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Relative dispersion in fully developed turbulence:
Lagrangian statistics in synthetic flows
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PACS. 47.27Qb – Turbulent diffusion.
PACS. 47.27Gs – Isotropic turbulence; homogeneous turbulence.
PACS. 47.27Eq – Turbulence simulation and modeling.

Abstract. – The effect of Eulerian intermittency on the Lagrangian statistics of relative dis-
persion in fully developed turbulence is investigated. A scaling range spanning many decades
is achieved by generating a multi-affine synthetic velocity field with prescribed intermittency
features. The scaling laws for the Lagrangian statistics are found to depend on intermittency
in agreement with a multifractal description. As a consequence of the Kolmogorov law, the
Richardson law for the variance of pair separation is not affected by intermittency corrections.

Understanding the statistics of particle pairs dispersion in turbulent velocity fields is of
great interest for both theoretical and practical implications. Since fully developed turbulence
displays well-known, non-trivial universal features in the Eulerian statistics of velocity differ-
ences [1, 2], it represents a starting point for the investigation of the general problem of the
relationship between Eulerian and Lagrangian characteristics.

Since the pioneering work by Richardson [3], many efforts have been done to confirm exper-
imentally [1] or numerically [4-6] his law. Most of the previous works concerning the validation
of the Richardson law have been focused mainly on the numerical prefactor (Richardson
constant [1]). Also theoretically there are very few attempts to investigate possible corrections
stemming from Eulerian intermittency [7-9].

This is quite surprising compared with the enormous amount of literature concerning the
intermittency correction for the Eulerian statistics [2, 10]. The main obstacle to a deeper
investigation of relative dispersion is essentially the lack of sufficient statistics due to tech-
nical difficulties in laboratory experiments and to moderate inertial range achieved in direct
numerical simulations.
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In this letter we present a detailed investigation of the statistics of relative dispersion,
obtained by numerical simulations of the advection of particle pairs on a synthetic turbulent
velocity field with prescribed intermittency features. Our main result is that there is evidence
of intermittency corrections to Lagrangian scaling laws for relative dispersion, and these
corrections are tightly related to the intermittency of the statistics of velocity differences.

The Richardson law says that, in fully developed turbulence,

〈R2(t)〉 ∼ t3 , (1)

where R is the separation of a particle pair and the average is performed over many pair
dispersion experiments. The scaling (1) can be obtained by a simple dimensional argument [1]
starting from Kolmogorov similarity law for longitudinal velocity increments in fully developed
turbulence 〈∣∣∣δv(E)

‖ (R)
∣∣∣〉 =

〈∣∣∣∣(v(x + R)− v(x)) ·
R

R

∣∣∣∣〉 ∼ R1/3 , (2)

with R = |R|. The pair of particles separates according to

dR

dt
= δv(L)(R) , (3)

where δv(L) represents the velocity difference evaluated along the Lagrangian trajectories.

Assuming δv
(L)
‖ (R) ' |δv(E)

‖ (R)| from (2) one obtains dR2/dt ∼ Rδv(L)
‖ (R) ∼ R4/3 and hence

the Richardson law (1).
To investigate the role of Eulerian intermittency, we have performed extensive numerical

investigations of relative dispersion at very large Reynolds numbers. To accomplish this
purpose, we have developed a Lagrangian numerical code for particle pairs whose separation
evolves according to (3) with a realistic turbulent velocity difference. We consider the Quasi-
Lagrangian reference frame [11] moving with a reference particle. The second particle is
advected by the relative velocity δv(r, t) which possesses the same single-time statistics of the
Eulerian velocity, whenever one considers statistically stationary flows. A realistic velocity field
in this reference frame is generated by extending a recently introduced stochastic algorithm for
the generation of multiaffine processes [12]. For the sake of simplicity, we consider, as in [5,6],
a two-dimensional velocity field. The reason is that the relevant aspect for the statistics of
particle pairs separation are the scaling laws for the relative velocity δv(r, t), which we take
equal to those of three-dimensional turbulence.

We introduce the stream function ψ(r, t) which, in isotropic conditions, can be decomposed
using polar coordinates as

ψ(r, θ, t) =
N∑
i=1

n∑
j=1

φi,j(t)

ki
F (kir)Gi,j(θ). (4)

Being interested in velocity fields possessing scaling laws on a large number of decades,
we use ki = 2ik0. The width of the “inertial range” is thus of order 2N . The φi,j(t) are
stochastic processes with characteristic times τi = 2−2i/3 τ0 and zero mean. In order to obtain

a multiaffine field, the moments of the stochastic processes should scale as 〈|φi,j |p〉 ∼ k
−ζp
i ,

where ζp is an increasing convex function of p. An efficient way of to generate φi,j is [12]

φi,j(t) = gi,j(t) z1,j(t) z2,j(t) · · · zi,j(t) , (5)

where the zk,j are independent, positive definite, identically distributed random processes with
characteristic time τk, while the gi,j are independent stochastic processes with zero mean,
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〈g2
i,j〉 ∼ k

−2/3
i and characteristic time τi. With this choice the exponents ζp are determined

by the probability distribution of zi,j via

ζp =
p

3
− log2〈z

p〉. (6)

For a fully developed turbulent velocity field we expect the scaling 〈|ψ(r, θ)|p〉 ∼ rζp+p

which can be simply achieved by demanding that the radial function F (x) has support only
for x ' 1 and choosing the scaling of the random processes φi,j as above described. A simple
choice is

F (x) = x2(1− x) for 0 ≤ x ≤ 1 (7)

and zero otherwise,

Gi,1(θ) = 1, Gi,2(θ) = cos(2θ + φi) , (8)

and Gi,j = 0 for j > 2 (φi is a quenched random phase).
The intermittency in the velocity field can be tuned by the set of parameters entering

into the construction of φi,j(t). In this letter we shall consider synthetic turbulent fields
whose intermittency corrections to the Kolmogorov scaling, i.e., non-linear ζp, are close to the
experimental exponents [13], i.e. ζ1 = 0.39, ζ2 = 0.72 and so on.

It is worth remarking that a velocity difference field built according to (4) is not statistically
homogeneous: velocity differences computed between the origin and an arbitrary point behave
differently than those computed between two points away from the origin. This lack of
homogeneity does not anyway affect the study of pair dispersion, since in the dynamics of pair
separation (3) there appears only the velocity difference between the origin, where the reference
particle lies, and the point where the second particle is located. Unless one is concerned with
the absolute dispersion or the relative dispersion of three or more particles, this want of
homogeneity is not a shortcoming.

We can extend the dimensional argument for the Richardson law to the intermittent case
by using the multifractal representation [2, 14]. Following, with a few changes, Novikov [7]
we assume, in the spirit of the refined similarity hypothesis (RSH) of Kolmogorov, that
δv(L)(R(t)) ∼ (εR(t) t)

1/2 and R(t) ∼ (εR(t) t
3)1/2, where εR is the energy density dissipation

at scale R. Assuming that εR ∼ (δv(E)(R))3/R, a simple calculation leads to

〈Rp(t)〉 ∼

∫
dh t[3+p−D(h)]/[1−h]. (9)

In the limit of time t much smaller than the eddy turnover time at large scale the integral
can be performed by steepest-descent method, and we obtain the scaling laws 〈R(t)p〉 ' tαp ,
where the exponents are given by

αp = inf
h

[
p+ 3−D(h)

1− h

]
. (10)

From the above argument we thus expect that, in general, relative dispersion displays anoma-
lous scaling in time (non-linear αp). However there is an interesting result, already obtained
in [7], for the case p = 2. From the general multifractal formalism one has that 3−D(h) ≥ 1−3h
and the equality is satisfied for the scaling exponent h3 which realizes the third-order structure
function ζ3 = 1. From (10) it follows that α2 = 3 and thus we have that the Richardson law
〈R2〉 ∼ t3 is not affected by intermittency corrections. We note that the Lagrangian RSH
argument leading to (9) is just a one-dimensional reasonable assumption which can be justified
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Fig. 1. – Relative dispersion 〈Rp(t)〉1/p (a) and inverse doubling times 〈1/T p(R)〉1/p (b) for p =
1, 2, 3, 4 (from top to bottom) for N = 30 shells averaged over 105 realizations. Continuous lines
represent the theoretical scaling. In the inset we plot the theoretical and numerical exponents as a
function of the moment p (the dashed line is the non-intermittent prediction).

only a posteriori by numerical simulations. Other different assumptions are possible [8, 9, 7]
leading to different predictions.

In fig. 1a we plot the result of 〈Rp(t)〉1/p for different moments p. We indeed observe for
p = 2 a t3 law, while for higher moments we observe that the non-linear exponent αp obtained
from (10) gives a better fit than the linear scaling αp = 3p/2.

The scaling exponents satisfy the inequality αp/p < 3/2 for p > 2: this amounts to saying
that, as time goes by, the right tail of the pdf of the separation R(t) becomes less and less
broad. In other words, due to the effect of intermittency, particle pairs are more likely to stay
close to each other than to experience a large separation.

Figure 1a also shows that the power law scaling regime for 〈Rp(t)〉 ∼ tαp is observed only
well inside the inertial range. This follows from the dependence of the integration of (3) on the
smallest scale in the inertial range. Furthermore there is also a crossover to normal diffusion
for separations comparable with the integral scale. This effect is particularly evident for lower
Reynolds numbers, as shown in fig. 2 for a simulation with Re ' 106. This correction
to a pure power law is far from being negligible. For instance in experimental data the
inertial range is generally limited due to the Reynolds number and the experimental apparatus.
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Fig. 2. – Relative dispersion 〈R(t)〉 for for N = 20 shells averaged over 104 realizations. In the inset
we show the corresponding average inverse doubling time 〈1/T 〉. Observe the enhancement of the
scaling range in the latter case.
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References [6, 15] show quite clearly the difficulties that may arise in numerical simulations
with the standard approach.

Within this framework we propose an alternative approach which is based on the statistics
at fixed scale. It has the clear advantage over the fixed time statistics that when one samples
all pairs at a separation within the inertial range, there are no spurious contributions due to
the crossover between inertial scales and scales smaller or larger than the inertial ones. The
method is in the spirit of a recently introduced generalization of the Lyapunov exponent to
finite-size perturbation (Finite-Size Lyapunov Exponent) which has been successfully applied
in the predictability problem [16] and in the diffusion problem [17]. Given a set of thresholds
Rn = R02n within the inertial range, we compute the “doubling time” T (Rn) defined as the
time it takes for the particle separation to grow from one threshold Rn to the next one Rn+1.
We can give a dimensional estimate of this time as T (R) ∼ R/δv(R) and thus see that it
fluctuates with the velocity fluctuations. After averaging over many realizations we can write〈

1

T p(R)

〉
'

∫
dhRp(h−1)R3−D(h) ' Rζp−p , (11)

from which it follows that the doubling time statistics contains the same information on the
velocity intermittency as the relative dispersion exponents (10).

As reported in fig. 1b prediction (11) is very well verified in our simulations. Note that the
scaling region is wider than that of fig. 1a and the scaling exponent can be measured with
higher accuracy, especially in the case of moderate inertial range simulation (fig. 2). For this
reason we suggest that this kind of analysis should be preferred when dealing with experimental
data. Also in this case there is an exponent, ζ3 − 3 = −2, unaffected by intermittency.

In the construction of the synthetic turbulent field we have implicitly assumed that the
Lagrangian time τL and the Eulerian time τE are of the same order of magnitude, an assumption
consistent with the experimental data and theoretical arguments (see, e.g., [18]). Nevertheless
it should be interesting to study the relevance of the ratio τL/τE on the intermittent corrections.
One could, indeed, expect that for τL/τE � 1 the Lagrangian intermittency disappears.

Finally we note that non-intermittent turbulence, i.e. ζp = p/3, is recovered by keeping
zi,j = 1 fixed. In this case one may ask whether our results are realistic also for the Richardson
constantG∆ defined from the pair dispersion lawR2(t) = G∆ ε t3, where ε is the average energy
dissipation rate. The value of ε can be obtained from the second-order Eulerian structure

function, which reads S
(E)
2 (R) = 〈|δv(E)

‖ (R)|2〉 = CL ε
2/3R2/3, where CL is a universal constant

related to the Kolmogorov constant. According to the experimental measurements, we fix
CL = 2.0, leading to G∆ = 0.190± 0.005 for the Richardson constant which is in agreement
with previous values [1, 5].

In this letter, using a synthetic turbulence model, we have the first evidence that the
relative dispersion statistics for Lagrangian tracers in fully developed turbulence is affected by
intermittency of the velocity field. We have suggested a new approach based on the Lagrangian
doubling times which seems very promising for data analysis. The present work is a first step
towards the clarification of Lagrangian-Eulerian relationship in fully developed turbulence. It
would be extremely interesting to check our claims by means of direct numerical simulations
or laboratory experiments.
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