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Intermittency in two-dimensional Ekman-Navier-Stokes turbulence
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We study the statistics of the vorticity field in two-dimensional Navier-Stokes turbulence with linear Ekman
friction. We show that the small-scale vorticity fluctuations are intermittent, as conjectured by Bernard@Euro-
phys. Lett.50, 333 ~2000!# and Namet al. @Phys. Rev. Lett.84, 5134 ~2000!#. The small-scale statistics of
vorticity fluctuations coincide with that of a passive scalar with finite lifetime transported by the velocity field
itself.
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In many physical situations, the incompressible flow o
shallow layer of fluid can be described by the tw
dimensional Navier-Stokes equations supplemented by a
ear damping term which accounts for friction. An importa
instance, among others, relevant to geophysical applicat
is the rotating flow subject to Ekman friction@1#. The two-
dimensional Ekman-Navier-Stokes equation are written
terms of a single scalar field, the vorticityv5“3v,

]v

]t
1v•“v5n¹2v2av1 f v , ~1!

wheren is the fluid viscosity anda is the Ekman friction
coefficient. In two dimensions, the incompressible veloc
field v can be expressed in terms of the stream functionc as
v5(]yc,2]xc). The vorticity and stream function ar
therefore related byv52Dc. The term f v is an external
source of energy acting on the largest scales—e.g., stirr
This term counteracts the dissipation by viscosity and f
tion and allows one to obtain a statistically steady state, c
acterized by a total enstrophyZ5^v2&.

Here, we will study the statistical properties of vortici
fluctuations d rv5v(x1r,t)2v(x,t) at scalesr smaller
than the correlation lengthL of the external forcing. We will
show that of the statistics ofd rv is intermittent, and that the
vorticity field has the same scaling properties as a pas
scalar with a finite lifetime.

As shown in Fig. 1, the vorticity field—resulting from th
numerical integration of Eq.~1!, see Ref.@2# for details—is
characterized by filamental structures whose thickness ca
as small as the smallest active length scales. The wide ra
of scales involved in the vorticity dynamics manifests its
in the appearance of power-law scaling for the spectrum
vorticity fluctuationsZ(k)52pk^uv̂(k)u2&;k212j. As al-
ready shown by Namet al. @4#, the spectral slope212j
depends on the intensity of the Ekman drag: for the frictio
less Navier-Stokes case (a50) we havej50; a nonvanish-
ing friction regularizes the flow depleting the formation
small-size structures and results in a steeper spectrum~see
Fig. 2!.

In the range 0,j,2 the exponentj coincides with the
scaling exponentz2 of the second-order moment of vorticit
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fluctuations,S2
v(r )5^(d rv)2&;r z2. Let us now focus on a

given value ofa. In Fig. 3 we show the probability densit
functions of vorticity fluctuationsd rv at variousr, rescaled
by their rms valuê (d rv)2&1/2. As the separation decrease
we observe that the probability of observing very weak
very intense vorticity excursions increases at the expens
fluctuations of average intensity. This phenomenon goes
der the name of intermittency. Its visual counterpart is
organization of the field into ‘‘quiescent’’ areas~the patches,
where the vorticity changes smoothly! and ‘‘active’’ regions
~the filaments, across which the vorticity experiences re
tively strong excursions!.

The dynamical origin of this phenomenon can be und
stood as follows~see also Refs.@3,4#!. Let us first notice that,
for any a strictly positive and as far as the statistical pro
erties in the scaling range are concerned, we can disre
the viscous term in Eq.~1!. Indeed, at variance with the
frictionless case, where the enstrophy flux is constant in
scaling range, in the presence of friction it decays ask2j ~see
Fig. 4!. At the viscous wave numberkd;n21 the enstrophy
flux is stopped by viscous dissipation, with a viscous dis
pation rateēv;nj. Therefore, the enstrophy dissipation va
ishes in the inviscid limitn→0, sincej.0 ~see Fig. 2!.

FIG. 1. Snapshot of the vorticity field resulting from the nume
cal integration of Eq.~1!. Details are given in Ref.@2#.
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In other words, in the limit of vanishingly small viscosit
there is no dissipative anomaly@3#, and Eq.~1! can be solved
by the method of characteristics yielding the express
v(x,t)5*2`

t f v„X(s),s…exp@2a(t2s)#ds, where X(s) de-
notes the trajectory of a particle transported by the flo
Ẋ(s)5v„X(s),s…, ending atX(t)5x. The uniqueness of the
trajectoryX(s) in the limit n→0 is ensured by the fact tha
the velocity field is Lipschitz continuous, as it can be se
from the velocity spectrumE(k)5Z(k)/k2;k232j, always
steeper thank23 ~see Fig. 2!. We remark that forj.0 the
second-order velocity structure function is dominated by
IR contribution of the spectrum and thus trivially displa
smooth scaling independently of the value ofj. This is not
the case for odd order structure functions that, in the abse
of enstrophy dissipative anomaly, display anomalous sca
at the leading order@5#. We have checked that this is indee
the case in our simulations~not shown!.

Vorticity differences are then associated wi
couples of particlesv(x8,t)2v(x,t)5*2`

t @ f v„X8(s),s…
2 f v„X(s),s…# exp@2a(t2s)#ds. Inside the time integral, the
difference between the value off v at X8 and that atX is
negligibly small as long as the two particles lie at a distan
smaller thanL, the correlation length of the forcing; con
versely, when the pair is at a distance larger thanL, it ap-
proximates a Gaussian random variableV. We then have
d rv;V*

2`
t2TL(r ) exp@2a(t2s)# ds;V exp@2aTL(r)#, where

TL(r ) is the time that a couple of particles at distancer at

FIG. 2. The vorticity spectrumZ(k);k212j becomes steepe
by increasing the Ekman coefficienta. Here a50.15 (1), a
50.23 (3), anda50.30 ((). In the inset, the exponentj is shown
as a function ofa.

FIG. 3. Probability density functions of normalized vorticity in
crementsd rv/^(d rv)2&1/2. Here, r 50.20 (1), r 50.07 (3), r
50.02 (,). For large separations the statistics is close to Gauss
becoming increasingly intermittent for smallerr.
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time t take to reach a separationL ~backward in time!. Large
vorticity fluctuations arise from couples of particles wi
relatively short exit timesTL(r )!^TL(r )&, whereas small
vorticity fluctuations are associated to large exit times.

Since the velocity field is smooth, two dimensional, a
incompressible, particles separate exponentially fast
their statistics can be described in terms of the finite-ti
Lyapunov exponentg. For large times, the random variab
g reaches a distributionP(g,t);t1/2exp@2G(g)t#. The
Cramér functionG(g) is concave, positive, with a quadrat
minimum in l ~the maximum Lyapunov exponent!, G(l)
50, and its shape far from the minimum depends on
details of the velocity statistics@6–8#. The finite-time
Lyapunov exponent and exit times are related by the con
tion L5r exp@gTL(r)#. That allows to obtain forr !L the
following estimate for moments of vorticity fluctuations

Sp
v~r !;^Vp&E dgS r

L D [ pa1G(g)]/g

;S r

L D zp
v

. ~2!

The scaling exponents are evaluated from Eq.~2! by a steep-
est descent argument aszp

v5ming$p,@pa1G(g)#/g%. Intermit-
tency manifests itself in the nonlinear dependence of the
ponentszp

v on the orderp. It has to be noticed that the activ

n,

FIG. 4. Enstrophy fluxPv(k);k2j for n5531025 (1) and
n51.531025 (3). Herea50.15. Reducingn, the remnant enstro-
phy flux at small scales tends to zero asnj ~see text!, allowing to
disregard viscous dissipation.

FIG. 5. Snapshot of the passive scalar field, simultaneous to
vorticity field shown in Fig. 1
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nature ofv has been completely ignored in the above ar
ments: the crucial hypothesis in the derivation of Eq.~2! is
that the statistics of trajectories be independent of the forc
f v . This is quite a nontrivial assumption, since it is clear th
forcing may affect large-scale vorticity and thus influen
velocity statistics, but it can be justified by the followin
argument. The random variableV arises from forcing con-
tributions along the trajectories at timess,t2TL(r ),
whereas the exit timeTL is clearly determined by the evolu
tion of the strain at timest2TL(r ),s,t. Since the correla-
tion time of the strain isa21, for TL(r )@1/a we might
expect thatV and TL(r ) be statistically independent. Thi
condition can be translated in terms of the finite-tim
Lyapunov exponent asr !L exp(2g/a) and thus at suffi-
ciently small scales it is reasonable to considerv as a pas-
sive field. We remark that, if the velocity field was no
smooth, the exit times would be independent ofr in the limit
r→0 and the above argument would not be relevant. The
fore, the smoothness of the velocity field plays a central r
in the equivalence of vorticity and passive scalar statistics
this system.

FIG. 6. Power spectra of passive scalar (3) and vorticity (1).
Here a50.15. In the inset we show the ratioZ(k)/Eu(k), which
approaches a constant for largek.
02630
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To directly check whether small-scale vorticity can
considered as passively advected by velocity, we also so
the equation of transport of the passive scalar~Fig. 5! with a
finite lifetime @3,9–11#,

]u

]t
1v•“u5n¹2u2au1 f u , ~3!

where the velocity field results from the parallel integrati
of Eq. ~1!. The parameters appearing in Eqs.~1! and ~3! are
the same, yet the forcingsf v and f u are independent pro
cesses with the same statistics. According to the pict
drawn above, we expect to observe the same small-scale
tistics for d rv andd ru5u(x1r,t)2u(x,t).

In Fig. 6 we show the power spectra of vorticityZ(k) and
of the passive scalarEu(k). The estimate of the range o
wave numbers at which the statistics of vorticity and pass
scalar are expected to be coincident isk@k* .kf exp(l/a).
With the actual valueskf58, a50.15, andl50.16 ~see
inset of Fig. 8! we havek* .23. The two curves in Fig. 6 are
indeed parallel at largek (k@k* ), in agreement with the
expectationz2

v5z2
u . At smaller wave numbers we observe

big bump inZ(k) aroundk5kf , which has no corresponden
in Eu(k). This deviation is most likely associated to the pre
ence of an inverse energy flux in the Navier-Stokes equat
a phenomenon that has no equivalent in the passive sc
case. Due to this effect, the scaling quality ofSp

v(r ) is poorer
than theSp

u(r ) one, and a direct comparison of scaling exp
nents in physical space is even more difficult. However,
observe in Fig. 7 that the probability density functions
vorticity and passive scalar increments, once rescaled
their root-mean-square fluctuation, collapse remarkably w
r

n

FIG. 7. Probability density
functions of vorticity differences
~solid line! and of passive scala
ones~dashed line!, normalized by
their respective standard deviatio
at different scalesr within the
scaling range.
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onto each other. That is sufficient to state, along with
resultz2

v5z2
u obtained from Fig. 6, the equality of the sca

ing exponents of the vorticity and passive scalar at any or
zp

v5zp
u . The actual values can be directly extracted from

FIG. 8. The scaling exponents of the passive scalarzp
u (1). We

also show the exponents obtained from the exit-times statistics()

according to^exp@2apTL(r)#&;rzp
u
, with an average over abou

23105 couples of Lagrangian particles. The error bars are e
mated by the rms fluctuation of the local slope. In the inset we p
the Cramer functionG(g) computed from finite-time Lyapunov
exponents~symbols! and exit-time statistics~line!.
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statistics of the passive scalar, which is not spoiled by lar
scale objects. In Fig. 8 we plot the exponentszp

u as obtained
by looking at the local slopes of the structure functio
Sp

u(r ). The numerical values forzp
u are validated by the al-

most perfect agreement with the Lagrangian exit-time sta
tics.

In conclusion, we have shown that in the two-dimensio
Ekman-Navier-Stokes turbulence, the small-scale vortic
fluctuations are intermittent. Intermittency is the cons
quence of the competition between the exponential sep
tion of Lagrangian trajectories and the exponential decay
fluctuations due to friction. Small-scale vorticity fluctuation
behave statistically as a passive scalar, as it has been
firmed by a direct comparison. The smoothness of the ve
ity field appears to be a crucial ingredient for the equality
active and passive scalar statistics.
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lelo!.

i-
t

y

ev.

,

ev.

ys.
@1# R. Salmon,Geophysical Fluid Dynamics~Oxford University
Press, New York, 1998!; other well known examples are th
Rayleigh friction in stratified fluids, the Hartmann friction i
magneto-hydrodynamics@J. Sommeria, J. Fluid Mech.170,
139 ~1986!#, and the friction induced by surrounding air i
soap films@M. Rivera and X.L. Wu, Phys. Rev. Lett.85, 976
~2000!#.

@2# The numerical integration of Eq.~1! starting from a zero field
is performed by a fully dealiased pseudospectral code wit
second-order Runge-Kutta scheme, on a doubly perio
square domain of sizeL52p at different resolutions:N2

55122,10242,20482 grid points. A small viscosity~depending
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the remnant enstrophy flux at small scales. The large-s
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shell of wave numbers aroundkf52p/L (kf52 for N
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ance with other choices forf v commonly used~e.g., large-
scale shear!, this kind of forcing ensures the statistical isotrop
and homogeneity of the vorticity field.
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