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Energy dissipation statistics in a shell model of turbulence
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The Reynolds number dependence of the statistics of energy dissipation is investigated in a shell model of
fully developed turbulence. The results are in agreement with a model which accounts for fluctuations of the
dissipative scale with the intensity of energy dissipation. It is shown that the assumption of a fixed dissipative
scale leads to a different scaling with Reynolds which is not compatible with numerical results.

PACS numbeps): 47.27.Eq

One of the most important problems in fully developed néu(n)
turbulence is the description of the energy transfer mecha- ~
nism. In stationary situations, the energy injected at the large

scale/o, transfers at rate down to the dissipative scalg, At variance with the Kolmogorov theory, in the multifractal
where it is removed at the same rate by viscous dissipationyescription of intermittent turbulence, the dissipative scale is
The fundamental assumption in the study of fully developed, fcyating quantity. This implies a series of consequences
turbulence is that in the Il_mlt of very high Reynolds numbers,hich have been investigated in past ye&g]. As we shall

Re, the energy dissipatianbecomes independent of Ree.,  see later the description of the fluctuations of the dissipative
of the viscosity, being Reuy/o/v, with uy a typical large  scale is crucial for the correct evaluation of the Reynolds
scale velocity [1-4]. In the same limit, the Kolmogorov number dependence.

theory predicts universal scaling of the velocity structure In this paper we are interested in the dependence of the

4

14

functions in the inertial range of scaleg</ </ statistics of energy dissipation on the Reynolds number. The
e physical picture is that dissipation becomes more and more

Sy(/)=([8u(/)]H~ud i) d (1) intermittent as the Reynolds number increases. Assuming

ar ’ o/ that the multifractal description can be pushed down to the

dissipative scale, one predicts for the moment of energy dis-
with exponents/,=q/3. sipation a power-law dependence on Re, with exponents re-
Several decades of experimental and numerical investigaated to the structure function exponefts [10,2). We will
tion have shown that scaling law4) are indeed observed see that this prediction is rather natural and confirmed by
but with exponentg, corrected with respect to the Kolmog- numerical simulations on a shell model.
orov prediction[5]. This is the essence of the intermittency  The dimensional argument for the prediction goes as fol-
problem, which has received a lot of attention in the moderriows. In a dimensional approach, the energy dissipation is

approach of the study of fully developed turbulence. evaluated as
Experiments have shown that intermittency also affects
energy dissipation statisti¢§] which is not uniform in the au,\? du(n)\?
turbulent domain. A phenomenological description of inter- €= vE (W ~v ) . )
mittency is the multifractal modéF7]. This model introduces *p B 7

a continuous set of scaling exponehtghich relate the ve- o (114 )
locity fluctuations entering in Eq(l) with the large scale From Egs(2) and(4) one has thay~ /o Re - Insert-
velocity uy: ing in Eg. (5) and computing the average of the different
moments, one ends with the expression
\ h

, /
5u(/)~u0(—

7o )

(€P)~€P f du(h)Re [3Ph—p+ZMIA+N b Re0,  (p)

The exponenth is realized with a probability A7/ )%™
whereZ(h) is the codimension of the fractal set on which where the integral has been evaluated by a steepest descent
the h-scaling holds. The scaling exponents of structure funcargumentassuming Re>«) and

tions (1) are obtained by a steepest descent argument over
exponentsh:

3ph—p+Z(h)} -

0p=infh{ 1+h

{q=inf[ph+2Z(h)]. (3
The scaling region is bounded from below by the Kol- The standard inequality in the multifractal modfsllow-

mogorov dissipation scalg at which dissipation starts to ing from the exact resulf;=1), Z(h)=1—3h, implies for
dominate, i.e., the local Reynolds number is of order 1:  Eq. (7) 6(1)=0 which is nothing but the request of finite
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FIG. 1. Structure function exponengg obtained from simula- FIG. 3. Moments of energy dissipatiqe®) as function of Re

tion of the shell model. The number of shells N&=24 and v for p=1(+), p=2(X), andp=3(*).

=107 corresponding to Re1C?.

spaced wave numbek,=k,2". The particular model we
adopt for our investigation is a recently introduced model
which displays strong intermittency correctiofs4]. The
model equations are

nonvanishing dissipation in the limit Rex. For p>1, 6,
<0, i.e., the tail of the distribution of becomes wider with
the Reynolds number.

Let us stress that the above argument is only a reasonable

Qimensional argument. It is es_sentially based on two assump- d_tn =ik, UpioUn, 1 — Zun+lu’,§,1+ gUn-1Un-2
tions: a physical one concerning the fluctuations of the dis-
sipative scale according to E@t), and a more formal one on — KU+ f ®)

the possibility of extending the multifractal description down

to the dissipative scales. The two assumptions are indepevhere is the viscosity and,, is a forcing term restricted to
dent: indeed, as we will see, it is possible to give differentthe first two shells. Fow=f,=0 the model conserves the
predictions by changing assumptio$) [11]. total energyE =3 ,|u,|%. For simplicity, the forcing adopted

It would thusd_be important tIO gddlress thehpr?]blem W:Ijhfor the present simulations & 1/u¥ , which guarantees a
experiments or direct numerical simulation at high Reynol Yonstant energy inpwt The large scale Reynolds number of
numbers. Recent high resolution direct numerical simulation ) o . iz, L4l .
gives support to Eq(7) [12], but the Reynolds number is not the simulation is estimated as Re /(Vlfoa) and is nu-
large enough to discriminate clearly between different preMmerically controlied by the value of the viscosity.
dictions. The chaotic dynamics is responsible for intermittency cor-

Shell models are extremely simplified models of turbu-rections to the structure functions exponégt here defined
lence. Nevertheless, they are deterministic, nonlinear dyty means of
namical models which _di_splay intermittency and anom_alous s,(m =(|u |q)~k7§q )
scaling exponents reminiscent of real turbuleft®&. Their q n n

main advantage is that with shell models one can pen‘ormWhiCh are close to the experimental val(ig8]. In Fig. 1 we
very accurate simulations at very high Reynolds numbers; P . : 9- .
lot the spectrum of structure function exponents obtained

for this reason they are thus natural candidates for a numeri- . : : ) .
; o rom very long simulations. The multifractal codimension
cal investigation of Reynolds number dependence.

In shell models, the velocity fluctuations are represente (h) is numerically obtained fronz(p) by inverting the

: . . egendre transforn3). The result is shown in Fig. 2. We
by a single complex variabla, on shells of geometrically obgerve that becnaqlu)se of the strong intermittegncy in the

model, it is numerically difficult to obtain statistical conver-

06 gence of structure function®) of orderq>8. As a conse-
05 | | quence, the minimum exponent fafh) is h,;,=0.2.
From the energy balance equation we have the instanta-
0.4 1 neous energy dissipation
£ oal .
N e=2v>, K2u,|?, (10
02} : .
ol whose average i&}z:in stationary conditions.
e, We have performed very long simulations at different
0 . : LS. Reynolds numbers, starting from R@x10° up to Re
0.2 0.25 0.3 0.35 0.4

=10°. For each simulation we computed the different mo-

ments of energy dissipatiofeP). Shell models dynamics is
FIG. 2. Z(h) computed by inverting the Legendre transforma- characterized by strong bursts of energy dissipation which

tion from the data of Fig. 1. limits the possibility of computing with confidence high or-
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01 (7) is limited to values less thap=2.5. For highem, the
ol numerical evaluation of Eq7) feels the effect of the cutoff
of h on h,;,. Nevertheless, we have a rather large range of
01 moments (6sp=<2.5) over which numerical data display a
02} perfect agreement with Eq7).

& As discussed above, predictioB) makes use of the fluc-
-03 ¢ tuating dissipative scale. If, on the contrary, one assumes
04t that the dissipation scale enters in Ef) as an averaged

quantity the prediction foré, is different: assuming
05y v(8u(7)?)7°~e as the definition of thenonfluctuating
-0.6 o 0'5 1 1‘5 2 2'5 ‘3 dissipation scaley (this is the only choice that ensures that

b (e)~Ré), one ends up witt,=[p¢o— {2p]/[2— 2] [11].
Our results allow us to discriminate Between prediction
FIG. 4. Energy dissipation scaling exponefits Symbols rep-  (7) and the one obtained with a nonfluctuating dissipative
resent the exponents obtained from the fit of Fig. 3. The continuouscale. Figure 4 shows that the numeriéglis definitely not
line is prediction(7) taking into account the fluctuations of the compatible with the latter alternative, whereas it supports
dissipative scale. The dashed line is the prediction obtained by asvith good accuracy predictiof?).
suming an average dissipative scale. In conclusion, it is an expected consequence of the exis-
tence of intermittency in the energy transfer that the dissipa-
- . tive scale » fluctuates according to the local intensity of
der moments. Here we are limited to momepts8. In Fig.  gnerqy dissipation, being smaller where the dissipation is
3 we plot the behavior ofe”) as a function of Re for dif- stronger and vice versa. The fluctuations of the inner scale of
ferent values op. The power-lavy behaV|o_r is evident and the yrpylence reflect onto the Reynolds dependence of the sta-
scaling exponent, can be estimated with good accuracy. tistics of energy dissipation. Long numerical simulations of
By construction(e)= € is independent of Re. shell models confirm with great accuracy the validity of the
The scaling exponert, (6) are plotted in Fig. 4, together multifractal model, which accounts for the fluctuationsof
with the multifractal prediction(7). Let us observe that, be- and rule out alternative models which do not describe prop-
cause the largestin Eq.(9) is q=8, the estimate gbin Eq.  erly the correlations between and e.
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