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Abstract 

A simple model of dispersive tracers which display a transient anomalous regime is presented. It is based on an ensemble 
of random walkers belonging to two independent populations characterized by different Lagrangian decorrelation times. 
Apart from short-time ballistic and long-time diffusive behavior, the dispersion shows anomalous scaling at intermediate 
times over a wide range of variability for the free parameters of the model. @ 1997 Elsevier Science B.V. 

Full comprehensive of the general properties of par- 
ticle dispersion in turbulent flows is of great practical 
importance for its geophysical and engineering impli- 
cations. Single particle Lagrangian statistics is usually 
described by the square absolute dispersion 

&I(t) = (lx(r) - x(0)12), (1) 

where x(t) is a d-dimensional vector representing the 
position of the particle and the average is taken over 
many inde~ndent dispersion experiments with dif- 
ferent initial positions and/or times. Particles are ad- 
vetted by the Lagrangian velocity according to the 
differential equation i(t) = u(t). 

The asymptotic behavior of ( 1) follows immedi- 
ately by the assumption that the velocity autocorre- 
lation (u(t)u(t + 7)) decays to zero in a finite time 
T. For very short time t < 7’ the particle is ap- 
proximately advected by constant velocity, so x(t) N 
x(0) + u(O) t + 0( t*) and thus one expects for the 
dispersion the ballistic law 

D2( t) = 2E?, (2) 

where E is the average kinetic energy of the flow. On 
the other hand, for t > T the particle has experi- 
enced several independent and incoherent position in- 
crements and one expects the diffusive law to hold [ 11, 

&(t) = 4ETt. (3) 

Recently has shown in various contexts the emergence 
of a dispersion regime which is neither ballistic nor 
diffusive. In the case of a power-law regime, 02 ( t) N 
tn with non-integer exponent a, the dispersion is called 
anomalous. 

Many simple models of flows which lead to anoma- 
lous dispersion laws have been recently proposed (see 
Refs. [ 2,3] for a review). The basic mechanism lead- 
ing to anomalous dispersion in these models is the ex- 
istence of long-range correlations in the random dis- 
placements of the walker. This leads to the breakdown 
of the central limit theorem and thus to a deviation 
from the general result (3) [4]. 

Since the anomalous dispersion is a symptom of 
surviving correlations in the velocity field, its presence 
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has been often interpreted as an indication of complex 
structures in the velocity field. For example, anoma- 

lous regimes have been found in numerical simula- 
tion of two-dimensional turbulence [5] where it has 

been linked to the presence of coherent vortices which 
can trap passive particles for very long times [ 671. 
Anomalous dispersion laws have also been found in 

experimental data of surface buoys in the ocean [ 81; 
the anomalous regime here holds at intermediate times 
while at longer times diffusive behavior is recovered. 

Although anomalous scaling in turbulent dispersion 

looks quite common, one cannot identify a unique 
scaling exponent cw; this suggests that the generating 
physical mechanism should be non-universal. 

In this Letter we investigate the average absolute 

dispersion for an ensemble of independent random 

walkers. Each walker is characterized by a decorrela- 
tion time T at which the transition from the ballistic 

regime (2) and the diffusive regime (3) takes place. 
For a very broad distribution of decorrelation times 

we recover, as expected, asymptotic anomalous dis- 
persion. 

We furthermore show that the presence of two pop- 
ulations with well separated decorrelation times Tl and 

T2 (bimodal distribution) is sufficient for recovering 
anomalous scaling at intermediate times. The standard 

asymptotic regime (3) still holds for very long times 

t >> T2 but in the intermediate regime TI < t < T2 the 
average over fast walkers (which are already in the 
diffusive regime) and slow walkers (still in the ballis- 

tic regime) leads to dispersion behavior which can be 
approximatively described by a scaling law ta with a 
single exponent 1 < a < 2. 

We think that the proposed mechanism of genera- 
tion of an intermediate anomalous regime by a super- 
position of different contributions at a fixed time is 

very general and can have physical relevance. 
Consider an ensemble of one-dimensional random 

walkers (passive tracers) performing steps of length 
f 1. Each walker is characterized by a single param- 
eter E, which is the probability to make a step in the 
opposite direction of the previous one. It is tightly re- 
lated to the Lagrangian correlation time for the walker, 
since the average number of steps in the same direc- 
tion is nc = l/e. 

Introducing the (discrete) velocity U, = f 1 at time 
step n, we consider the Markovian stochastic process 

&I+1 = &I with probability 1 - E, 

= -_u n with probability E. (4) 

The tracer position xn is governed by the first-order 
difference equation 

%I+1 = &I + &I (5) 

and we will always assume for the initial position 
XI-J = 0. 

To compute the average quantities one defines a 
2 x 2 matrix P with the elements 

(ulP/u’) = [ 4 + (i - E)uu’]ehu, (6) 

which for h = 0 gives the probability (4) of the transi- 

tion from u to u’. Averages can be computed by means 
of the function 

Z(n) = c c.. . ~(UOlPlUl)(W IPlu2) . . . 

x (b-1 Ieh> = ;$ y)uolPlun) 
uo u. 

= c P”, (7) 

where the last expression indicates the sum of the four 

elements of matrix P”. Z(n) still contains the auxil- 

iary variable h from which one obtains 

D,(n,g) = ((x,)P) =; 
hi 

(8) 

where the factor l/2 comes from the normalization 

Z(n)/& = 2. 
It is interesting to observe that expression (7) is 

exactly the partition function for a one-dimensional 

Ising model of n spins with ferromagnetic coupling 

J= $ln[(l -E)/E] [9].Theextemalmagneticfield 
h is set to zero in the absence of an underlying drift. 
In this case all the odd moments of (8) are identically 
zero and we have for the absolute square dispersion 
the exact expression 

Dz(n,E) = 
l--E 
-n+ 

E 
$$[(l-2E)” - l]. (9) 

The asymptotic regimes (ballistic and Brownian) are 
recovered from (9) in the two limits 

&(n, E) - n2, forne< 1, 



(lo> 

with the crossover between the two regimes at nE N 1, 
i.e. at the average inversion time n, = I/E. The decor- 
relation time N can be computed in a similar way and 
turns out to be 

(11) 

The continuous time limit, which is more suitable in 
view of the following considerations, is obtained by 
considering steps of width 6t with a velocity inversion 
rate w = c/St; letting E, 6t ---f 0 keeping o finite, 
introducing t = n& and conside~ng steps of size u,St, 
the dispersion (9) reads [ IO] 

e-2wr - 1 

DAt,m) =; + 2w2 (12) 

from which one recovers the baIlistic regime (2) for 
t < T and the standard diffusive law (3) for t > T 
where the d~o~eIation time T = NSt = I f2w and 
E = 4(28”, = l/2. 

Now, take an ensemble of random walkers with a 
station~y dis~bution of inversion rates, described by 
a p.d.f. p( w); for non-interacting walkers, the average 
absolute dispersion is simply given by 

QZ 

D2(f) = f d~~(~)D2(~,#) (131 

with regul~izing cutoff ftl and Q. 
Anomalous dis~rsion laws are characterized by 

Dz( At) = h”Dz( t ) , To fulfill this scaling relation for 
the dispersion in the form of (13) one is forced to 
choose a power law dis~bution p(w) N @Ida for in- 
version rates. By this choice, we obtain, for l/J22 < 
t < l/G, 

D2(t) Eli la. (14) 

Thus we have recovered an anomalous dispersion law 
for a set of independent random walkers with a broad 
distribution (pow~-law) of inve~ion rates. This result 
is well known and applies to a wide class of physical 
situations. 

Actually, we su~~singly found that inte~~iate 
anomalous regimes are quite colon among differ- 
ent simple inversion rate dis~butions. The simplest 

dist~bution in this class is a bimoda~ distribution for 
two ~puIations with two well separated decorrelation 
times Tl and Tz. As shown below, in the long crossover 
TI < t < T2 the average dispersion displays a pseudo- 
power-law behavior with a non-integer exponent. This 
is a pseudo-anom~ous regime since no exact reIation 
like (14) holds and the standard diffusive regime is 
asymptotically (for t >> T) recovered. 

Let us thus consider an inversion rate distribution 
of the form 

p(w) = h&o - WI) + (I - A)&(# - w2) (15) 

with WI > ~2. This dis~bution corresponds to two 
inde~ndent com~nents in the random walker popu- 
lation: one with shorter decorrelation time Tl = I /2wl 
and relative weight h, the other with Ionger T2 = 
112~2 and weight 1 - A. Such a bimodal dist~bution 
can be assumed as a first approximation in situations 
where one can recognize two different ch~acteristic 
timescales in the system. One interesting application is 
the dis~rsion of passive particles in two-dimensional 
turbulence in the presence of vortices [5,11]. Parti- 
cles trapped within a vortex will follow the relatively 
regular vortex motion with long d~o~elation times 
while particles in the turbulent fluid between vortices 
will experience a much faster deco~elating motion. A 
somewhat similar situation is the dispersion of vor- 
tices in a point vortex system where anomalous dis- 
persion has also been found [ 121. In this case the two 
populations can be associated to pairs of close vortices 
with like circulations (fast deco~elation) and oppo- 
site ones (slow d~o~elation) . 

In Fig. 1 we plot the absolute dis~rsion ( 1) ob- 
tained by means of ( 13) and ( 1.5) with 01 = 0.2, w2 = 
0.~8 and A = 0.65, At very short (E < TI ) and long 
(t > T2) times one recognizes the ~ymptotic behav- 
ior (2) and (3). For inte~~iate times TI < I < T2 a 
pseudo-scaling-Iaw behavior D2( I) N P (a N 1.67) 
is evident. Actually, the anomalous scaling lasts for 
less than a decade, as displayed by the inst~taneous 
logarithmic slope in Fig. 2. 

Extensive investigations of the absolute dispersion 
with a dis~ibution of the form ( 15) demonstrate that 
~omalous scaling at inte~~iate times is quite com- 
mon, since it is found for several values of the param- 
eters ~1, ~2, /\. As an example, we plot in Fig. 3 the 
inte~~iate scaling exponent ty as a function of the 
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Fig. 1. Absolute dispersion 02( 2) for a two component population 
in log-log plot. The decorrelation times are Tt = 2.5 and T2 = 62.5 
and the relative weight is A = 0.65. The dashed line represents 
the power law fit D2( r) N t’.67. 

1 

* 

Fig. 2. Instantaneous logarithm slope (u(r) of Fig. 1. Anomalous 
scaling is apparent from the constancy of the scaling exponent at 
intermediate times. 

weight parameter A for fixed wt = 0.2 and w2 = 0.008. 
The value of LY is nurne~~lly obtained by a log-log 
fit of the absolute dispersion over times Tt < t << T2. 
For A < 0.5 we do not observe a clear intermediate 
scaling. Fig. 3 shows that there is no need of fine tun- 
ing of the parameters in order to obtain an anomalous 
scaling exponent within the range 1 < a < 2. 

In conclusion, we have obtained an exact expres- 
sion for the square absolute dispersion of a one- 
dimensional random walker with a finite decorrela- 
tion time. We have demonstrated that a population of 
independent random walkers with a power law distri- 
bution of deco~elation times gives rise to anomalous 
dispersion laws. We have then investigated the simple 
situation of a bimodal distribution and found that in 

Fig. 3. intermediate scaling exponent a for Ti = 2.5, T2 = 62.5 
at different values of A. The value of a is determined by a fit of 
Fig. 2 in the interval 10 < I < 50. 

this case too the absolute dispersion shows a pseudo- 
power-law behavior at inte~~iate times, strongly 
reminiscent of what is observed in many experimental 
data. We have shown that in this case the interme- 
diate scaling exponent can assume any value within 
the interval 1 < a < 2 depending on the weight 
parameter A. 

It would be interesting to check whether real flows 
displaying anomalous dispersion regimes at interme- 
diate times do share with our model the property of 
having Lagrangian decorrelation times with a bimodal 
distribution. If so, this could be argued to be the mech- 
anism for anomalous dispersion. 
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