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Abstract

We review and discuss some different techniques for describing local dispersion properties in fluids. A recent Lagrangian
diagnostics based on the finite scale Lyapunov exponent (FSLE), is presented and compared to the finite time Lyapunov
exponent (FTLE), to the Okubo–Weiss (OW) and Hua–Klein (HK) criteria. We show that the OW and HK are the limiting
case of the FTLE, and that the FSLE is the most efficient method for detecting the presence of cross-stream barriers. We
illustrate our findings by considering two examples of geophysical interest: a kinematic model of a meandering jet, and
Lagrangian tracers advected by stratospheric circulation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Transport processes play a crucial role in many
natural phenomena. Among the many examples, we
just mention particle transport in geophysical flows
which is of great interest for atmospheric and oceanic
issues. The most natural framework for investigating
such processes is the Lagrangian viewpoint, in which
the tracer trajectoryx(t) is advected by a given Eule-
rian velocity fieldu(x, t) according to the differential
equation

dx
dt

= u(x, t). (1)
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Despite the simple formal relation (1), the problem
of connecting the Eulerian properties ofu(x, t) to
the Lagrangian properties of the trajectoriesx(t), and
vice versa, is a very difficult task. In the last 20–30
years the scenario has become even more complex by
the recognition of the ubiquity of Lagrangian chaos
(chaotic advection). This means that even very simple
Eulerian fields can generate unpredictable Lagrangian
trajectories which are practically indistinguishable
from those obtained in a complex, turbulent, flow
[1–4].

In the following, we will restrict our attention to the
case of two-dimensional incompressible velocity field
u(x, t) with x = (x, y). Incompressibility is automati-
cally satisfied by introducing the stream function
ψ = ψ(x, t) and, consequently, defining the velocity
field asu = (ψy,−ψx). The evolution equation (1)
then becomes
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dx

dt
= ψy,

dy

dt
= −ψx. (2)

Formally (2) is a Hamiltonian system with Hamil-
tonian ψ(x, t). Chaotic trajectoriesx(t) typically
appear as a consequence of the time dependence ofψ

[2].
Many geophysical flows, when observed at suffi-

ciently large scale, are within this class [5,6]. More-
over, time dependence can be often considered a per-
turbation over a given steady flow, i.e. (2) represents a
quasi-integrable Hamiltonian system. It is well known
that in quasi-integrable Hamiltonian systems chaos
can be quite non-uniform in the phase space, due to
the presence of the invariant KAM tori with a chaotic
layer around them [3]. The presence of these regu-
lar islands (also called coherent structures in the con-
text of geophysical flows) is of particular importance
for the dispersion process because they act as bar-
riers to transport. The sensitivity of different diag-
nostics of transport to the presence of barriers will
be the main topic of our investigation. In particular,
we will consider the finite time Lyapunov exponent
(FTLE), the Okubo–Weiss (OW) and Hua–Klein crite-
ria (HK), and the local finite scale Lyapunov exponent
(FSLE).

We discuss these different methods by considering
two examples. First, we will study transport proper-
ties in a kinematic meandering jet model, formerly
introduced for describing the Gulf stream [5,7]. Sec-
ond, we will analyze a large number of stratospheric
isoentropic trajectories, computed according to (1)
from assimilated wind fields, describing Lagrangian
motion around the polar vortex. In both situations,
our results show that the existence of barriers limit-
ing the dispersion across the stream is well described
by the FSLE but it is completely missed by the OK
and HK criteria, which can only depict the landscape
of alternating unstable hyperbolic and stable elliptic
points of the flow. The FTLE will be discussed in
relation to the OW and HK diagnostics and to the
FSLE.

The remaining of this paper is organized as follows.
In Section 2, we introduce and discuss the different
diagnostics for characterizing dispersion. Section 3 is
devoted to the analysis of the meandering jet and of

the polar vortex. Finally, in Section 4, we present some
conclusions.

2. Characterization of local transport properties

In the presence of Lagrangian chaos, two close
trajectories typically separate exponentially in time
[4]. Thus the natural statistics we adopt for describing
chaotic particle spreading is the relative dispersion
statistics. Relative separation between two particles
R(t) = x′(t)− x(t) evolves according to the velocity
difference

dR
dt

= u(x(t)+ R(t), t)− u(x(t), t). (3)

As far as particle separation remains much smaller
than the typical length scalelE of the velocity field,
we can linearize (3) around the trajectoryx and, for
a generic time dependent flow, we expect exponential
growth of the separation, i.e.

R(t) � R(0)eλt , (4)

whereλ is the Lagrangian Lyapunov exponent (LE).
In the opposite limit,R � lE, the two particles

feel uncorrelated velocity fields and one recovers the
standard diffusive regime, i.e.

〈R2(t)〉 � 2Dt, (5)

where the average is taken over many particle pairs
and whereD is the diffusion coefficient.

It is important to remark that, in most realistic situa-
tions, both asymptotic regimes, i.e. very smallR(t) for
(4) and very largeR(t) for (5) cannot be attained. From
one side, particles separation cannot be sufficiently
small to justify the linearization leading to (4). In the
opposite limit, large separations cannot be reached in
the presence of boundaries at scales comparable with
lE. As a consequence, the asymptotic quantities asλ

andD cannot be computed and a non-asymptotic char-
acterization of transport is needed [8].

Let us discuss, now, some techniques one can use
to characterize local dynamical properties of a system,
in particular the relative dispersion rate as a function
of the initial position.
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2.1. The finite time Lyapunov exponent

Let us start from the definition of the Lagrangian
LE:

λ = lim
t→∞ lim

R(0)→0

1

t
ln
R(t)

R(0)
. (6)

In (6), one basically assumes that the linearization of
the separationR(t) on a generic reference trajectory
holds for an infinite time. This is correct only if the per-
turbation can be considered infinitesimal at any time.
The characteristic time naturally associated to the LE
is known as the predictability timeTλ = λ−1, which
is the characteristic time at which one can predict the
position of the tracer in the future. The FTLE is ob-
tained by avoiding the limitt → ∞ in (6). This gives
the instantaneous growth rate over a finite intervalτ as

γτ (t, x) = lim
R(t)→0

1

τ
ln
R(t + τ)

R(t)
, (7)

which at variance withλ, depends on the initial point
x(t). The FTLE is distributed around a mean value
which is nothing but the LE,〈γτ 〉 = λ, where the
average is computed over a virtually infinite number
of τ intervals along the trajectory [9].

In principle, even at very smallR(t), one must wait
a certain time interval,Tw, for the perturbation to align
along the Lyapunov direction [10]. In the presence of
many degrees of freedom, the possibility that the wait-
ing timeTw is of the same order of the predictability
timeTλ cannot be excluded thus making the relevance
of Tλ rather dubious (see [11] for a review on the pre-
dictability time in extended systems).

Let us now discuss some practical shortcomings
arising when we want to analyze realistic situations
described by experimental or model data. First, as we
already recalled, in quasi-integrable Hamiltonian sys-
tems, different regions in the phase space can dis-
play different behaviors. As a consequence, one has a
non-trivial spatial distribution of LEs: zero if the tra-
jectory lies in a regular island, positive if it diffuses
across the stochastic layer. In special cases, when for
instance structures of the velocity field are “localized”
persistent features, at least within the time intervals
considerably longer than the characteristic Lagrangian

time, a more refined description in terms of finite time
LE can be more appropriate [12].

In order to measureγτ (t) at a pointx(t), one can
make use of the following procedure. Backward inte-
gration in time for an intervalT∗ bring the trajectory
at the pointx(t − T∗). An infinitesimal perturbation
δx(t − T∗) is switched on and it is integrated forward
to δx(t). If T∗ is sufficiently long, i.e.T∗ ≥ Tw, the
perturbationδx(t) will be aligned along the Lyapunov
eigenvector and further integration toδx(t + τ) will
give the FTLE according to (7) [10]. In general,Tw is
not known a priori and can vary with the initial condi-
tions. More serious problems arise from the limits of
resolution in the knowledge of experimental or sim-
ulated Lagrangian data, which can easily disrupt the
linear approximation scenario.

WhenR(t) attains finite sizes, i.e. of the order of
the characteristic lengths of the system, the so-ccalled
FSLE gives an appropriate description of the intrinsic
physical properties of dispersion at different scales of
motion. We will discuss this point in Section 2.3.

2.2. The Okubo–Weiss and Hua–Klein criteria

In two-dimensional turbulent flows, the stirring
properties of initially small material lines are related
to the combined effect of eddy and jet features of
the velocity field. In cases when continuous velocity
fields are given, a popular way used to characterize the
local rate of separation of initially close trajectories is
the OW criterion [13,14] based on the computation of
the eigenvalues of the velocity gradient tensor. If ex-
plicit time dependence cannot be neglected, HK [15]
have proposed a generalization of the OW criterion
based on the computation of the eigenvalue of the
acceleration gradient tensor, related to the distribu-
tion of the pressure field. Recently, the connection of
the OW criterium with the properties of Lagrangian
dispersion has been formally discussed [16].

Let us recall the two criteria in the case of 2D in-
compressible velocity field with Lagrangian evolution
given by (2). The evolution of an infinitesimal sepa-
rationR(t) is given in the tangent space as

dR
dt

=
(
ψxy ψyy

−ψxx −ψxy

)
R ≡ MR, (8)
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where the JacobianM has the propertyM2 = λ01 with
λ0 = −det(M). At small times, the solution of (8) is

R(t) = [1 + Mt + 1
2Nt2]R(0)+ O(t3), (9)

whereN = λ01 + dM/dt . The OW criterion consists
in computingλ0, i.e. the product of the eigenvalues
of M. We recall that the quantityλ0 can be written in
terms of the square strainσ 2 and the square vorticity
ω2 as

λ0 = 1
4(σ

2 − ω2). (10)

If λ0 is positive, the two eigenvalues ofM are real,
the velocity field is locally hyperbolic and strain
overcomes rotation. For negativeλ0, we have imagi-
nary eigenvalues and a predominance of rotation over
strain.

Of course, the OW criterion may not be sufficient to
determine the local strain–vorticity balance in a time
dependent flow [17]. In this respect, the HK criterion,
being based on the sign of the largest eigenvalue of
theN matrix λ+ = λ0 + λ1 with

λ1 =
√

dψ2
xy

dt
− dψxx

dt

dψyy

dt
(11)

gives a “more Lagrangian” description. Both of them
provide a picture of the distribution of stable elliptic
points and unstable hyperbolic points in the flow. Let
us observe that in the case of stationary velocity field,
dM/dt = 0 and one hasλ+ = λ0.

Let us remark the relationship existing between the
HK criterion and the FTLE. The “instantaneous” LE
γτ estimates the growth rate of a typical perturbation
within a finite time intervalτ , after the perturbation
has aligned along the most unstable direction, so that
it is an intrinsic property shared by all the trajecto-
ries (except for a set of zero probability measure). The
HK eigenvalueλ+ estimates the local maximum strain
rate, regardless any alignment time of the perturba-
tion, so that from the Lagrangian point of view, it may
be biased by transient behaviors. In other words, mea-
suringλ+ corresponds to measuringγτ at very small
τ (the integration time step) starting with a perturba-
tion always aligned along the locally most unstable
direction. In practical situations it can happen that the

HK eigenvalue and the FTLE give similar local de-
scriptions, but from a theoretical point of view, start-
ing with a perturbation along the local most unstable
direction is as arbitrary as choosing any other direc-
tion: after a transient, the time evolution will drive the
(infinitesimal) perturbation definitely along the most
unstable Lyapunov eigenvector.

2.3. The local finite scale Lyapunov exponent

In most cases of interest, the linear regime during
which the exponential growth of the inter-particle dis-
tance occurs cannot be resolved. Particle spreading is
generally observed on large spatial scales, of the or-
der of the characteristic lengths of the system, and ap-
propriate nonlinear techniques must be employed to
quantify relative dispersion rates (see [18] for a re-
view about non-asymptotic properties of transport and
mixing).

Let us consider a very small (infinitesimal) initial
perturbationR(0) on a trajectoryx. For a chaotic sys-
tem, after the initial transient,R(t) typically grows
exponentially in time according to (4). We wait until
R(t) reaches a certain thresholdδi , at a given timeti .
Let xi be the position of the trajectoryx at time ti .
At a later timetf , R(t) will reach a larger threshold
δf = r · δi with an assignedr > 1. We now define
the r-amplification time ofR(t), relative to the initial
positionxi asτ(δi, xi, r) = tf − ti . From this quantity,
the local FSLE is defined as

λr(δi, xi) = 1

τ(δi, xi, r)
ln r. (12)

The exponentλr(δi, xi) is a measure of the local am-
plification rate of a perturbation of sizeδi on a trajec-
tory passing by the pointxi . In the case of periodic
time dependence in the equation of motion, the local
FSLE will depend also on the initial Eulerian phase.

The prescription described above is necessary in or-
der to characterize the perturbation growth as an in-
trinsic property of the system. Of course, in realistic
situations, we have to consider the following prob-
lems: the flow is not simply periodic and thusλr may
depend explicitly on time. Moreover, we cannot ob-
serve distances below a certain threshold because of
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finite resolution, and thus the initial perturbation can-
not be considered infinitesimal. Another important re-
mark is that in practical applications it may not be
possible to generate a uniform distribution of initial
conditions. In particular, let us consider a 2D time de-
pendent velocity field (e.g. the surface circulation of
a sea or an isoentropic layer of the stratosphere) and
the relative Lagrangian dispersion of trajectories. Usu-
ally, one cannot set the initial distance between two
particles at an arbitrarily small size. Finite resolution
imposes a lower limit to physically attainable distance
sizes, sayδ, and we can only hope to take into account
all the possible realizations of the local dispersion rate
by computing the average ofλr(δ, x) (r > 1) over
a large number of directions around the initial point
x, i.e. on a sphere with radiusδ. Furthermore, ifδ is
not very small compared to the characteristic scale of
the system, the linear regime of instability is already
expired. The FSLE is, by its nature, a nonlinear in-
dicator of trajectory instability so it measures relative
dispersion rates at finite scales of motion. How long
can we follow two trajectories so that their FSLE is
still meaningful as a local diagnostics? The answer
depends essentially on how much rapidly the velocity
field varies in time relative to the Lagrangian char-
acteristic time. For instance, ifTE is the time scale
within which the Eulerian structures, e.g. current sys-
tems, change their geometrical and physical aspects,
local FSLEs are meaningful only if they are observed
on times� TE, i.e. in an almostfrozen field approxi-
mation.

Let us now briefly discuss the main objective of
the present paper, i.e. the detection of barriers in par-
ticle transport. To this aim, we see the flow with an
uniform distribution of Lagrangian tracers and com-
pute the FSLE for any trajectory according to the pres-
cription given above.

If �E represents some characteristic length in the
flow, e.g. the typical size of the eddies around the Gulf
stream in the North Atlantic Ocean or around the polar
jet current in the stratosphere, then particles trapped
inside vortices or traveling down jet streams may never
separate beyond the scale�E, givingλr(δ) = 0 for δ ≤
�E. On the contrary, particles located in the chaotic
layer will give a positive FSLE. Thus, at an appropriate

value of the thresholdδ, the map of FSLE (12) can
be used as an efficient indicator of the presence of
barriers in transport.

We will see below how a simple periodically per-
turbed meandering jet can be used as a significant
test for comparing different diagnostics for detecting
macroscopic barriers. An interesting result related to
geophysical data analysis concerns the barrier effects
of the jet current of the stratospheric polar vortex
(in the southern hemisphere). This technique has also
been used to study local mixing properties in ocean
systems.

3. Results

3.1. Numerical experiments

We first discuss a simple, but not trivial, kinematic
model in which a barrier to motion is known to ex-
ist for certain values of the parameters. The transition
to the barrier-breakdown occurs by variation of some
parameters. We use this model to show what kind of
information can be extracted from the different tech-
niques discussed above. The system, formerly intro-
duced as a model of transport across the Gulf stream
[5,7], consists a time periodic streamline pattern form-
ing an oscillating meandering (westerly) current with
recirculations along its boundaries:

Ψ = − tanh

[
y − B coskx√

1 + k2B2 sin2kx

]
+ cy, (13)

wherek is the spatial wave number of the structure,
c the retrograde velocity in the “far field”,B the am-
plitude of the meanders which varies periodically in
time as

B = B0 + ε cos(ωt + φ). (14)

The system can be fully mixing, i.e. any portion of
the domain is definitely visited from any initial con-
dition, in a certain portion of the parameter space
(ε, ω), where in particular one has cross-stream trans-
port. This system has two separatrices, with a spatial
periodic structure, see Fig. 1, coinciding with the bor-
derlines of the current. At very smallε, the chaotic
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Fig. 1. Map of the stream function of the meandering jet model. The isolines drawn in black represent the borderlines of the current. The
jet core becomes a permeable barrier to cross-stream motion depending on the parameter values(ω, ε) of the time periodic perturbation.

layer is restricted to a limited region around the sepa-
ratrices, and no cross-stream mixing occurs. In order
to have large-scale chaotic mixing (i.e. particles jump-
ing across the jet from a northern recirculation to a
southern one, and vice versa) one needs the overlap
of the resonances [19], whenε andω are larger than
certain critical thresholds (Fig. 2).

In Fig. 3, we report the OW indicatorλ0(x) as
function of the initial position for the two situations
with and without the presence of barriers. Inciden-
tally, the HK indicatorλ+(x) shows no significant
differences fromλ0 and it is not shown. It is impor-
tant to observe that both the OW and HK criteria are
not able to detect the existence or not of a dynami-
cal barrier, i.e. the two figures are practically indistin-
guishable.

The FTLE γτ (x) is shown in Fig. 4. The compu-
tation is done according to (7) with initial separation
R(t) = δ for all the particle pairs, without the “wait-
ing procedure” (i.e.Tw = 0). This is because we want
to mimic a realistic situation of data analysis in which
arbitrarily small separations cannot be attained.

We note that although the indicator is able to de-
tect the jet core (the low FTLE value filament inside
the chaotic current), also in this case the transition be-
tween the confined chaos regime and the large-scale
mixing regime is not observed (compare Fig. 4a and
b). The asymmetry of the FTLE map is due to the de-
pendence of this indicator on the initial phase of the
periodic flow.

Let us consider the local FSLE asλr(x), computed
on the same trajectories and with the same initial sep-
aration of Fig. 4. Fig. 5 contains the results of theλr
maps, before and after the overlap of the resonances, in
what we can call the Melnikov [20] and the Chirikov
[19] regimes, respectively. The amplification factorr
and the lower thresholdδ are chosen such that the up-
per thresholdr · δ is of the order of the jet width. In
one case, black regions of zero FSLE values, i.e. par-
ticle pairs which never reach the upper threshold, are
located in the jet core and in the centers of the recir-
culation: when chaos is still confined in the vicinity of
the separatrices, no cross-stream transport is allowed.
In the other case, after the separatrix breaking has
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Fig. 2. Critical curve in the parameter space(ω, ε) separating between “Melnikov regime” (below the curve), in which chaos is confined
close to the separatrices, and “Chirikov regime” (above the curve), in which large-scale chaotic mixing occurs.P1, (ω, ε) = (0.1,0.3), and
P2, (ω, ε) = (0.4,0.3), are the two points in the parameter space discussed in the Lagrangian simulations.ω and ε are dimensionalized
with respect toω0 = 0.25 (pulsation of recirculating orbits next to the separatrices) andB0 = 1.2 (mean meander amplitude).

occurred, no zero FSLE values are present, indicating
that particles can spread apart over any distance from
any initial condition.

Let us conclude this section by remarking that a
Lagrangian diagnostic based on the FSLE shows a
major skill in detecting dynamical barriers in the flow.

3.2. Geophysical data

We now consider a geophysical example regard-
ing Lagrangian motion on an isoentropic layer (i.e. at
constant potential temperature) at a low stratospheric
level, in the presence of the winterly polar vortex [21],
characterized by a quasi-zonal robust jet stream.

The typical flow pattern is usually represented by
means of stereographic maps of isoentropic potential
vorticity (PV), see Fig. 6, and the modulus of its gra-
dient shown in Fig. 7. In winter, the stratospheric PV
can be considered as a quasi-conserved quantity over

a time scale of about 2–3 weeks. It is also widely ac-
cepted in literature that the outer border of the polar
vortex, usually identified by the maximum horizontal
gradient of isoentropic PV [22], can act as a strong
barrier to meridional cross-stream transport.

The kinematics is remarkably similar to that of
the previously discussed meandering jet model, if we
imagine the latter as closed on itself in a circular ge-
ometry. The Lagrangian data set we have used for the
analysis account of about 104 trajectory pairs, initially
uniformly distributed over the southern hemisphere
on the 475K isoentropic surface (lower stratosphere).
Trajectories are calculated by means of the Univer-
sity of L’Aquila Trajectory Model [23,24] using ana-
lyzed wind, pressure, and temperature fields from the
UK Meteorological Office (UKMO) [25] provided by
the British Atmospheric Data Center (BADC). Lati-
tude coverage goes from poles to about tropics. The
trajectories run from 30 June 1997 up to a maximum



G. Boffetta et al. / Physica D 159 (2001) 58–70 65

Fig. 3. OW parameterλ0 for the meandering jet system at the two parameter pointsP1 (a) andP2 (b) of Fig. 2.

observation time of 20 days. The initial distance be-
tween pair particles isRi � 10 km. Being the tra-
jectory evolution simulated with wind fields relative
to the southern hemisphere winterly season, we are
observing a situation of stable polar vortex regime
[26].

The local properties of the particle relative disper-
sion are obtained by computing the OW eigenvalue
λ0 and the local FSLEλ(r). Spatial derivatives of the
velocity fields used for the calculations are estimated
as finite differences over spatial grid steps of the order
of 100 km.
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Fig. 4. FTLE γτ (x) for the meandering jet system at the two parameter pointsP1 (a) andP2 (b). The number of particle pairs is 10,000
with initial separationδ/L = 1.9× 10−3 uniformly distributed on the periodic domain with spatial lengthL = 2π/k (with k = 0.84). The
time delay isτ = π/ω0.
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Fig. 5. The local FSLEλr (x) for the meandering jet system at the parameter space points,P1 (a) andP2 (b). The Lagrangian trajectories
are the same as of Fig. 4. The amplification factor isr = 100. Only the particle pairs that reach a relative separation ofr · δ � 10−1L

give a positive signal in terms ofλ(r).
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Fig. 6. Map of PV taken at 30th day of June 1997, relative to the
475K layer, southern hemisphere.

The results are presented in the two-dimensional
maps in Figs. 8 and 9. A further analysis (not shown)
demonstrates thatλ0 does not change substantially in
time and, as a consequence, it reproduces the essential
features of the HK exponentλ+. Neither of the expo-
nents, as in the previous example, is able to detect the
presence of a barrier to transport.

Fig. 7. Map of the magnitude of the gradient of PV shown in
Fig. 6.

Fig. 8. OW indicatorλ0(x) for the analyzed wind fields corre-
sponding to Fig. 6, computed at the 7th day of the Lagrangian
simulation, 6 July 1997.

On the other hand, the FSLE map (see Fig. 9) de-
tects the dynamical barrier as the region of vanishing
FSLE values. The location of the barrier is in good
agreement with the definition of polar vortex border

Fig. 9. The local FSLEλr (x) map for the isoentropic trajectory
data set relative to the 475K layer. The initial distance between
Lagrangian tracers isδ � 10 km and the amplification factor is
r = 10.
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based on geophysical considerations, e.g. the PV gra-
dient shown in Fig. 7 [22].

4. Conclusions

We have discussed several techniques proposed
for describing dispersion in two-dimensional flows.
In particular, our analysis has been focused on the
capability of these techniques to detect the presence
of barriers to transport. By means of two exam-
ples of geophysical relevance, we have shown that
Eulerian-based techniques, such as the OW criterium
and its generalization proposed by HK, are not sen-
sible to the presence of barriers. The Lagrangian
finite time LE is, in principle, useful for describing
space variations of the chaotic properties, e.g. in a
quasi-integrable Hamiltonian system, but it is limited
to small-scale properties of dispersion. A recent non-
linear Lagrangian diagnostics, based on the FSLE, is
found to give the correct description of the presence
of large-scale barriers. As final remark, we notice
that the OW criterion has been recently shown to
give poor information also in the case of fully de-
veloped turbulence [27]: the probability distribution
function of λ0, P(λ0), for a typical 2D turbulent
field is not sensitive to the presence of coherent
structures, i.e.P(λ0) is the same as for a Gaussian
field.

From a general point of view, it is not a surprise that
purely Eulerian statistics, such as the OW quantity, are
unable to predict the behavior of Lagrangian tracers.
The presence of dynamical barriers is a fundamental
information about the transport properties of the flow
and thus can be considered as a good discriminatory
for the diagnostics. It would be interesting to check
the performance of the proposed methods on other
geophysical flows.
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