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Energy dissipation statistics in a shell model of turbulence
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The Reynolds number dependence of the statistics of energy dissipation is investigated in a shell model of
fully developed turbulence. The results are in agreement with a model which accounts for fluctuations of the
dissipative scale with the intensity of energy dissipation. It is shown that the assumption of a fixed dissipative
scale leads to a different scaling with Reynolds which is not compatible with numerical results.
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One of the most important problems in fully develop
turbulence is the description of the energy transfer mec
nism. In stationary situations, the energy injected at the la
scalel 0, transfers at rateē down to the dissipative scaleh,
where it is removed at the same rate by viscous dissipat
The fundamental assumption in the study of fully develop
turbulence is that in the limit of very high Reynolds numbe
Re, the energy dissipationē becomes independent of Re~i.e.,
of the viscosity, being Re5u0l 0 /n, with u0 a typical large
scale velocity! @1–4#. In the same limit, the Kolmogorov
theory predicts universal scaling of the velocity structu
functions in the inertial range of scalesh,l ,l 0:

Sq~ l ![^@du~ l !#q&;u0
qS l

l 0
D zq

~1!

with exponentszq5q/3.
Several decades of experimental and numerical invest

tion have shown that scaling laws~1! are indeed observe
but with exponentszq corrected with respect to the Kolmog
orov prediction@5#. This is the essence of the intermitten
problem, which has received a lot of attention in the mod
approach of the study of fully developed turbulence.

Experiments have shown that intermittency also affe
energy dissipation statistics@6# which is not uniform in the
turbulent domain. A phenomenological description of int
mittency is the multifractal model@7#. This model introduces
a continuous set of scaling exponentsh which relate the ve-
locity fluctuations entering in Eq.~1! with the large scale
velocity u0:

du~ l !;u0S l

l 0
D h

. ~2!

The exponenth is realized with a probability (l /l 0)Z(h)

whereZ(h) is the codimension of the fractal set on whic
theh-scaling holds. The scaling exponents of structure fu
tions ~1! are obtained by a steepest descent argument
exponentsh:

zq5 infh@ph1Z~h!#. ~3!

The scaling region is bounded from below by the Ko
mogorov dissipation scaleh at which dissipation starts to
dominate, i.e., the local Reynolds number is of order 1:
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hdu~h!

n
;1. ~4!

At variance with the Kolmogorov theory, in the multifracta
description of intermittent turbulence, the dissipative scale
a fluctuating quantity. This implies a series of consequen
which have been investigated in past years@8,9#. As we shall
see later the description of the fluctuations of the dissipa
scale is crucial for the correct evaluation of the Reyno
number dependence.

In this paper we are interested in the dependence of
statistics of energy dissipation on the Reynolds number.
physical picture is that dissipation becomes more and m
intermittent as the Reynolds number increases. Assum
that the multifractal description can be pushed down to
dissipative scale, one predicts for the moment of energy
sipation a power-law dependence on Re, with exponents
lated to the structure function exponents~1! @10,2#. We will
see that this prediction is rather natural and confirmed
numerical simulations on a shell model.

The dimensional argument for the prediction goes as
lows. In a dimensional approach, the energy dissipation
evaluated as

e5n(
a,b

S ]ua

]xb
D 2

;nS du~h!

h D 2

. ~5!

From Eqs.~2! and~4! one has thath;l 0 Re2(1/11h). Insert-
ing in Eq. ~5! and computing the average of the differe
moments, one ends with the expression

^ep&;ēpE dm~h!Re2[3ph2p1Z(h)]/(11h);ēp Re2up, ~6!

where the integral has been evaluated by a steepest de
argument~assuming Re→`) and

up5 infhF3ph2p1Z~h!

11h G . ~7!

The standard inequality in the multifractal model~follow-
ing from the exact resultz351), Z(h)>123h, implies for
Eq. ~7! u(1)50 which is nothing but the request of finit
3234 ©2000 The American Physical Society
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nonvanishing dissipation in the limit Re→`. For p.1, up
,0, i.e., the tail of the distribution ofe becomes wider with
the Reynolds number.

Let us stress that the above argument is only a reason
dimensional argument. It is essentially based on two assu
tions: a physical one concerning the fluctuations of the d
sipative scale according to Eq.~4!, and a more formal one on
the possibility of extending the multifractal description dow
to the dissipative scales. The two assumptions are inde
dent: indeed, as we will see, it is possible to give differe
predictions by changing assumption~4! @11#.

It would thus be important to address the problem w
experiments or direct numerical simulation at high Reyno
numbers. Recent high resolution direct numerical simulat
gives support to Eq.~7! @12#, but the Reynolds number is no
large enough to discriminate clearly between different p
dictions.

Shell models are extremely simplified models of turb
lence. Nevertheless, they are deterministic, nonlinear
namical models which display intermittency and anomalo
scaling exponents reminiscent of real turbulence@13#. Their
main advantage is that with shell models one can perfo
very accurate simulations at very high Reynolds numb
for this reason they are thus natural candidates for a num
cal investigation of Reynolds number dependence.

In shell models, the velocity fluctuations are represen
by a single complex variableun on shells of geometrically

FIG. 1. Structure function exponentszq obtained from simula-
tion of the shell model. The number of shells isN524 and n
51027 corresponding to Re5108.

FIG. 2. Z(h) computed by inverting the Legendre transform
tion from the data of Fig. 1.
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spaced wave numberkn5k02n. The particular model we
adopt for our investigation is a recently introduced mod
which displays strong intermittency corrections@14#. The
model equations are

dun

dt
5 iknS un12un11* 2

1

4
un11un21* 1

1

8
un21un22D

2nkn
2un1 f n , ~8!

wheren is the viscosity andf n is a forcing term restricted to
the first two shells. Forn5 f n50 the model conserves th
total energyE5(nuunu2. For simplicity, the forcing adopted
for the present simulations isf n}1/un* , which guarantees a

constant energy inputē. The large scale Reynolds number
the simulation is estimated as Re5 ē1/3/(nk0

4/3) and is nu-
merically controlled by the value of the viscosity.

The chaotic dynamics is responsible for intermittency c
rections to the structure functions exponentzq , here defined
by means of

Sq~n!5^uunuq&;kn
2zq , ~9!

which are close to the experimental values@13#. In Fig. 1 we
plot the spectrum of structure function exponents obtain
from very long simulations. The multifractal codimensio
Z(h) is numerically obtained fromz(p) by inverting the
Legendre transform~3!. The result is shown in Fig. 2. We
observe that, because of the strong intermittency in
model, it is numerically difficult to obtain statistical conve
gence of structure functions~9! of orderq.8. As a conse-
quence, the minimum exponent forZ(h) is hmin.0.2.

From the energy balance equation we have the insta
neous energy dissipation

e52n(
n

kn
2uunu2, ~10!

whose average iŝe&5 ē in stationary conditions.
We have performed very long simulations at differe

Reynolds numbers, starting from Re523105 up to Re
5108. For each simulation we computed the different m
ments of energy dissipation,^ep&. Shell models dynamics is
characterized by strong bursts of energy dissipation wh
limits the possibility of computing with confidence high o

FIG. 3. Moments of energy dissipation^ep& as function of Re
for p51(1), p52(3), andp53(*).
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der moments. Here we are limited to momentsp<8. In Fig.
3 we plot the behavior of̂ep& as a function of Re for dif-
ferent values ofp. The power-law behavior is evident and th
scaling exponentup can be estimated with good accurac
By construction̂ e&5 ē is independent of Re.

The scaling exponentup ~6! are plotted in Fig. 4, togethe
with the multifractal prediction~7!. Let us observe that, be
cause the largestq in Eq. ~9! is q58, the estimate ofp in Eq.

FIG. 4. Energy dissipation scaling exponentsup . Symbols rep-
resent the exponents obtained from the fit of Fig. 3. The continu
line is prediction~7! taking into account the fluctuations of th
dissipative scale. The dashed line is the prediction obtained by
suming an average dissipative scale.
-

, J
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~7! is limited to values less thanp.2.5. For higherp, the
numerical evaluation of Eq.~7! feels the effect of the cutoff
of h on hmin . Nevertheless, we have a rather large range
moments (0<p<2.5) over which numerical data display
perfect agreement with Eq.~7!.

As discussed above, prediction~8! makes use of the fluc
tuating dissipative scaleh. If, on the contrary, one assume
that the dissipation scale enters in Eq.~5! as an averaged
quantity the prediction for up is different: assuming
n^du(h̃)2&/h̃2;ē as the definition of the~nonfluctuating!
dissipation scaleh̃ ~this is the only choice that ensures th
^e&;Re0), one ends up withũp5@pz22z2p#/@22z2# @11#.

Our results allow us to discriminate between predicti
~7! and the one obtained with a nonfluctuating dissipat
scale. Figure 4 shows that the numericalup is definitely not
compatible with the latter alternative, whereas it suppo
with good accuracy prediction~7!.

In conclusion, it is an expected consequence of the e
tence of intermittency in the energy transfer that the dissi
tive scaleh fluctuates according to the local intensity
energy dissipation, being smaller where the dissipation
stronger and vice versa. The fluctuations of the inner scal
turbulence reflect onto the Reynolds dependence of the
tistics of energy dissipation. Long numerical simulations
shell models confirm with great accuracy the validity of t
multifractal model, which accounts for the fluctuations ofh,
and rule out alternative models which do not describe pr
erly the correlations betweenh ande.
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