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Diffusive transport and self-consistent dynamics in coupled maps
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The study of diffusion in Hamiltonian systems has been a problem of interest for a number of years. In this
paper we explore the influence of self-consistency on the diffusion properties of systems described by coupled
symplectic maps. Self-consistency, i.e., the backinfluence of the transported quantity on the velocity field of the
driving flow, despite of its critical importance, is usually overlooked in the description of realistic systems, for
example, in plasma physics. We propose a class of self-consistent models consisting of an ensemble of maps
globally coupled through a mean field. Depending on the kind of coupling, two different general types of
self-consistent maps are considered: maps coupled to the field only through the phase, and fully coupled maps,
i.e., through the phase and the amplitude of the external field. The analogies and differences of the diffusion
properties of these two kinds of maps are discussed in detail.
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I. INTRODUCTION

Understanding transport is a problem of considera
practical and theoretical interest in a great variety of fie
ranging from geophysics to chemical engineering and pla
physics. In some situations one can safely consider
simple case ofpassive transportin which the transported
quantity does not affect the advecting flow@1,2#. In the case
of a scalar passive fieldU(x,t), the evolution equation is the
advection-diffusion equation

]U

]t
1“•~vU!5D0¹2U, ~1!

wherev(x,t) is the velocity field,D0 the molecular diffusiv-
ity, andU represents the scalar concentration, e.g., the t
perature of the fluid or the concentration of a pollutant. T
domain of applicability of Eq.~1! is limited by two important
physical assumptions:U has to beinert ~no possible chemi-
cal or biological reactions are considered! and passive~there
is no feedback on the velocity!. Reactive processes can b
taken into account by adding to the right hand side of Eq.~1!
a function f (U) modeling the reaction kinetics@3#. This
leads to the so-called advection-reaction-diffusion equati
widely used in the modeling of chemical and biological sy
tems including combustion, diluted chemical reactions, a
population dynamics@4#.

Taking into account the feedback ofU on v, i.e., the
problem ofactive transport, is in general more complicate
as this involves the equation of motion forv. Because of this,
active transport is also calledself-consistent transport. A
well-known example is fluid convection in the Boussine
approximation@5#. In this case,U represents the fluid tem
perature, which is an active scalar in the sense that it m
fies the velocity field through the buoyancy force in t
Navier-Stokes equation forv.
1063-651X/2003/67~2!/026224~11!/$20.00 67 0262
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The goal of the present paper is to study the problem
diffusion of active scalars. In particular, we are interested
the relationship between self-consistent chaos and diffus
due to chaotic advection. The study of diffusion requires
accurate numerical integration of the equations of motion
very long times and many initial conditions. A common stra
egy to bypass this technical difficulty is to describe the tim
continuous equations of motion with a discrete-time m
Here we follow this approach and study the problem of d
fusion in self-consistent symplectic maps. In the remain
of this introduction we discuss in some detail the problem
self-consistent transport in fluids and plasmas. The inten
this discussion is to provide a physical motivation for the u
of globally coupled maps for studying self-consistent tra
port.

One of the simplest physical examples of active transp
is two-dimensional incompressible flows. This motion is d
scribed by Navier-Stokes equation~1! in which U represents
the vorticity, z5“3v. Plasma physics is another area
which the problem of self-consistent transport is crucial. F
example, in the Vlasov description of an electron plasma@6#
~in a uniform neutralizing ion background! the system is de-
scribed by the phase space electron distribution functiof
which, for an one-dimensional system, evolves according
the Liouville equation

] t f 1u]xf 1]xf]uf 5D0]u
2f , ~2!

where the term on the right hand side is a Fokker-Pla
collision operator, and (x,u) are the phase space coordinate
This equation is analogous to Eq.~1! if one identifiesU with
f, andv with the transport velocity in phase space (u,]xf).
In this case the self-consistent coupling is provided by
Poisson equation

]x
2f5E f ~x,u,t !du21, ~3!
©2003 The American Physical Society24-1
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where the right hand side is the charge distribution includ
the fixed neutralizing ion background. That is, the dynam
of an electron plasma is an active transport problem in wh
the transport velocity of the distribution functionf in phase
space is determined byf through Poisson’s equation.

The previous ideas on self-consistent transport can be
formulated within the Lagrangian description according
which transport is described in terms of individual partic
trajectories instead of scalar fields and distribution functio
The Lagrangian description is important because it is
natural description to formulate the self-consistent transp
problem in terms of symplectic maps which are the m
objects of study in the present paper. As it is well-known@7#,
the Lagrangian formulation of Eq.~1! is the Langevin equa
tion

dx

dt
5v~x,t !1A2D0h~ t !, ~4!

describing the motion of a test particle~the tracer!, whereh
is a normalized Gaussian white noise with zero mean and
correlated in time:

^h i~ t !h j~ t8!&5d i j d~ t2t8!. ~5!

The passive scalar nature ofU in Eq. ~1! reflects in the
absence of coupling in the Lagrangian equations of mo
~4!. However, in an active transport problem, the se
consistent coupling between the field and the transport
locity leads to a nonlinear coupling between the Lagrang
equations of motion. The fact that particles interact~and usu-
ally through long-range interaction! implies that the phase
space evolution of particlen, depends on the position of a
the N particles

dxn~ t !

dt
5v„x1~ t !, . . . ,xN~ t !…, ~6!

and therefore the system has a phase space of dimen
proportional toN. This is the well-knownN-body problem
that arises in many fields of physics, including gravitation
systems in Astronomy@8#, point vortices in two-dimensiona
fluid dynamics@9#, and atomic physics.

An approximation of theN-body problem~6!, which is
often used, is a mean-field type approximation in which
interaction among particles occurs through a global varia
X function of all the particles. In the examples shown belo
the mean field will depend on the mean distribution of p
ticles only, thus Eq.~6! formally reduces to

dxn

dt
5vext~xn!1v~xn2X!,

dX

dt
5F~X,$xk%!, ~7!

where we have included the possible contribution of an
ternal fieldvext .

Recently, a mean-field description of this sort has be
proposed to study self-consistent transport in fluids and p
02622
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mas@10–12#. In the plasma physics context, this approxim
tion known as the single-wave-model~SWM!, consists of
simplifying the self-consistent coupling betweenf and f
given by Poisson’s equation~3!.

The SWM is a general model for the description of ma
ginally stable fluids and plasmas@13,14#. Also the model
bears many interesting analogies with coupled oscilla
models used in statistical mechanics@15#. As such, it is an
insightful model to explore the problem of self-consiste
chaos, and will be our starting point for the construction
the self-consistent symplectic map models in the present
per.

The transition to the symplectic map description is ea
by first writing the SWM as a fullN11 Hamiltonian system
in the particle coordinates (xj ,uj ) and the mean field degree
of freedom@16,10#

dxk

dt
5

]H
]pk

,
dpk

dt
52

]H
]xk

, ~8!

d u

dt
5

]H
]J

,
dJ

dt
52

]H
]u

, ~9!

with Hamiltonian

H5(
j 51

N F 1

2G j
pj

222G jAJ

N
cos~xj2u!G2VJ. ~10!

From Eq.~10! it is clear that the SWM model consists ofN
pendulum Hamiltoniansmean-fieldcoupled through the am
plitude J and the phaseu. Therefore, as the standard map
the symplectic discretization of the pendulum Hamiltonia
the models studied here will consist of an ensemble oN
standard maps. In the absence of coupling, i.e., ignoring s
consistency,J andu would be constant and the parameters
the standard map would be fixed numbers. However, w
self-consistency is incorporated,J andu become dynamica
variables~also described by symplectic maps!, and this leads
to a dependence of the parameters of the maps
$x1 ,x2 , . . . ,xN% which gives rise to a global coupling of th
maps. The specific form of this coupling will be discussed
Sec. III, where we present a systematic discussion of the
models in terms of generating functions.

The remaining of this paper is organized as follows.
Sec. II we briefly review the diffusion properties in the ca
of the passive scalar, with particular emphasis on the s
dard map. As mentioned before, in Sec. III we introduce
two self-consistent systems studied in this work. Sections
and V are devoted to the discussion of the numerical resu
Section VI contains the conclusions.

II. A BRIEF REVIEW OF THE DIFFUSION PROPERTIES
OF PASSIVE SCALARS

There exists a huge literature about the transport pro
ties in the passive scalar limit@1,2,17#. On the contrary, there
are very few attempts in the study of the self-consistent
fusion. The aim of this section is to recall the main results
the diffusion problem for passive scalars in order to comp
4-2
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them with the self-consistent diffusion that will be consi
ered in the following sections. It is remarkable that the L
grangian motion can exhibit nontrivial behavior even for
very simple velocity fieldv(x,t) @17,18#. Complex behavior
can be originated both from chaotic advection~which is in
general possible for stationary 3d flows or for time-
dependent 2d flows! and/or from combined effects of th
molecular diffusivity and the advection velocity. Under ve
general conditions~see below! the large scale field̂ U&,
which is obtained as an average of a fieldU evolving
through Eq.~1! on a volume whose dimensions are mu
larger than the typical length scale ofv, obeys at large times
a diffusion equation

]^U&
]t

5(
i , j

Di j
E ]2^U&

]xi]xj
, ~11!

with eddy diffusivity Di j
E . In other words, the effect of the

velocity field at large scales and time is the renormalizat
of the transport coefficientD0. It is easy to understand th
origin of Eq. ~11! in the Lagrangian framework. Startin
from Eq. ~4!, taking the average over many tracers, one

^„xi~ t !2xi~0!…2&52D0t1E
0

tE
0

t

dt1dt2^v i„x~ t !…v i„x~ t !…&

52D0t12E
0

t

dt2E
0

t2
dt1Cii ~ t22t1!, ~12!

where we have assumed that^v i„x(t)…&50 and we have in-
troduced the correlation of Lagrangian velocitiesCi j (t)
[^v i„x(t)…v j„x(0)…&. At large times, if the correlation de
cays sufficiently fast, the integral in Eq.~12! converges to an
asymptotic value

E
0

`

dtCii ~ t !5^v i
2&TL , ~13!

which defines the Lagrangian correlation timeTL . From Eq.
~12! one recovers the Taylor result@19#

^„xi~ t !2xi~0!…2&'2~D01^v i
2&TL!t[2Dii

Et, ~14!

which defines the eddy diffusivity in Eq.~11!.
Beyond the above typical scenario one can have ano

lous dispersion, i.e.,

^„xi~ t !2xi~0!…2&;t2n ~15!

with nÞ1/2. The casen,1/2 is called subdiffusion. Super
diffusion (n.1/2) has been observed in incompressi
flows @21#, random shear flows and, as we will see, a
symplectic maps@20,22#. Anomalous diffusion can occu
only if some of the hypothesis of the above argument bre
down. Practically, this can be due to two different mech
nisms: ~a! infinite variance of the velocity,̂ v2&5`. ~b!
Lack of decorrelation,TL5`.

The first condition, which leads to the class of Le´vy
flights, is not particularly realistic in physical systems, b
cause it requires infinite energy. We will not discuss here
02622
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behavior. Case~b! is physically more relevant. From Eq.~13!
one sees that anomalous superdiffusion is possible on
Cii (t) goes to zero slower thant21. Unfortunately, the be-
havior of Ci j (t) is generated by the Lagrangian dynami
itself so it is not trivial at all, in the absence of molecul
diffusivity, to determine whether the diffusion process w
be standard or anomalous. If molecular diffusivity is pres
rather general results due to Avellaneda, Majda, and Verg
sola@23# show that, if the infrared contributions tov(x,t) are
not too strong, standard diffusion occurs.

Let us now discuss the well-known results for the diff
sive behavior of the standard map~a complete overview can
be found in Ref.@22#!,

x~ t11!5x~ t !1y~ t11! mod 2p, ~16!

y~ t11!5y~ t !1K sin„x~ t !…. ~17!

The Taylor argument, when applied to they(t) component
@in this work we always refer to the diffusion properties
y(t)] of the standard map gives

Dy
E~K !5

1

2
K2^sin2x&1(

t51

`

K2^sinx~ t !sinx~0!&. ~18!

At large K, the map Eqs.~16! and ~17! exhibits widespread
stochasticity and to a good approximation consecutive an
x are decorrelated, thus one can neglect the second ter
Eq. ~18! to obtain the quasilinear~or random phase approxi
mation, RPA! result @22#:

Dy
E~K@1!'DQL5

K2

4
. ~19!

The above estimate is very crude: indeed it provides a g
estimation of the diffusion coefficient only at very highK.
Higher order corrections to the RPA approximation can
obtained by means of the Fourier technique@22#. At order
K21/2 one obtains

Dy
E~K !5

K2

4 F12A 8

pK
cosS K2

5p

4 D G . ~20!

This approximation is rather good apart from smallK and
aroundparticular values ofK. ForK&Kc'0.972 because o
the presence of separating KAM tori there is not diffusion
all, Dy

E(K)50. On the other hand, at specific values ofK
~e.g.,K'6.9115) corresponding to the existence of ballis
solutions in they direction, instead of the standard diffusio
one observes an anomalous transport withn.1/2 @24#.

III. SELF-CONSISTENT MAP MODELS

In this section we introduce the symplectic map mod
that we propose for studying diffusion in self-consistent s
tems. As discussed in Sec. I, these maps consists of
sembles of globally coupled standard maps.

The definition of the maps and the coupling is guided
the well-known fact that if (q,p) denotes the canonical con
jugate coordinates of a Hamiltonian system at timen, then
4-3
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the transformation (q,p)→(q8,p8) given by

q85
]S

]p8
, p5

]S

]q
~21!

defines a symplectic map with generating functionS
5S(q,p8) @22#.

The generating functions of the models proposed h
have the generic form

S5Sp1Sf1Si , ~22!

whereSp defines the uncoupled evolution of the particles,Sf
defines the uncoupled evolution of the mean field, andSi
defines the particles-mean-field interaction.

For Sp we assume the standard map generating funct

Sp5 (
n51

N S xnyn81
1

2Gn
yn8

21KncosxnD , ~23!

whereGn , andKn are constants, the indexn labels the par-
ticles, and we have used the notationx(t)5x and x(t11)
5x8. In Sp the particles are uncoupled and each one follo
independently a standard map dynamics.

In order to preserve the symplectic structure of the s
tem, the field is represented by two conjugate variable
phaseu and an amplitudeJ which, in the absence of inter
action with particles, evolve according to the generat
function

Sf5uJ81E v~ J̄8!dJ̄8, ~24!

according to which

u85u1v~J8!,

J85J. ~25!

That is, in the absence of coupling the amplitude and
quency of the mean field are constant.

The self-consistent coupling between the particles and
mean field is specified by two functionsf andg in the inter-
action generating function

Si5g~J8! (
n51

N

f ~xn2u!. ~26!

Based on this generating function, we will consider tw
models, one introducing a coupling only through the ph
of the mean field, and another introducing a coupli
through the phase and the amplitude of the mean field.

A. Phase coupling

In this case, it is assumed that

g5«, f 5sin~xn2u!, v5VJ8, ~27!

and Gn51, Kn5K for n51,2, . . . ,N; with «, V, K con-
stants. The complete equations of motion thus become
02622
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xn85xn1yn8 mod 2p,

yn85yn1K sinxn1« cos~xn2u!,

u85u1VJ8,

J85J2«(
n

cos~xn2u!. ~28!

The parameter« measures the strength of the coupling. F
«50 we recover the situation discussed in the preced
section forN independent particles. One may expect that,
general, the inclusion of a coupling between the differe
particles will change the diffusive behavior of the system
there were no feedback from the particle variablesxn to the
field J ~i.e., no self-consistency! one could argue that the
effect of the field variableu in Eqs.~28! would be the same
as that of a noise and thus will destroy the correlations in
yn variables. In this case one expects that the deviation
the diffusion coefficient with respect to the quasilinear p
diction discussed in the preceding section would be stron
suppressed. Of course, this kind of argument cannot be c
pletely justified in presence of the full coupling in Eqs.~28!.

B. Amplitude and phase coupling

In this second case, it is assumed that

g52AJ8, f 5Gncos~xn2u!, v52V, ~29!

whereV is constant andGn are N independent parameters
The dynamics in this case is determined by

xn85xn1yn8/Gn ,

yn85yn1K sinxn22GnAJ8sin~xn2u!,

u85u2V2
1

AJ8
(
n51

N

Gncos~xn2u!,

J85J12AJ8(
n51

N

Gnsin~xn2u!, ~30!

where, to simplify matters, we have assumed that the ex
nal field is such thatKn /Gn5K being K a constant. This
globally coupled map was originally proposed in Ref.@10# as
a symplectic discretization of the single wave model Ham
tonian system in Eq.~10!. Compared with Eq.~28!, in the
map ~30! J andu are both coupled to the particles and th
leads to a self-consistent modification of the phaseand the
amplitude of the mean field.

The map forJ is implicit. However, rescaling the vari
ablesyn→Gnyn , K→GnK, and defining

k52AJ, gn52Gn , h5 (
n51

N

gnsin~xn2u!, ~31!

the map can be written in a fully explicit form as@10#
4-4
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xn85xn1yn8 ,

yn85yn1K sinxn2k8 sin~xn2u!,

k85Ak21h21h,

u85u2V1
1

k8

]h

]u
. ~32!

In this model, the mean-field amplitudek plays the role of
the standard map parameter~besides theK constant!, which
is self-consistently coupled to the particles through the or
parameterh. In the mean-field particle dynamics one c
define the totalmomentumof the system as

P5
k2

2
1 (

n51

N

gnyn , ~33!

where the first term on the right hand side represents
momentum of the mean field, and the second term the t
momentum of the particles. This quantity is a constant
motion of Eq.~30!,

P85P. ~34!

This conservation law plays an important role in the diff
sive properties of the system.

IV. DIFFUSION IN PHASE COUPLED MAPS

Let us study the diffusion properties in the phase coup
map ~28!. In particular, we will see that the effect of th
mean-field coupling is the randomization of the phase. T
is, when coupling occurs only through the phase, s
consistency increases the stochasticity of the map, and
diffusive properties of the coupled maps are practically
distinguishable from the dynamics of a phase-randomi
uncoupled map.

In the limit «50 the diffusion coefficient~for the y com-
ponent!, as a function of the parameterK, displays the com-
plex behavior discussed in Sec. II. The first natural ques
is whether this complexity survives in the presence of c
pling with a self-consistent mean field~i.e., for «.0).

In Fig. 1 we showDy
E(K) ~normalized with the RPA pre

diction K2/4) in the uncoupled case («50) and for some
other values of the coupling («50.05 and«50.1). Numeri-
cally, Dy

E(K) is calculated by taking the large time limit o
the expression

Dy
E~ t !5

^@y~ t !2y~0!#2&
2t

. ~35!

For comparisons, we also plot the value ofDy
E(K)/DQL with

the higher order RPA corrections as given by Eq.~20!. As
one can see, for a generic large value ofK the presence of a
small coupling do not change the diffusion coefficient, ap
for the values at which one can observe anomalous diffus
02622
r

e
al
f

d

at
f-
he
-
d

n
-

rt
n

in the uncoupled limit («50). Therefore, the first effect o
the mean field is to remove the ballistic contributions to t
dispersion.

Thus, let us try to focus on the case, where the stand
map («50) shows an anomalous behavior, for e.g.,K
56.9115, and see where the differences with the s
consistent map («Þ0) appear. The diffusion coefficient is a
asymptotic quantity. For finite time, the evolution of Eq.~28!
with small« maintains a memory of the behavior at«50 up
to a timeT(«) ~saturation time!. We defineT(«) as the time
at which the finite-time diffusion coefficient, as given by E
~35!, is reasonably close to its asymptotic value.

In Fig. 2 we showT(«), for a system withK56.9115, as
a function of 1/A«. The approximately linear behavior in th
plot indicates the dependenceT(«);exp(c/A«), with c an
arbitrary constant. Let us note that the anomalous diffusio
mainly due to the presence of ballistic~nonchaotic! trajecto-
ries. Therefore, the failing of anomalous transport can
seen as the recover of a generic statistical behavior. In
sense this is consistent with a scenarioá la Nekhoroshev
@22#. We also remark that, within the range of values inve
tigated, there is not evidence of dependence on the sizeN as

FIG. 1. Normalized diffusion coefficient vsK for different val-
ues of the« parameter; squares for«50, circles«50.05 and dia-
monds for«50.1. Solid line represents the theoretical prediction
given by the higher order RPA approximation~20!. The number of
particles isN560 000,V50.1 and the number of steps is 10 00

FIG. 2. Saturation time,T(«), vs 1/A« for K56.9115 and
N560 000.
4-5
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can be seen in Fig. 3~again for K56.9115). It is worth
mentioning here that in Fig. 3 for«50 one observes the
typical anomalous behavior of the diffusivity, that is,Dy

E

}t0.3 @24#.
The discussed results indicate that the main effect of

self-consistent field is to reduce the deviations from the
tistical prediction. This is to be expected because in this c
as mentioned before, the phase coupling leads to a rand
ization of the phase which is precisely what is assumed in
statistical arguments based on the random phase approx
tion. We check this statement by replacing the self-consis
field with an external noise. We study a system ofN particles
whose evolution is now given by a time-dependent gene
ing function

S~$xn8%,$yn%,t !5 (
n51

N

S0~xn8 ,yn!1« (
n51

N

f „xn82h~ t !…,

~36!

whereh is a random process with the same statistical pr
erties of the self-consistentu, i.e., h is a random numbe
uniformly distributed in the interval@0,2p#. The result for
Dy

E(K56.9115)/DQL against time is plotted in Fig. 4 fo
both the self-consistent and the random field. One obse
that the random approximation is rather accurate. Theref
taking into account the results forK large and the specific
values ofK, where the standard map is anomalous, one
say that the dynamics forK large in the self-consistent ma
model ~28! is equivalent to aneffectivestandard map.

Most interesting,a priori, is the case of small values ofK.
As we have recalled in the preceding section, forK,1 and
«50 there is no diffusion due to the presence of KAM to
However, as Fig. 5 shows, the phase coupled («Þ0) self-
consistent map displays finite diffusion for arbitrary sm
values of K. This is, once again, a manifestation of se
consistent driven phase randomization.

The same scenario as for large values ofK has been iden-
tified, that is, the external self-consistent field is equivale
when diffusion properties are under study, to an external r
dom field. This can be seen again in Fig. 5, where we a
plot the diffusion coefficient obtained from the effective ra

FIG. 3. Dy
E/DQL against time for two different number of pa

ticles, K56.9115, and different values of«. Solid line is for N
560 000 and the dashed line forN540 000.
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dom map. At smallK, one observes a weak dependence
Dy

E on K, while Dy
E.«2/4, leading to a finite diffusivity also

for K50. As mentioned before, it is the breaking of th
regular orbits of the standard map~for K small! induced by
the mean field, that allows the diffusion of particles. This
clearly seen in Fig. 6 where it is shown some trajectories
the phase space forK51 for both the standard map and th
coupled map model~28! with «50.1.

In summary, for model~28! the coupling to an externa
self-consistent mean field is equivalent to the effect indu
by an external random field. This result is valid also forK
,1, where the standard map shows barriers to transpor

V. DIFFUSION IN FULLY SELF-CONSISTENT MAPS

In this section we study the diffusive properties of ful
self-consistent maps. By this we mean maps coupled thro
the phaseand the amplitude of the mean field. Our study w
be based on map~32! with V50, and in the absence o

FIG. 4. Dy
E(K56.9115)/DQL vs time for different values of«

andN560 000. The solid line is for an external self-consistent fie
and the dashed line is for an external random field. The rand
external field is generated by picking, at every time step, a rand
number regularly distributed in the interval@0,2p#.

FIG. 5. Dy
E vs K for different values of«. Here the number of

particles isN560 000 and the final time is 10 000. The solid line
for an external self-consistent field and the dashed line is for
external random field. The straight lines correspond to the li
Dy

E5«2/4 for «50.1 ~dashed-dotted! and «50.05 ~dashed-
doubledotted!.
4-6
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external field (K50) since we are mostly interested in se
consistent effects.

We consider an ensemble ofN particles with coordinates
(xj ,yj ), j 51,2, . . . ,N, in the rectanglexP(2p,p) and y
P(2p/2,p/2). We will focus in the study of a Gaussia
distributed active field

g j5g0expF2~xj
21yj

2!

2s2 G . ~37!

For these nonuniformg j distributions it is useful to distin-
guish between the particle variancespy

2 , and the concentra
tion variancesgy

2 defined as

spy
2 5^@y2^y&p#2&p , sgy

2 5^@y2^y&g#2&g , ~38!

where

^q&p5
1

N (
j 51

N

qj , ^q&g5
1

N (
j 51

N

g jqj . ~39!

A. Subcritical diffusion

In the first simulation we iterated the map with initi
conditionsk(1)50.8, andu(1)50. The upper panel of Fig
7 shows the initialg distribution. Fort.0, the scalar mixes
and in the process modifiesk and u. In particular, in this
case, as shown in Fig. 8,k oscillates in time around a mea
value ^k&50.966 (̂ •& is the temporal average! slightly be-
low the critical valuekc50.9716 for the destruction of KAM
barriers and the onset of diffusion in the standard map.
phase~see also Fig. 8! decreases monotonically.

That is, the self-consistent coupling drives the system
riodically between a diffusive regime with no KAM barrier
(k.kc) and a nondiffusive regime with KAM barriers (k
,k2c). As shown in Fig. 9, this yields to diffusive particl
transport iny, spy

2 52Dt, even though on the averagek is
below the threshold for diffusion, that is there is subcritic
diffusion. Because the peak of theg distribution remains
coherent, in this case there is no diffusion in the concen
tion. As discussed in the preceding section, also in ph
coupled map~28! there is a subcritical diffusion regime
However, there is an important difference between these
cases because in the phase coupled map the time evoluti

FIG. 6. Left, standard map phase space forK51, and, right, the
trajectory of one particle for the system Eq.~28! with K51 and
«50.1.
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the phaseu exhibits random behavior while in the fully self
consistent map, as shown in Fig. 8,u has a regular behavior

The oscillations ofk are caused by the feedback effect
the active scalar trapped in the period-one island of the m
~see Fig. 7!. We describe the coherent part of the distributio
i.e., the part of the distribution trapped in the period-o
island, as amacroparticle. The macroparticle representatio
is a sort of renormalization process in which a group of p
ticles with different values ofgk are replaced by one with a
effective g. The macroparticle concept provides a link b
tween systems with large~or infinite! degrees of freedom an
low dimensional systems@16,12,25#. In the case considere
here, at a given timet, the macroparticle rotates around theo
point of an effective standard map with coupling consta
K5k(t) and phaseu(t).

The oscillation period for a standard map of coupling p
rameterK can be estimated as@22#

T5
2p

arccosS 12
K

2 D . ~40!

To use this result to calculate the rotation period of t

FIG. 7. Phase space particle distribution in the fully se
consistent map~32! for a Gaussian distributed active scalar acco
ing to Eq.~37! with 2s250.2 andg050.0269 and initial conditions
k(1)50.8 andu(1)50. The two panels show the particle distribu
tion at the initial and final time, after 137 000 steps. The height o
vertical lines corresponds to the active scalar concentrationg j of
the j th particle located at (x,y)5(xj ,yj ).
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self-consistent oscillation ofk, note that according to the
conservation of momentum in Eq.~33!,

k2~ t !5k2~1!1 (
n51

N

gn@yn~1!2yn~ t !#. ~41!

In the macroparticle description, this relation can be writ
as

k2~ t !5k2~1!1GmcYmc~ t !, ~42!

FIG. 8. Time evolution ofk andu in fully self-consistent map
~32! for a Gaussian distributed active scalar according to Eq.~37!
and initial conditionsk(1)50.8 andu(1)50. The plots show the
evolution in time windows at the beginningnP(0,60) and at the
endnP(137 000,137 060) of the run. The same periodic behavio
observed at intermediate times.

FIG. 9. Subcritical diffusion in fully self-consistent map~32! for
a Gaussian distributed active scalar according to Eq.~37! and initial
conditionsk(1)50.8 andu(1)50. Even though in this case, a
shown in Fig. 8, the mean value of^k& is below the critical value
for the destruction of all KAM barriers, the variance shows cle
evidence of diffusive transport with 2Dy

E50.0038.
02622
n

whereGmc5(ngn is the effectivege f f of the macroparticle
andYmc the y coordinate of the macroparticle. According
Eq. ~42!, the oscillation period ofk equals the rotation pe
riod of the macroparticle, which can be estimated using
~40! with K5^k&. For ^k&'1 this approximation gives a
periodT'6, which is in good agreement with the numeric
results~see Fig. 8!.

B. Self-consistent suppression of diffusion

In the previous example, the constant rotation of the
tive scalar trapped in the period-one island gave rise to
tionary oscillations ofk and steady particle diffusion iny.
However, this is not always the case, and it is possible
diffusion is suppressed rather than maintained by s
consistent effects. As an example, consider the same in
conditions as before but with a smaller initial value of t
coupling parameterk, namely,k(1)50.6. In this case, as
Fig. 10 shows, there is an initial regime in whichk oscillates
beyond kc and diffusive transport is present withD
50.0014. However, after a fraction of particles have m
grated to regions of largey, k drops systematically belowkc
and diffusion is suppressed. At this point the system enter
a transient subdiffusive regime leading to the eventual eli
nation of the diffusion. As shown in Fig. 10, and in mo
detail in Fig. 11, the suppression of the diffusion is acco
panied by a damping of the coupling parameterk. Note that
consistent with the estimation in Eq.~40!, the period of os-
cillation remains constantT'6. According to momentum
conservation in Eq.~42!, this damping can be viewed as
momentum transfer from the mean field to the particles. T
is reminiscent of the Landau damping mechanism in plasm
in which an energy transfer from the field to the particl
leads to a collisionless damping of the field.

is

r

FIG. 10. Self-consistent suppression of diffusion in map~32! for
a Gaussian distributed active scalar according to Eq.~37! and initial
conditionsk(1)50.6 andu(1)50. Upper panel shows the tim
evolution ofk and the lower panel the time evolution of the squa
of the particle variance. FornP(1,63104), k reaches values abov
the threshold for KAM barriers destruction (kc'1). For later
times, the maximum ofk drops systematically belowkc and diffu-
sion is suppressed.
4-8
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C. Macroparticle instability and diffusion of concentration

In the previous examples, the value ofk was relatively
small, and the macroparticle~i.e., the conglomerate of par
ticles with the largest values ofg) remained coherent. Thi
yields either steady diffusion~see Fig. 9! or transient diffu-
sion~see Fig. 10! of the particle distribution, but no diffusion
of the concentration, i.e.,sgy'0. However, self-consisten
effects can destabilize the macroparticle and the concen
tion field diffuses. To illustrate this, we consider the sa
Gaussian distribution@Eq. ~37! as before but with a large
initial value of k, namely,k(1)53.3]. In this case, as Fig
12 shows, up ton'53103, k remains approximately con
stant, the phaseun @panel~b!# decreases monotonically, th
concentration variancesgy does not grow and the particl
variance spy exhibits standard diffusion. Aroundn'5
3103 there is a transition andk grows rapidly giving rise to
a diffusion of the concentration and a jump in the parti
diffusion. Figure 13 shows the active scalar distribution
two different times.

D. Quasilinear diffusion

In the phase and amplitude coupled map there is als
regime in which the phase is random and the map is equ
lent to a random standard map. This leads to quasilin
diffusion as shown in the following. This regime is a
proached for initialk(1) such that, in the long-time limit, the
time average valueKe f f51/(Nt2N0)(

n5N0

Nt k(n) is larger

than 1, beingNt the final time, andN0 a proper time chosen
to avoid the initial transient behavior. Since the value ofk
depends on the iteration time, the eddy diffusivity is a
time dependent, and we must define an effective diffusiv
which is nothing but the time average of the instantane
diffusion, De f f51/(Nt2N0)(n5N0

Nt Dy
E(n). With these defi-

nitions, the quasilinear approximation is recovered. This

FIG. 11. Damping ofk during the self-consistent suppression
diffusion shown in Fig. 10. The curve with larger amplitude sho
the beginning of the time series~top panel of Fig. 10 withM
525) and the curve with the smaller amplitude shows the tail of
time series~top panel of Fig. 10 withM5143104).
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be seen in Fig. 14 by plotting theDe f f /DQL vs Ke f f , and
with solid line we plot the RPA approximation Eq.~20!.

VI. CONCLUSIONS

We have studied self-consistent diffusion in active syst
described by globally coupled symplectic maps. We focu
our analysis in two systems: an ensemble of phase cou
maps, and an ensemble of maps coupled through the p
and the amplitude. The latter model is a symplectic discr
zation of the single wave model and as such represen
simplified description of self-consistent transport in plasm
and fluids. Numerical results obtained with this model in
cate that self-consistency plays a critical role in the diffus
properties of the system. In particular,~a! for small initial
values of the standard map parameter,k(1)50.8, coherent
oscillations of the active scalar give rise to periodic osci
tions ofk above and below the threshold for barrier destru
tion (kc50.9716) leading to subcritical diffusion;~b! for
smaller initial values,k(1)50.6, there is a diffusive tran
sient that eventually is suppressed by self-consistent effe
~c! for larger values,k(1)53.3, the active scalar loses co
herence and this leads to a jump in the particle diffusion a
to the diffusion of the concentration field;~d! for large
enough initial values ofk there is widespread chaos an
~with the exception of initial values close to accelerator mo
els! self-consistency is shadowed by stochasticity leading
quasilinear difusion. The behavior of the phase coupled m
is in general different. In this case, we have shown that~a! in
the limit of largeK, that is strong stochasticity of the flow
the external self-consistent field~at least for diffusion prop-
erties! is equivalent to a random field;~b! the singular prop-
erties of the standard map, like the existence of ballis

e

FIG. 12. Macroparticle instability and diffusion of passive sca
concentration in the fully self-consistent map~32! for a Gaussian
distributed active scalar according to Eq.~37! and initial conditions
k(1)53.3 andu(1)50. Panel~a! shows the time series ofkn , ~b!
the phaseun , ~c! f the concentration variancesgy

2 , and ~d! the
particle variancespy

2 . The lower and upper dashed lines ha
slopes equal to 1 and 0.62, respectively. Aroundn'53103, the
macroparticle looses coherence,kn exhibits large fluctuations,un

drops to a constant value, and there is a jump insgy
2 andspy

2 .
4-9
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modes giving rise to anomalous diffusion, are overcome
the external field;~c! for K small, diffusion is different from
zero, i.e., the external field breaks the barriers to trans
present in the standard map. Moreover, again the exte
field is equivalent to a random driving field.

FIG. 13. Active scalar distribution during the macroparticle
stability phase@panel~a!#, and the diffusive phase@panel~b!# in the
fully self-consistent map~32! for the run shown in Fig. 12. The
initial condition corresponds to the Gaussian distributed profile
Eq. ~37! shown in Fig. 7. In the plots, the height of a vertical lin
centered at (x,y) corresponds to the active scalar concentrationg j

of the j th particle located at (x,y)5(xj ,yj ).
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