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Lagrangian Tracers on a Surface Flow: The Role of Time Correlations
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Finite time correlations of the velocity in a surface flow are found to be important for the formation
of clusters of Lagrangian tracers. The degree of clustering characterized by the Lyapunov spectrum of
the flow is numerically shown to be in qualitative agreement with the predictions for the white-in-time
compressible Kraichnan flow, but to deviate quantitatively. For intermediate values of compressibility
the clustering is surprisingly weakened by time correlations.
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Inhomogeneous distribution of particles advected in a
turbulent flow is a generic consequence of compressibility.
This can be obtained in two situations. The first possibil-
ity is that the advecting flow is compressible itself and
that the particles follow the streamlines [1]. The other
possibility is that the particles do not follow the stream-
lines because of inertia [2–8] or lift [9], and that the
effective velocity field is compressible. Such situations
are relevant for the formation of clouds [10] or for the
advection of bubbles in turbulent flows, e.g., for breaking
waves on the ocean surface [11,12]. We focus here on the
first possibility.

While the dominant tendency of incompressible flows
is to separate particle trajectories, a compressible compo-
nent is responsible for particle trapping in contracting
regions for long times. The Eulerian compressibility of
a flow is measured by the dimensionless ratio C �

h�@iui�
2i=h�@iuj�

2i. It takes values between 0 (incompress-
ible flow) and 1 (potential flow). While there can be no
clustering without compressible effects, the compressibil-
ity ratio C is insufficient to determine the final distribu-
tion completely [13]: the behavior depends also on the
spatial roughness, the dimensionality, and, as we demon-
strate here, on the time correlations in the flow.

A convenient characterization of the final distribution
uses the Lagrangian Lyapunov spectrum. Dynamical sys-
tems theory shows that the asymptotic clusters are
smooth along the unstable directions of positive
Lyapunov exponents and fractal along the stable direc-
tions. In d dimensions, the sum of Lyapunov exponentsPd
i�1 �i vanishes in the incompressible case and is nega-

tive for a compressible flow. A measure for the distribu-
tion of the final clusters is given by the Lyapunov
dimension [14],

DL � K �

PK
i�1 �i

j�K�1j
; (1)

where K is the maximal integer such that
PK
i�1 �i � 0.

Obviously, for an incompressible flow K � d and also
DL � d: the particle distribution fills the entire volume.
As compressibility increases, the sum of Lyapunov expo-
0031-9007=04=93(13)=134501(4)$22.50 
nents becomes negative and K drops below d. If the
largest Lyapunov exponent �1 becomes negative, the final
cluster will not have any smooth directions anymore and
the particles will cluster in a pointlike fractal. Hence one
distinguishes a regime of strong compressibility �1 < 0
with DL � 0, and one of weak compressibility �1 > 0.

There are no general results on the spectrum of
Lagrangian Lyapunov exponents in turbulent flows. For
the case of incompressible, isotropic, three-dimensional
turbulence the numerical observation is that �2 	 1=4�1
[15]. In the limit of a compressible Kraichnan flow, which
is synthetic, white-in-time, and Gaussian distributed, the
spectrum is given by �j � C1fd�d� 2j� 1� � 2C�d�
�d� 2�jg where j � 1; . . . ; d, C1 is an inverse time pro-
portional to the Lagrangian strain and the resulting
Lyapunov dimension is a decreasing function of C [13].
Moreover, when C � Cs � d=4, all the Lyapunov expo-
nents become negative, and one has the strong compress-
ible regime.

The trapping effects are believed to be enhanced in
spatially rough Kraichnan flows [13]. Although a recent
attempt has been devoted to reintroduce the finite time
correlation for the synthetic rough Kraichnan flows [16],
a general theoretical framework studying the effects of
the time correlation is still lacking.

Here, we demonstrate numerically the crucial role of
finite time correlations in the Lagrangian statistics of
particles transported by the Navier-Stokes flow which is
established in a free-slip surface. As a consequence of
boundary conditions the two-dimensional flow displays
an effective compressibility. By decomposing the surface
velocity field in its irrotational and potential components,
we change the effective value of compressibility of the
surface flow. This enables us to study the interplay of the
two components, time correlations and compressibility,
within one system.

We note that our investigation does not encounter the
effects of fluid density variations which appear in a
compressible turbulent flow.

The tracers are advected by the free surface flow on top
of three-dimensional (3D) incompressible Navier-Stokes
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turbulence at Re� ’ 145. The volume with an aspect ratio
of 2�:2�:1 is resolved by 256� 256� 65 grid points.
The full 3D equations are integrated by a standard pseu-
dospectral method [17]. The lateral boundary conditions
for x and y are periodic, and in the vertical direction we
apply free-slip boundary conditions, uz � 0 and @zux �
@zuy � 0. The Lagrangian tracers are advected by the
surface flow spanned by the two components ux�x; y; z �
0; t� and uy�x; y; z � 0; t�, which is compressible since
@xux � @yuy � �@zuz � 0 [17]. Tracer velocity between
the grid mesh is calculated by bilinear interpolation. We
store 18 000 configurations of the 2D surface velocity
field at the same resolution in time that is used for the
time advancement of the full 3D Navier-Stokes equations.
On the basis of these configurations, Lagrangian trajec-
tories and the Lyapunov spectrum ��1; �2� are computed.

Isotropy can be used to show that the compressibility
ratio for a two-dimensional flow �ux�x; y�; uy�x; y�� can be
rewritten as

C �
h�@xux � @yuy�2i

2h�@xux � @yuy�2i
: (2)

Numerical and experimental investigations of the surface
flow at Taylor Reynolds numbers Re� 	 102 have shown
that C ’ 0:5 [18,19]. By (2), this is equivalent to a vanish-
ing value of the cross correlation h@xux@yuyi, as con-
firmed in numerical studies [20]. Figure 1 shows the
profile of C for all planes of the simulation box from z �
0 down to z � L=2. It is interesting to note that the value
of compressibility measured in the bulk is very close to
the value 1=6which is expected for a two-dimensional cut
of a three-dimensional homogeneous, isotropic flow. The
relatively large value of the compressibility ratio on the
free surface is a consequence of the free-slip boundary
conditions.
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FIG. 1 (color online). Compressibility C as a function of
depth z=Lz ranging from the free surface (z=Lz � 0) to the
middle of the tank (z=Lz � 0:5). The figure illustrates also that
for z=L � 0:1 the volume turbulence gets close to the homoge-
neous isotropic case, which is indicated by the vertical dotted
line. The horizontal dotted line indicates the C value of 1=6
which would follow for perfect isotropy in the bulk.
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The evolution of an initially uniform particle distribu-
tion in the time-correlated surface flow with C � 0:45
is shown at two instants in Figs. 2(a) and 2(c), respec-
tively. The pronounced formation of particle clusters
was observed recently in experiments [18] and in simu-
lations [19].

Although having a compressibility close to the critical
value of C2 � 1=2 for the two-dimensional Kraichnan
flow we do not observe pointlike structures; particles
accumulate on a network of narrow ridges with bigger
empty voids between. Figure 3 reports the results of the
numerical computation of the Lagrangian Lyapunov
spectrum. The very existence of the ridge structures
pertains to the existence of a finite positive Lyapunov
exponent �1 	 0:3. This is in line with the computed
Lyapunov dimension, DL ’ 1:15 which is plotted in the
inset of Fig. 3.

We now compare the Lyapunov dimensions of the time-
correlated flow with the corresponding decorrelated flow.
That would quantify the effects of time correlation on
clustering properties. In order to do so, we generate the
decorrelated velocity field from the flow at hand by
reshuffling the temporal sequence of surface flow snap-
shots. Because of the periodic boundary conditions, each
snapshot is further decorrelated by phase randomization
in space.

Figures 2(b) and 2(d) show the evolution of the density
of tracers in the reshuffled time decorrelated flow. We find
the clusters concentrated on more pointlike sets and the
FIG. 2 (color online). Visualization of the particle clustering
for a uniform initial distribution of 36 000 tracers on the free
surface z � 0 with C � 0:45. (a),(c) The tracer distributions in
time-correlated surface flow at 0:2T and 3:1T. (b),(d) The
tracer distributions in the time decorrelated flow at 0:2T and
5:1T. The time scale T � L=�u�L� is the large scale eddy
turnover time.
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FIG. 3. Convergence of Lyapunov exponents (�1 > 0 and
�2 < 0) for the Lagrangian trajectories on the free surface
computed for about three eddy turnover times T. In the inset,
the Lyapunov dimension DL � 1� �1=j�2j is shown.
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ridges are depleted evidently. Therefore one expects that
the Lyapunov dimension is decreased when the temporal
correlation of the velocity is diminished. Lagrangian
trajectories in the randomized flow are more erratic: in
order to achieve statistical convergence, trajectories are
now integrated for about five large scale eddy turnover
times. The computation of the Lyapunov spectrum and
dimension for the randomized flow is shown in Fig. 4.
The fact that both of the Lyapunov exponents are changed
with respect to Fig. 3 is not relevant, as the characteristic
Lagrangian time is changed by the time decorrelation
procedure. The important point is that the Lyapunov
dimension is now DL ’ 1:05, which is less than the
Lyapunov dimension in the time-correlated flow. This is
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FIG. 4. Convergence of Lyapunov exponents for the
Lagrangian trajectories advected by the random-time,
random-phase scrambled velocity field. The computation is
done for 5T. In the inset, we show the Lyapunov dimension
DL together with the theoretical prediction DL � 1:05 (dashed
line).
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quite surprising as one intuitively expects that the particle
trapping is enhanced when moving in a time-correlated
flow because the local flow will persist for some time.

In the case of a two-dimensional compressible
Kraichnan ensemble the pairing symmetry in the
Lyapunov spectrum ��;��� is broken and the Lyapunov
dimension is then simply given by

DL �
2

1� 2C
: (3)

According to (3), the transition to the strong compressi-
bility regime takes place at Cs � 1=2, very close to the
numerically observed compressibility at the surface (see
Fig. 1). The prediction of (3) for C ’ 0:45 renders DL 	
1:05, which is in very good agreement with the result of
randomized surface flow. The compressibility, seen along
Lagrangian trajectories [4], is different from C as given
by (2). However, explicit theoretical results referring to
the effects of velocity time correlations on effective
Lagrangian compressibility or Lyapunov spectrum are
still lacking although first attempts have been made
[16]. Moreover, it is not clear that the theoretical descrip-
tion of the time-correlated flows will enjoy the same level
of generality.

In order to gain more insight on the role of the time
correlations, we repeated the Lagrangian analysis for
different degrees of compressibility. To this end, we
have decomposed the 2D velocity snapshots into the
stream function  �x; y� and the potential function
��x; y�. A new velocity field is reconstructed then to

~u�x; y� �
���
2

p
�rT �x; y� cos��r��x; y� sin�; (4)

where rT � �@y;�@x�. The compressibility ratio C [cf.
(2)] for the decomposed flows is a monotonic function of
the parameter � 2 �0; �=2 and for � � �=4 the original
surface flow is reproduced. Since � � 0 corresponds to
the incompressible case and � � �=2 gives a purely
potential flow, we are able to cover the whole range of
compressibility degrees. Of course, dimensional quanti-
ties such as the characteristic Lagrangian time of the
velocity field may depend on the value of �. On the
other hand, dimensionless quantities, such as DL are
independent of a global rescaling of the velocity and
thus can be expected to depend mainly on the degree of
compressibility.

We have performed two sets of numerical simulations
of Lagrangian trajectories for different values of �. For
each value, we have computed the mean compressibility
and the Lyapunov dimension, both for the time-
correlated and randomized flows. The result is summa-
rized in Fig. 5 where for comparison we plot the relation
(3) for the �-correlated Kraichnan case.

It is remarkable that the qualitative effect of time
correlations on tracer distribution depends on the level
of compressibility. For small values C � 0:3, time corre-
134501-3
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FIG. 5 (color online). Lyapunov dimension DL computed for
different values of the compressibility C in accordance with
(4). Data points for time-correlated flow are indicated by
squares. The open circles are for the decorrelated flow. The
line indicates the behavior for the compressible Kraichnan flow
[cf. (3)]. The gray shading in the background illustrates the
border between weak and strong compressible regimes for the
time-correlated flow. We have also indicated the data points in
the plane that correspond with the tracer distributions as given
in Fig. 2.
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lations enhance the effects of compressibility; i.e., DL is
smaller than the value predicted by (3). The situation for
larger values of C is more surprising as the Lyapunov
dimension in correlated flow is larger than the value given
by (3); i.e., the effects of compressibility are depleted
with respect to the �-correlated case. The later situation
is contrary to intuition according to which finite time
correlations amplify the effects of compressibility.
Consequently, the transition point to the strong compress-
ible regime, where �1 � 0, moves up to the C ’ 0:75
larger than the prediction of (3) (cf. gray region in
Fig. 5). This is again the point where the ratio �1

�2
is zero

for the correlated flow.
In summary, we have studied the effects of time cor-

relations in the clustering of Lagrangian tracers advected
on a free surface flow by direct numerical simulation of
Navier-Stokes equations. Appealing to a numerical de-
composition method we generate 2D flows with variable
degrees of compressibilities. The Lyapunov dimension
decreases with the compressibility degree. Our simula-
tions indicate that the effect of time correlation can go
both ways. At low values of compressibility the Lyapunov
dimension of the tracer distribution is smaller than the
dimension in the time decorrelated flows. Yet as the
134501-4
compressibility gets higher this regime crosses over to a
more interesting one where the time correlations increase
the Lyapunov dimension. The point of phase transition to
a strong compressible regime is at a higher value, C ’
0:75. This Letter is a first attempt to relate aspects of the
solvable compressible Kraichnan model to the turbulent
Navier-Stokes compressible flows. It suggests further in-
vestigations on the interrelated roles of the time correla-
tions and the compressibility on the dispersion properties.
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