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[1] We show that rocky shorelines with fractal dimension
4/3 are conformally invariant curves by measuring the
statistics of their winding angles from global high-resolution
data. Such coastlines are thus statistically equivalent to the
outer boundary of the randomwalk and of percolation clusters.
A simple model of coastal erosion gives an explanation for
these results. Conformal invariance allows also to predict
the highly intermittent spatial distribution of the flux of
pollutant diffusing ashore. Citation: Boffetta, G., A. Celani,

D. Dezzani, and A. Seminara (2008), How winding is the coast of

Britain? Conformal invariance of rocky shorelines, Geophys. Res.

Lett., 35, L03615, doi:10.1029/2007GL033093.

1. Introduction

[2] Forty years after Mandelbrot’s seminal paper
[Mandelbrot, 1967] where the concept of fractional dimen-
sion was introduced, there is a compelling evidence of the
fractal nature of many geographical phenomena, including
the shaping of shorelines [Goodchild and Mark, 1987].
Statistically self-similar curves are characterized by their
fractal exponent D. If we select two points on the curve and
measure their distance L along the curve (e.g. by walking a
divider of given width) on average this will be proportional
to their Euclidean distance R to the power D, i.e. L � RD,
where D can take values between 1 and 2. Such curves are
widespread in nature, and often enjoy a much richer
symmetry than mere global scale invariance. This is the
case of conformally invariant curves, whose statistics is
covariant with respect to local scale transformations, i.e.
coordinate changes that preserve the relative angle between
two infinitesimal segments. Conformal invariance is a
pervasive feature of two-dimensional physics, from string
theory and quantum gravity to the statistical mechanics of
condensed matter and fluid turbulence [Polyakov, 1970;
Belavin et al., 1985; Schramm, 2006; Bernard et al.,
2006, 2007]. A remarkable consequence of conformal
invariance is the high degree of symmetry that often allows
to make substantial analytical progress [Cardy, 2005; Bauer
and Bernard, 2006]. Among the many characteristic fea-

tures that make conformally invariant curves peculiar within
the class of self-similar ones, the former are also distin-
guished by the special statistics of the winding angle about a
point belonging to the curve itself (see Figure 1b). The
probability distribution of the winding angle is Gaussian
with a variance that increases logarithmically with the
distance from the reference point. This provides a simple
and useful diagnostics for conformal invariance of curves
extracted from experimental or numerical data.
[3] Here we use this diagnostic to show that rocky

shorelines with fractal dimension 4/3 are conformally in-
variant curves. These coastlines are therefore statistically
equivalent to the outer boundary of percolation clusters, one
of the simplest universality classes in critical phenomena.
We use conformal invariance to predict the statistics of the
flux of pollutants diffusing over shorelines. This flux is
characterized by a strongly intermittent spatial distribution
which can vary dramatically between locations just a few
hundredmeters apart (see, e.g.,Peterson et al. [2003, Figure 1]
about the Exxon-Valdez oil spill). Here we show that these
wild fluctuations are the quite surprising result of the
‘‘marriage’’ of two tame partners such as diffusion and
conformal invariance of shoreline profile.

2. Statistical Analysis of Rocky Shoreline

[4] Since the famous paper by Mandelbrot [1967], the
west coast of Britain has become the paradigmatical exam-
ple of fractal shoreline. In Figure 1 we show a satellite
image of a portion of the western coast of Scotland along
with its digitized shoreline, that is a polygonal approxima-
tion to the real coastline. It is also displayed in a double
logarithmic plot the fraction of pairs of vertices of the
polygon that lie within a ball of diameter R: the slope of
this curve is the correlation dimension [Grassberger and
Procaccia, 1983], that is very close to 4/3 in this case.
[5] The shoreline shown in Figure 1 is one example of

the curves extracted from the high-resolution, self-consis-
tent GSHHS database [Wessel and Smith, 1996]. The
complete database covers the world shoreline which has
been partitioned into 11503 segments of length �200 km
with a resolution of about 200 m. The computation of fractal
dimension (as in Figure 1) for each segment, gives different
values of D that depend on the geomorphological processes
at work in that particular geographical area. We observe a
fractal dimension close to 1 for sedimentary shores while
for rocky coasts it is about 1.3 or larger. The overall most
probable value is found to be D ’ 1.2. Within this large
sample, we have selected the 1146 shorelines which present
a correlation dimension close to D = 4/3 (with a tolerance of
5%). The capacity dimension for such curves, computed by
a box-counting algorithm, yields a value consistent with the
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correlation dimension, pointing to the conclusion that these
are truly fractal curves and not multifractals [Grassberger
and Procaccia, 1983].
[6] The statistics of winding angles for rocky coastlines is

shown in Figure 2. The winding angle q is defined as the
angle between the line joining two points separated by a
length L along the curve and the local tangent in the
reference point, measured counterclockwise in rad (see
Figure 1b). Because our curves do not have a preferred
direction, the mean winding angle hqi is very close to zero
while the variance is found to grow with L according to the
logarithmic law predicted for conformal invariant curves
[Duplantier and Saleur, 1988; Duplantier and Binder,
2002; Wieland and Wilson, 2003]

hq2i ¼ aþ 2 D� 1ð Þ
D

ln L ð1Þ

Here a is a constant that depends on the details of the
definitions and whose actual value is irrelevant. The

numerical evaluation of the coefficient in (1) gives D ’
1.33, i.e. very close to the direct measure of D. Figure 2b
shows that the probability density function (pdf) of q is very
close to a Gaussian distribution for different separations in
the logarithmic range. Winding angle statistics have been
computed using different reference points located along the
curve: we have found no detectable dependence on this
choice.
[7] Values of the fractional dimension other than 4/3 (e.g.

D = 1.2 and D = 1.5) fail to give such an impressive
agreement with the prediction for conformally invariant
curves, in the sense that the prefactor differs significantly
from the value predicted by (1). An explanation for the
peculiarity of this value of D is provided by a simple model,
introduced by Sapoval et al. [2004], of mechanical erosion
of rocky coasts. Of course, the real properties of rocky coast
morphology are the result of several mechanisms acting on
various space-time scales [Carter and Woodroffe, 1994] and
are beyond the scope of this simple modeling. The basic
ingredients of this model are two: (1) the mechanical

Figure 1. The west coast of Scotland: an example of the 1146 shorelines that have been searched for conformal
invariance. (a) The satellite image of the geographical area, centered around the point 58�050N, 5�210W. (b) The GSHHS
polygonal approximation of the shoreline with resolution �200 m together with an example of winding angle between
points Q and P.(c) The fraction of pairs of points of the curve (Figure 1b) lying at a distance smaller than R. The logarithmic
slope of the curve is the fractal correlation dimension. A least-squares fit for the data over the range from 300 m to 20 km
gives an exponent 1.30 ± 0.04. Also shown for comparison a straight line of slope 4/3.

Figure 2. Winding angle statistics. The mean and the variance of the winding angle as a function of the length of the

shoreline between points P and Q (see Figure 1). The line is the law hq2i = a +
2 D�1ð Þ

D
ln L with D = 4/3 and a = 0.98. In the

inset, the variance in semilogarithmic coordinates. (b) The probability density function of the winding angle at lengths L =
5,10,20 km rescaled by the respective standard deviation and compared to the standard Gaussian density, in
semilogarithmic (main frame) and in linear coordinates (inset).
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resistance of rocks to erosive processes, essentially deter-
mined by their structure, composition and by the slow
corrosion process due to chemical agents, is assumed to
have a typical scale of variation of the order of hundreds of
meters and to be essentially uncorrelated on larger distances;
(2) rocks that are more exposed to the action of waves have
a larger propensity to be fragmented by mechanical erosion:
for instance, an isthmus will be eroded more rapidly than
the shoreline within a gulf.
[8] This model can be implemented on a two-dimensional

lattice where the sites represent regions of land or sea of
dimensions about a hundred meters. To every point on the
land is assigned a number that measures the resistance of the
rock to erosion. Then, if the resistance of a land site adjacent
to the sea falls below a given threshold, it will be eroded,
and thus transform into a sea site. Subsequently, the
resistance values for land sites along the shoreline are
updated depending on the local conformation of the coast
[Sapoval et al., 2004]. This procedure is iterated until no
further updates are necessary and a stationary artificial
shoreline is obtained (see Figure 3a). The similarities of
this model with the well-known problem of percolation
[Stauffer and Aharony, 1991] are evident, as already pointed
out by Sapoval et al. [2004]. Indeed, in presence of rule
(1) alone the islands generated by the algorithm would be
statistically equivalent to percolation clusters — except for
the inner ‘‘lakes’’ present in the latter case — and thus
display a fractal dimension 7/4. However, rule (2) prevents
the formation of deep gulfs and peninsulae with narrow

isthmi, therefore reducing the shoreline to the outer bound-
ary of percolation clusters that is known to have fractal
dimension 4/3 [Grossman and Aharony, 1986; Saleur and
Duplantier, 1987]. Further refinements of the model, in-
cluding damping of sea-waves and slow erosive processes
do not modify the main features described above. As a
consequence of the statistical equivalence between the
artificial shoreline and the external frontier of percolation
clusters, the former inherits the known conformal invariance
of the latter. In Figure 3 we show the numerical results for
the artificial shorelines generated by the model, which
confirm the theoretical expectations.

3. Intermittency of Diffusing Pollutants

[9] By virtue of the rich symmetry underlying conformal
invariance, many interesting results can be obtained analyt-
ically. As a remarkable example we consider here the
evaluation of the flux of pollutant diffusing ashore from a
source located in the sea. Transport and mixing of tracers is
a complex issue of paramount importance from microscopic
to planetary scales [Ottino, 1989]. At the simplest level of
description dispersion is modeled as pure diffusion. In the
present case, this may be justified by estimates of the
horizontal eddy-diffusivity in the ocean that yield a ratio
about 0.1 to 1 between mean currents and velocity fluctua-
tions over scales of a hundred kilometers [Marshall et al.,
2006].

Figure 3. Artificial shorelines. (a) One example of a coast generated by the model of wave erosion described in the text.
The simulation has been done on a square grid with 80002 collocation points. The number of realizations is 800. (b) The
correlation dimension. The unit for R and L is the simulation box size. A fit in the range of R between 5 � 10�4 and 0.1
yields D = 1.32 ± 0.02. (c) and (d) The winding angle statistics as in Figure 2 compared to the theoretical expectations.
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[10] Pollutant concentration c is therefore assumed to be
given by the solution of the Laplace equation Dc = 0 with a
pointwise source in the ocean and absorbing boundary
conditions on the coastline (c = 0). This problem can be
solved with the aid of conformal transformations by map-
ping the region of interest (i.e. a region of sea bounded by
the shoreline) into an infinite strip, solving the Laplace
problem in the new domain (now a trivial task), and
mapping the solution back to the initial region.
[11] The upshot of the conformally invariant nature of the

shoreline is that techniques borrowed from theoretical
physics enable to compute analytically the pollutant flux
distribution f = @c/@n at the boundary [Duplantier, 2000;
Duplantier and Binder, 2002; Bettelheim et al., 2005]. The
main result is that the probability of observing a flux f of
intensity f0 (R/R0)

a — where f0 is the rate of emission by
the source, R the size of the region where the flux is
computed, and R0 the distance of the source from the

coast — is proportional to (R/R0)
�f(a) with f(a) = a +

2D�1ð Þ2
4 D�1ð Þ

[1 � a2/(2a � 1)], for R  R0. Small values of the flux
correspond to large values of a, whereas the largest ones
take place for a 1/2. This can be understood by means of
the geometrical interpretation of the variable a [Duplantier,
2000]. Indeed, let us recall that the flux inside a wedge of
opening angle q scales exactly as Rp/q. The result above can
thus be interpreted as if the shoreline was made of a random
collection of wedges of size �R and opening angles q
with probability �R�f(p/q). Large a and small fluxes are
equivalent to small q, i.e. deep fjords in the shoreline. On
the opposite, as a reaches the minimum value 1/2, the flux
attains its maximum value �f0 (R/R0)

1/2 corresponding to
q = 2p, that is a needle-like cape. The average flux hfi is
exactly f0. By means of a variable change from a to f it
is possible to derive the exact probability density for the
flux. Besides the exact form, it is interesting to notice that
for f  f0 the probability of observing a value f of the
flux scales as a power law:

p fð Þ � f�2þ 2D�1ð Þ2
8 D�1ð Þ ð2Þ

[12] This power-law dependence is a reflection of the
strongly intermittent character of flux fluctuations. In
Figure 4 we show the flux of pollutant emitted for a source

located 40 km offshore the coastline of Figure 1, together
with its probability density. This closely follows the theo-
retical predictions for small fluxes over a range of several
decades. Note that similar arguments hold for the longitu-
dinal flux of pollutant diffusing along the shoreline under
reflecting boundary conditions.
[13] In conclusion, we have demonstrated that world

coastlines with dimension D ’ 4/3 are conformally invari-
ant curves by measuring their winding angle statistics. The
distinguishing feature of such random curves is their high
degree of symmetry which enables to compute analytically
many statistical properties. We have focused our attention
on the flux of pollutant diffusing toward the shoreline,
however many other interesting results could be relevant
to geophysical applications. For instance, an archipelago of
conformally invariant islands (loops) would display a power
law distribution A�1 of the number of islands of area larger
than A with a known prefactor. These would be also
characterized by a ratio between the average area and the
average squared radius equal to pD/(2D–1). All these
properties, and many others, are also shared by self-avoiding
walks (polygons), i.e. closed random walks that never hit
themselves. These have been conjectured to be conformally
invariant curves with dimension 4/3 via the equivalence
with stochastic Loewner evolution curves SLE8/3 (see Lawler
et al. [2004] for a review). Remarkably enough, self-
avoiding walks were introduced by Mandelbrot as well,
when he conjectured the (now proven) equivalence between
them and the external frontier of two-dimensional Brownian
motion. Today, in view of our results, all these curves reveal
their unexpected and intimate connection with the brilliant
intuition by Richardson and Mandelbrot about the fractal
nature of world coastlines.
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