predictability which seems to be insen-

low the saturation value. sitive to the initial (small error and to the numerical
We emphasize that the Lagrangian measl{t¢ and the resolution.
Eulerian measure(t) of the error growth give different an- We stress that our results apply whenever the flow dis-

swers for the error level, and hence for the predictabilityplays strong and long lived coherent structures and they
time, defined as the time at which the error reaches a giveoould be relevant for characterizing the predictability in
threshold, but they do not give different error growth laws, atmany geophysical flows.
least for small times where the error is infinitesimal and
grows exponentially with the largest Lyapunov exponent. ACKNOWLEDGMENTS

These considerations seem to be insensitive to the reso-

lution at which the simulations are performed, as is clearlyd | (CBINBR ar]|<_j A C'fthaﬁk th_? ;_‘:sntutg di CosTos\?oﬂsllca
shown in Fig. 4. We think that thBl=512 simulation has € _Lonno, Tor hosprtaity and support. YWe aliso

high enough resolution for our purposes since in this case Wgank A. tErltlavenzale tfoc; tt:set];]u' g;clzzgssmns. gh's Woikugﬁs
observe a widespread distribution of vortex features. This i een partially supported by the research projec -

shown in Fig. 5 where the absolute value of the vorticityrnate Variability and Predictability.

peaks versus the vortex radii are plotted for the 133 larger
vortices. APPENDIX: A SIMPLE VORTEX MODEL FOR ERROR

GROWTH

Here we introduce a simple vortex model, similar to the
one described in Ref. 21, for linking the Eulerian error

We numerically investigated the predictability problem growth to vortex dynamics. Let us consider a two-
for two-dimensional decaying turbulence. A generic defini-dimensional vorticity field given by the superposition Nf
tion of predictability time requires two ingredients: a mea-vortices. Each vortex is characterized by a vorticity distribu-
sure of relative error between the reference and the perturbdbn parametrized by the position, of the center, the vor-
field and a threshold value for this quantity. ticity peak z,(t) and the radiusR,(t) (defined as the dis-

V. CONCLUSIONS
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tance from the center at which the vorticity has a fractéon -
of the peak valug The axisymmetric vortex shape is speci-  Za(K) =k Z2RE|T(RK)[A(1~Jo(d k), (A5)
fied by a functionf(r) constrained between the values “
f(0)=1 andf(1)=e. We also assume no background, i...\yhereJ,(x) is the Oth-order Bessel function.
f(r)=0 forr>1. The vorticity field is thus given by Assuming that the vortices are well localized structures,
X=X, we havef(R,k)~const. for smalk (k<1/R,). For not too
w,(X)= 2, Zaf( R ) (Al)  large separationgj k<1, we can approximate the Bessel
“ “ function with Jo(x)~1—x?/4. Then the relative spectrum
Assuming two vortex populations obtained one from ther (k) =Z,(k)/Z(k) can be written, in first approximation, as
other by a displacement, of each vortexy, the error field is

. r(k)~ 3k%(d?), (AB)
5wv(x) = EEO; Z,

f

X=X, X=X, =,
R, )_ ( R, ” where the average square separation is taken with weights
(A2)  ZiR.

The vortex model leads tk? behavior for the relative
rspectrum for short time and smadt, which is effectively
found in simulations, as shown in Fig. 6.

Within this model it is possible to compute the global

Z(k)= J |, (K)|?d 6. (A3)  relative enstrophy errar(t) by integrating(A4) and(A5) on

wavenumbek. An explicit form can be obtained in the case

Assuming that the distance between two vortices is5f Gaussian vorticef;(r)=e‘r2|'”f‘:
much larger than their radii, i.e., for a non-overlapping vor-

tex field, we can write >, Z2R2[1—exp(d? In €/2R?)]
z,()=

Z(k) =k 2RYF(RK)[% (Ad) 2 7R,

The enstrophy spectrum is obtained from the Fourie
componentsy, (k) of the vorticity field

(A7)

where f(k) is the Fourier transform of the vortex shape which is plotted in Fig. 7. The good agreement with the
f(r). global relative errorz(t) (14) shows again that vortex pair

Under the same assumption, the error enstrophy speseparationsl, rule the error growth in two-dimensional tur-
trum becomes bulence.
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FIG. 7. Relative enstrophy erraf(t) computed from the biggest vortices with Gaussian approximatimesolutionN = 256; the number of vortices varies
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1E. N. Lorenz, “The predictability of a flow which possesses many scale of velocity and temperature fields in intermittent turbulence,” J. Phy&6A
motion,” Tellus 21, 289 (1969. 6943(1993.
’G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, “Lyapunov  5a_Crisanti, M. H. Jensen, G. Paladin, and A. Vulpiani, “Intermittency and
characteristic exponents for smooth dynamical systems and Hamiltonian predictability in turbulence,” Phys. Rev. Leff0, 166 (1993.
systems; a method for computing all of them. Part 1: Theory,” Meccanica ¢
15, 9 (1980; “Lyapunov characteristic exponents for smooth dynamical
systems and Hamiltonian systems; a method for computing all of them

G. Paladin and A. Vulpiani, “Predictability in spatially extended sys-
tems,” J. Phys. A27, 4911(1994.

Part 2: Numerical Application,” Meccanica5, 20 (1980. E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, “Predict-
3G. Paladin and A. Vulpiani, “Anomalous scaling laws in multifractal ob- ~ @bility in systems with many characteristic times: The case of turbulence,”
jects,” Phys. Rep156, 147 (1987. Phys. Rev. B53, 2337(1996.

4A. Crisanti, M. H. Jensen, G. Paladin, and A. Vulpiani, “Predictability of 2E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, “Growth

Phys. Fluids, Vol. 9, No. 3, March 1997 Boffetta et al. 733



of non-infinitesimal perturbations in turbulence,” Phys. Rev. L&f, 17s. Kida, M. Yamada, and K. Ohkitani, “Error growth in a decaying two-

1262(1996. dimensional turbulence,” J. Phys. Soc. Jp8, 90 (1990.
°C. E. Leith, “Atmospheric predictability and two-dimensional turbu- 28p. K. Lilly, in International School of Physics “Enrico Fermi” Turbu-
lence,” J. Atmos. Sci28, 145(1971). lence and Predictability in Geophysical Fluid Dynamics and Climate Dy-
10C. E. Leith and R. H. Kraichnan, “Predictability of turbulent flows,” J. namics edited by M. Ghil, R. Benzi, and G. Pari@ilorth—Holland, Am-
Atmos. Sci.29, 1041(1972. sterdam, 1985

0. Metais and M. Lesieur, “Statistical predictability of decaying turbu- 19 Ohkitani
lence,” J. Atmos. Sci43, 857 (1986. !

2c, Basdevant, B. Legras, R. Sadourny, and M. Beland, “A study of baro-
metric model flows: intermittency, waves and predictability,” J. Atmos.
Sci. 38, 2305(1981).

133, C. McWilliams, “The emergence of isolated coherent vortices in turbu-

“Wave number space dynamics of enstrophy cascade in a
forced two-dimensional turbulence,” Phys. Fluids3A1598(1991).

G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, and W. R.
Young, “Evolution of vortex statistics in two-dimensional turbulence,”
Phys. Rev. Lett66, 2735(1997).

lent flow,” J. Fluid Mech.146, 21 (1984). ZIR. Benzi, M. Colella, M. Briscolini, and P. Santangelo, “A simple point

4. B. Yao, N. J. Zabusky, and D. G. Dritchel, “High gradient phenomena VOrteX model for two-dimensional decaying turbulence,” Phys. Fluids A
in two-dimensional vortex interactions,” Phys. Fluids539(1995. 4, 1036(1992.

155, A. Orszag,Studies in applied mathematid€ambridge University, ~-J- B. Weiss and J. C. McWilliams, “Temporal scaling behavior of decay-
Cambridge, 1971 Vol. 4, p. 293. ing two-dimensional turbulence,” Phys. Fluids %\ 608 (1993.

16G. S. Patterson and S. A. Orszag, “Spectral calculations of isotropic tur?>W. H. Matthaeus, W. T. Stribling, D. Martinez, S. Oughton, and D. Mont-
bulence: Efficient removal of aliasing interactions,” Phys. Fluids2538 gomery, “Decaying, two-dimensional, Navier-Stokes turbulence at very
(1972). long times,” Physica D61, 531(1991).

734 Phys. Fluids, Vol. 9, No. 3, March 1997 Boffetta et al.



