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Intermittency in two-dimensional Ekman-Navier-Stokes turbulence
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We study the statistics of the vorticity field in two-dimensional Navier-Stokes turbulence with linear Ekman
friction. We show that the small-scale vorticity fluctuations are intermittent, as conjectured by BgEnaoed
phys. Lett.50, 333 (2000] and Namet al. [Phys. Rev. Lett84, 5134 (2000]. The small-scale statistics of
vorticity fluctuations coincide with that of a passive scalar with finite lifetime transported by the velocity field
itself.
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In many physical situations, the incompressible flow of afluctuations,S5(r)=((8,»)?)~r¢2. Let us now focus on a
shallow layer of fluid can be described by the two- given value ofe. In Fig. 3 we show the probability density
dimensional Navier-Stokes equations supplemented by a lirfunctions of vorticity fluctuationss,w at variousr, rescaled
ear damping term which accounts for friction. An importantpy their rms valug/( 5, w)2)Y2 As the separation decreases,
instance, among others, relevant to geophysical applicationge observe that the probability of observing very weak or
is the rotating flow subject to Ekman frictidi]. The two-  very intense vorticity excursions increases at the expense of
dimensional Ekman-Navier-Stokes equation are written irfluctuations of average intensity. This phenomenon goes un-

terms of a single scalar field, the vorticity=V Xwv, der the name of intermittency. Its visual counterpart is the
P organization of the field into “quiescent” aredhe patches,
w P “ : » H
v Ve=1V20—aw+f,, (1) Where_ the vorticity changgs smoothl&nd_ active regions
at (the filaments, across which the vorticity experiences rela-
) S ) . o tively strong excursions
where v is the fluid viscosity andx is the Ekman friction The dynamical origin of this phenomenon can be under-

coefficient. In two dimensions, the incompressible velocitystood as followssee also Ref§3,4]). Let us first notice that,
fieldv can be expressed in terms of the stream funcfi@s  for any « strictly positive and as far as the statistical prop-
v=(dy,—dxtp). The vorticity and stream function are erties in the scaling range are concerned, we can disregard
therefore related byo=—Ag¢. The termf, is an external the viscous term in Eq(l). Indeed, at variance with the
source of energy acting on the largest scales—e.g., stirringrictionless case, where the enstrophy flux is constant in the
'I_'hls term counteracts the_d|55|pat_|01_1 by viscosity and f”C'scaIing range, in the presence of friction it decay& a&(see
tion and allows one to obtain a statistically steady state, charFig_ 4). At the viscous wave numbég,~»~ 1 the enstrophy
acterized by a total enstropfﬁe(gﬂ). . ~ flux is stopped by viscous dissipation, with a viscous dissi-
Here, we will study the statistical properties of vorticity pation ratee,, ~ v¢. Therefore, the enstrophy dissipation van-

fluctuations 6, w = w(x+r,t) — w(x,t) at scalesr smaller : AR . ;
. - . > .
than the correlation length of the external forcing. We will ishes in the inviscid limit:—0, since¢>0 (see Fig. 2

show that of the statistics @, w is intermittent, and that the
vorticity field has the same scaling properties as a passive
scalar with a finite lifetime.

As shown in Fig. 1, the vorticity field—resulting from the
numerical integration of Eq.l), see Ref[2] for details—is
characterized by filamental structures whose thickness can be
as small as the smallest active length scales. The wide range
of scales involved in the vorticity dynamics manifests itself
in the appearance of power-law scaling for the spectrum of
vorticity fluctuations Z(k) = 27k({|o(k)|?)~k 17¢. As al-
ready shown by Nanet al. [4], the spectral slope-1—¢
depends on the intensity of the Ekman drag: for the friction-
less Navier-Stokes case£0) we havet=0; a nonvanish-
ing friction regularizes the flow depleting the formation of
small-size structures and results in a steeper spectsem
Fig. 2.

In the range 8<£<2 the exponent coincides with the FIG. 1. Snapshot of the vorticity field resulting from the numeri-
scaling exponent, of the second-order moment of vorticity cal integration of Eq(1). Details are given in Ref2].
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FIG. 4. Enstrophy fluxI,(k)~k ¢ for v=5x10° (+) and
v=1.5x10 5 (X). Herea=0.15. Reducing, the remnant enstro-
phy flux at small scales tends to zero @s(see text, allowing to
disregard viscous dissipation.

FIG. 2. The vorticity spectrunZ(k)~k 1" ¢ becomes steeper
by increasing the Ekman coefficient. Here «=0.15 (+), «
=0.23 (X), ande=0.30 (©). In the inset, the exponeftis shown
as a function ofx.

In other words, in the limit of vanishingly small viscosity, iMmet take to reach a separatitnbackward in time Large

there is no dissipative anomdl§], and Eq.(1) can be solved vorticity fluctuations arise from couples of particles with
by the method of characteristics yielding the expressiod/atively short exit timesT, (r)<(T.(r)), whereas small
w(xt)= 1 _f.(X(s) s)ex —a(t—s)]ds where X(s) de- vorticity fluctuations are associated to large exit times.

notes the trajectory of a particle transported by the flow, Since the_: velo<:|ty_f|eld is smooth, two dlme_n5|onal, and
oo ) -~ i incompressible, particles separate exponentially fast and
X(s)=v(X(s),s), ending atX(t) =x. The uniqueness of the e statistics can be described in terms of the finite-time
trajectoryX(s) in the limit v—0 is ensured by the fact that | ya5unov exponeny. For large times, the random variable
the velocity field is Lipschitz continuous, as it can be seeny reaches a distributionP(y,t)~tY2exg —G(y)t]. The

i = 2 k3¢ - . . . . .
from the veIoE:|3ty spectrunie(k) =Z(k)/k*~k™""%, always  cranig function G() is concave, positive, with a quadratic
steeper thark (se_e Fig. 2 We rem_ark _that fo_r§>0 the  inimum in A (the maximum Lyapunov exponaniG()\)
second-order velocity structure function is dominated by the_ 5 5.4 its shape far from the minimum depends on the
IR contributipn pf the spectrum and thus trivial_ly _displays details of the velocity statistic§6—8]. The finite-time
smooth scaling independently of the valueéofThis is not |, apunov exponent and exit times are related by the condi-
the case for odd order structure functions that, in the absengg, " | —, exg YT, (r)]. That allows to obtain for <L the
of enstrophy dissipative anomaly, display anomglqu; SCaIingollowing estimate for moments of vorticity fluctuations
at the leading orddi5]. We have checked that this is indeed
the case in our simulation®ot shown. [pas G(N)]/ y o

\Vorticity ~ differences are then associated with S”’(r)~(QP)j q (L N(L) P @
couples of particlesw(x’,t)—w(x,t)=/"_[f, (X'(s),s) P "L L)
—f,(X(8),5)] exd —a(t—s)]ds Inside the time integral, the
difference between the value éf at X' and that atX is  The scaling exponents are evaluated from @y by a steep-
negligibly small as long as the two particles lie at a distanceest descent argument &s=min,{p,[pa+G(y))/»}. Intermit-
smaller thanL, the correlation length of the forcing; con- tency manifests itself in the nonlinear dependence of the ex-
versely, when the pair is at a distance larger thaiit ap-  ponents(;; on the ordep. It has to be noticed that the active
proximates a Gaussian random variakle We then have
80~ f " T exd —a(t—9)] ds~Qexd—aT,(r)], where
T, (r) is the time that a couple of particles at distamcat
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FIG. 3. Probability density functions of normalized vorticity in-
crements &, w/{(6,®)?)Y2 Here, r=0.20 (+), r=0.07 (X), r
=0.02 (V). For large separations the statistics is close to Gaussian, FIG. 5. Snapshot of the passive scalar field, simultaneous to the
becoming increasingly intermittent for smaller vorticity field shown in Fig. 1
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To directly check whether small-scale vorticity can be

107
considered as passively advected by velocity, we also solved

_10% the equation of transport of the passive scdfg. 5 with a
= finite lifetime [3,9-11,
~ -5
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FIG. 6. Power spectra of passive scalar)(and vorticity (+). where the velocity field results from the parallel integration
Here a=0.15. In the inset we show the rati#®(k)/E,(k), which  Of Eq. (1). The parameters appearing in E¢b. and(3) are
approaches a constant for large the same, yet the forcing, and f, are independent pro-

cesses with the same statistics. According to the picture
nature ofw has been completely ignored in the above argudrawn above, we expect to observe the same small-scale sta-
ments: the crucial hypothesis in the derivation of E2).is tistics for 8,w and &, 0= 6(x+r,t) — 6(x,t).
that the statistics of trajectories be independent of the forcing |n Fig. 6 we show the power spectra of vorticiyk) and
fw . Th|S is quite a nontrivial aSSUmp.ti.On, since it is .Clear thatof the passive Sca|£0(k)_ The estimate of the range of
forcing may affect large-scale vorticity and thus influenceyaye numbers at which the statistics of vorticity and passive
velocity statistics, but it can be justified by the following gcgiar are expected to be coincidenkisk* =k, exp(/a).
argument. The random variabfe arises from forcing con- \yiih the actual valuek;=8, a=0.15, and\ =0.16 (see
tributions along the trajectories at times<t—T,(r), inset of Fig. 8 we havek* 22('3. The two’ curves in Fig. 6 are
whereas the exit tim&_is clearly determined by the evolu- indeed parallel at largé (k>k*), in agreement with the
tion of the strain at times— T, (r)<s<t. Since the correla- P '

expectatiory; = ¢, . At smaller wave numbers we observe a

tion time of the strain isa™ %, for T (r)>1/a we might . . = .
expect that) and T, (r) be statistically independent. This _b'g bump inZ(k) aroundk=Kk¢, which has no correspondent

condition can be translated in terms of the finite-time!N Eo(K). This deviation is most likely associated to the pres-
Lyapunov exponent as<L exp(—yla) and thus at suffi- €NCce of an inverse energy flux in _the Na\{ler-Stokes (_aquat|on,
ciently small scales it is reasonable to consideas a pas- & Phenomenon that has no equivalent in the passive scalar
sive field. We remark that, if the velocity field was non- case. Due to this effect, the scaling qualitySj{(r) is poorer
smooth, the exit times would be independent of the limit ~ than thesg(r) one, and a direct comparison of scaling expo-
r—0 and the above argument would not be relevant. Therenrents in physical space is even more difficult. However, we
fore, the smoothness of the velocity field plays a central rol@bserve in Fig. 7 that the probability density functions of
in the equivalence of vorticity and passive scalar statistics fovorticity and passive scalar increments, once rescaled by

this system. their root-mean-square fluctuation, collapse remarkably well
1
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statistics of the passive scalar, which is not spoiled by large-

2 HHHH}M scale ol:_)jects. In Fig. 8 we plot the exponeﬁgsas obtaine_d
HHHH}H by looking at the local slopes of the structure functions

_ 15 {{HH{H ot Sp(r). The numerical values fofj are validated by the al-
d | ﬁ;ﬁﬁﬁﬁ o2 7 most perfect agreement with the Lagrangian exit-time statis-

il 01 \] tics.

05 eggﬂﬂﬂ N/ In conclusion, we have shown that in the two-dimensional
0 & 02 0 020406 Ekman-Navier-Stokes turbulence, the small-scale vorticity
0 1 2 3 4 5 8 fluctuations are intermittent. Intermittency is the conse-

guence of the competition between the exponential separa-

FIG. 8. The scaling exponents of the passive scgffar+). e tion of Lagrangian trajectories and the exponential decay of
also show the exponents obtained from the exit-times statisigs ( fluctuations due to friction. Small-scale vorticity fluctuations
according to(exq—apTL(r)]>~ré“g, with an average over about pehave stat|§t|cally as a passive scalar, as it has been con-
2x10° couples of Lagrangian particles. The error bars are esti{’med by a direct comparison. The smoothness of the veloc-
mated by the rms fluctuation of the local slope. In the inset we plotty field appears to be a crucial ingredient for the equality of
the Cramer functionG(y) computed from finite-time Lyapunov @active and passive scalar statistics.

exponentgsymbolg and exit-time statisticgine). This work was supported by the EU under Contract Nos.

HPRN-CT-2000-00162 and FMRX-CT-98-0175, and by the
onto each other. That is sufficient to state, along with theMIUR-Cofin2001, Contract No. 2001023848. Numerical
resulty = gg obtained from Fig. 6, the equality of the scal- simulations were performed at IDRI®roject Nos. 011226
ing exponents of the vorticity and passive scalar at any ordeland 011411and at CINECA(INFM Progetto Calcolo Paral-
(o= gg. The actual values can be directly extracted from theelo).
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