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I. INTRODUCTION

The contribution of H.J. Poincaré in Celestial Mechanics has an extremely rare, possibly

even unique, character in Physics and Mathematics. While, usually, scientific books become

obsolete in a few years (or several tens of years), the Méthodes Nouvelles de la Mécanique

Céleste [35] more than one century later still remains a source of inspiration not only for

beginners but also for confirmed scientists in many branches of the Theory of Dynamical

Systems. Many of the methods, concepts and ideas introduced there by Poincaré are still

useful tools even in fields apparently distant from Celestial Mechanics.

We discuss here Chaotic Advection in laminar incompressible flows and long-time dif-

fusive behavior. The basic mechanism for the chaotic behavior generated by homoclinic

intersections in quasi-integrable Hamiltonian systems, as well as the multi-scale expansion,

turn out to be still the main ingredients of this issue. The multi-scale approach for partial

differential equations, which will be explained below, can be seen as a spatio-temporal exten-

sion of the methods introduced by Lindstedt, and improved by Poincaré, for the treatment

of the secular terms in Mechanics.
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II. LAGRANGIAN CHAOS

A problem of great interest concerns the study of the spatial and temporal structure of

the so-called passive fields, indicating by this term quantities passively driven by the flow

(i.e. without perturbing the dynamics of the fluid), such as the temperature under certain

conditions [31]. The equation for the evolution of a passive scalar field θ(x, t), advected by

a given velocity field v(x, t), is

∂tθ + ∇ · (v θ) = D∇2θ (1)

where D is the molecular diffusion coefficient.

The problem (1) can be studied through two different approaches. Either one deals at

any time t, and any point x of the space domain covered by the fluid, with the field θ(x, t)

or one deals with the trajectory of each fluid particle. The two approaches are usually

designed as “Eulerian”and “Lagrangian”, although both of them are due to Euler [23]. The

two points of view are in principle equivalent.

The motion of a fluid particle is determined by the differential equation

dx

dt
= v(x, t) (2)

which also describes the motion of test particles, for example a powder embedded in the

fluid, provided that the particles are neutral and small enough not to perturb the velocity

field, although large enough not to perform a Brownian motion. Particles of this type

are commonly used for flow visualization in fluid mechanics experiments, see [39]. Let us

remark that the precise equation for the motion of a material particle in a fluid can be rather

complicated [30].

It is now well established that even in regular (i.e. laminar) velocity field the motion

of fluid particles may be very irregular (i.e. turbulent) [19,2]. In this case, initially nearby

trajectories diverge exponentially and one speaks of Lagrangian chaos. In general, chaotic

behaviors can arise in two-dimensional flow only for time dependent velocity fields in two
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dimensions, while it can be present even for stationary velocity fields in three dimensions

[1,15]. Let us observe that for the dynamical system (2) the phase space coincides with the

physical space.

In the following we will consider only incompressible flows. If D = 0, it is easy to realize

that (1) is equivalent to (2). In fact, we can write

θ(x, t) = θo(T
−tx) (3)

where θo(x) = θ(x, t = 0) and T is the formal evolution operator of (2) ,

x(t) = T tx(0). (4)

Taking into account the molecular diffusion D, (1) is nothing but the Fokker-Planck

equation associated to the Langevin equation [13]

dx

dt
= v(x, t) + η(t) (5)

where η is a three-dimensional Gaussian process with zero mean and variance

〈ηi(t) ηj(t
′)〉 = 2Dδij δ(t− t′). (6)

In the following we will consider only incompressible flow

∇ · v = 0 (7)

for which the dynamical system (2) is conservative, i.e. the volume is preserved under the

time evolution. In two dimensions, the constraint (7) is automatically satisfied assuming

v1 =
∂ψ

∂x2
, v2 = − ∂ψ

∂x1
(8)

where ψ(x, t) is the stream function, which is assumed to be sufficiently smooth. Inserting

(8) into (2) the evolution equations become

dx1

dt
=

∂ψ

∂x2
,

dx2

dt
= − ∂ψ

∂x1
. (9)

Formally (9) is a Hamiltonian system with the Hamiltonian given by the stream function ψ,

and the canonical variables are the spatial coordinates x1 and x2: (q, p) = (x1, x2).
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A. Examples of Lagrangian chaos

As a first example we consider a 3D stationary velocity field, the so-called ABC flow

v = (A sin z + C cos y, B sin x+ A cos z, C sin y +B cosx) (10)

where A, B and C are non zero real parameters. Because of the incompressibility condition,

the evolution x(0) → x(t) defines a conservative dynamics (i.e. phase space volumes are

preserved).

Arnold [4,5] argued that (10) is a good candidate for chaotic motion, namely the tra-

jectories of the dynamical system (2) may exhibit sensitivity to initial conditions. Let us

briefly repeat his elegant argument. For a steady state solution of the 3D Euler equation

one has:

∇ · v = 0

v × (∇× v) = ∇α (11)

α =
P

ρ
+

v2

2

where P is the pressure and ρ the density. As a consequence of the Bernoulli theorem [24],

α(x) is constant along a streamline – that is a Lagrangian trajectory x(t). One can easily

verify that chaotic motion can appear only if α(x) is constant (i.e. ∇α(x) = 0) in a part

of the space. Otherwise the trajectory would be confined on a 2D surface α(x) = constant,

where the motion must be regular as a consequence of general arguments [34]. In order to

satisfy such a constraint, from (11) one has the Beltrami condition:

∇× v = γ(x)v. (12)

Taking the divergence of both sides in (12), one gets : 0 = v · ∇γ and, once again, if γ is

not constant, the trajectory is confined on a 2D surface γ(x) = constant and the motion

is not chaotic. Thus chaotic motion can appear only if we have (12) with γ(x) = constant

in a part of space: in this case, nothing more, it seems, compels the trajectory to stay on

4



a surface. Arnold [1] concludes : ”it is probable that [such] flows have trajectories with

complicated topology. Such complications occur in celestial mechanics”. (As we see, the

work of Poincaré on celestial mechanics acts as a guide here). It is easy to verify that the

field v given by (10) satisfies (12) with γ(x) = constant (this example is given by Arnold

himself in [1]), and, indeed, numerical experiments by Hénon [19] provided evidence that

Lagrangian motion under velocity (10) is chaotic for typical values of the parameters A, B,

and C (see an example in Figure 1).

FIG. 1. Intersections with the Poincaré section, plane z = 0, of eight trajectories of the ABC

flow with parameters A = 2.0, B = 1.70, C = 1.50.

Hénon wrote [19]: ”In conclusion, one is led to this curious result that the particular case

[α= const ., γ= const.] seems to have a topology much more complicated than the general

case.”

In a two-dimensional incompressible stationary flow the motion of fluid particles is given

by a time independent one-dimensional Hamiltonian system (i.e. with two degrees of free-

dom) and, since trajectories follow iso-ψ lines, it is impossible to have chaos. However, for
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explicit time dependent stream function ψ the system (9) can exhibit chaotic motion [34].

Indeed, generically in one-dimensional Hamiltonian systems, a periodic perturbation gives

origin to a so-called ”stochastic layer” around the separatrices where the motion is chaotic,

as consequence of unfolding and crossing of the stable and unstable manifolds in domains

centered at the hyperbolic fixed points. This is the celebrated mechanism of the homoclinic

intersection, formerly discovered by Poincaré in his work on Celestial Mechanics1.

In the particular case of time periodic velocity fields, v(x, t+T ) = v(x, t), the trajectory

of (2) can be studied in terms of discrete dynamical systems: the position x(t + T ) is

determined in terms of x(t). The Poincaré map x(t) → x(t + T ) will not depend explicitly

on t (given the position x(t)) thus (2) can be written in the form

x(n+ 1) = F[x(n)], (13)

where now the time is measured in units of the period T . Because of incompressibility, the

map (13) is conservative and the Lebesgue measure dx is invariant:

|detA[x]| = 1, where Aij [x] =
∂Fi[x]

∂xj
. (14)

The explicit form of F for a general 2D or 3D flow is usually very difficult to find. However,

in some simple cases, this can be deduced on the basis of physical features [3,12].

III. EULERIAN PROPERTIES AND LAGRANGIAN CHAOS

In principle, the evolution of the velocity field v is described by partial differential equa-

tions, e.g. Navier-Stokes or Boussinesq equations. However, often in weakly turbulent

situations, a good approximation of the flow can be obtained by using a Galerkin approach

i.e. writing the velocity field in terms of suitable functions (usually a Fourier series), and

reducing the Eulerian problem which is, in principle, described by a partial differential equa-

tion, to a (small) system of F ordinary differential equations [9,27]. It is possible to show

1See the chapter by François Beguin in this book
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that, under suitable conditions, this procedure (i.e. the approximation of an infinite dimen-

sional system with a finite dimensional one) can be performed with full mathematical rigor

[20]. The motion of a fluid particle is then described by the (d+ F )-dimensional dynamical

system

dQ

dt
= f(Q, t) with Q, f(Q, t) ∈ IRF (15)

dx

dt
= v(x,Q) with x, v(x,Q) ∈ IRd (16)

where d is the space dimensionality and Q = (Q1, ...QF ) are the F variables (typically

normal modes) which give a representation of the velocity field v. Note that the equations

(15) describe the Eulerian evolution and do not depend on the Lagrangian part (16), so (15)

can be solved independently from (16).

In order to characterize the degree of chaos, three different Lyapunov exponents can be

defined [17]:

• a) λE for the Eulerian part (15);

• b) λL for the Lagrangian part (16), where the time evolution of the velocity field (i.e.

Q(t)) is assumed to be known;

• c) λT for the total system of the d+ F equations.

These Lyapunov exponents [15] are defined as:

λE,L,T = lim
t→∞

1

t
ln

|z(t)(E,L,T)|
|z(0)(E,L,T)| (17)

where the limit in (17) exists almost everywhere. The evolution of the three tangent vectors

z are given by the linearized stability equations for the Eulerian part, for the Lagrangian

part and for the total system, respectively:

dz
(E)
i

dt
=

F∑
j=1

∂fi

∂Qj

∣∣∣∣∣
Q(t)

zj
(E), z(t)(E) ∈ IRF (18)
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dz
(L)
i

dt
=

d∑
j=1

∂vi

∂xj

∣∣∣∣∣
x(t)

zj
(L), z(t)(L) ∈ IRd (19)

dz
(T)
i

dt
=

d+F∑
j=1

∂Gi

∂yj

∣∣∣∣∣
y(t)

zj
(T), z(t)(T) ∈ IRF+d (20)

and y = (Q1, . . . , QF , x1, . . . , xd) and G = (f1, . . . , fF , v1, . . . , vd). The meaning of these

Lyapunov exponents is evident:

• a) λE is the mean exponential rate of the increasing of the uncertainty in the knowledge

of the velocity field (which is represented by Q and is independent on the Lagrangian

motion);

• b) λL estimates the rate at which the distance δx(t) between two fluid particles initially

close increases with time, when the velocity field is given, i.e. a particle pair in the

same Eulerian realization (i.e. the same Q(t));

• c) λT is the rate of growth of the distance between initially close particle pairs, when

the velocity field is not known with infinite precision.

Thus two different dynamical systems can be defined: one for the evolution of the velocity

field in the F -dimensional Fourier space; another one for the evolution of the Lagrangian

trajectories in the d-dimensional physical space. Let us notice that, since the dynamical

system (16) is conservative, one can have the coexistence of non communicating regions

and the Lyapunov exponent can depend on the initial conditions (see below). We stress,

at this regard, that there is no general relation between λE and λL. One could expect that

in presence of a chaotic velocity field the particle motion has to be chaotic. However, the

inequality λL ≥ λE – even if generic – sometimes does not hold, e.g. in some systems like

the Lorenz model [17] and in generic 2D flows when the Lagrangian motion occurs around

well defined vortex structures [6] as discussed in the following. On the contrary, one has [15]

λT = max (λE, λL). (21)
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A. Lagrangian chaos in two-dimensional flows

Let us now consider the two–dimensional Navier-Stokes equations with periodic boundary

conditions at low Reynolds numbers, for which we can expand the stream function ψ in

Fourier series and take into account only the first F terms [9,27],

ψ = −i
F∑

j=1

k−1
j Q

j
eikjx + c.c. , (22)

where c.c. indicates the complex conjugate term and Q = (Q1, . . . , QF ) are the Fourier

coefficients. Inserting (22) into the Navier-Stokes equations and by an appropriate time

rescaling, we obtain the system of F ordinary differential equations

dQj

dt
= −k2

j Qj +
∑
l,m

AjlmQlQm + fj, (23)

in which fj represents an external forcing. Let us briefly discuss the transition to chaos

of the above Eulerian equations. Franceschini and coworkers have numerically studied this

truncated model with F = 5 and F = 7 [9,27]. The forcing were restricted to the 3th mode

fj = Re δj,3 [27]. For F = 5 and Re < Re1 = 22.85 . . ., there are four stable stationary

solutions, say Q̂, and λE < 0. At Re = Re1, these solutions become unstable, via a

Hopf bifurcation [29], i.e. four stable periodic orbits appear, and therefore λE = 0. For

Re1 < Re < Re2 = 28.41 . . ., one thus finds the stable limit cycles:

Q(t) = Q̂ + (Re − Re1)
1/2δQ(t) +O(Re − Re1) (24)

where δQ(t) is periodic with period

T (Re) = T0 +O(Re − Re1) T0 = 0.7328 . . . (25)

At Re = Re2, these limit cycles lose stability and there is a period doubling cascade towards

Eulerian chaos.

Let us now discuss the Lagrangian behavior of a fluid particle for the above flow. For

Re < Re1, the stream function is asymptotically stationary, ψ(x, t) → ψ̂(x), and the corre-

sponding one-dimensional Hamiltonian is time-independent, therefore Lagrangian trajecto-

ries are regular. For Re = Re1 + ε the asymptotic stream function becomes time dependent
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ψ(x, t) = ψ̂(x) +
√
ε δψ(x, t) +O(ε), (26)

where ψ̂(x) is given by Q̂ and δψ is periodic in x and in t with period T . The region of

phase space, here the real two-dimensional space, adjacent to a separatrix is very sensitive to

perturbations, even of very weak intensity. Figure 2 shows the structure of the separatrices

(i.e. the orbits of infinite period connecting hyperbolic fixed points) at Re = Re1 − 0.05.

One can observe the presence of two kinds of separatrices: the isolated ”eights” labeled by

A and the connected periodic separatrices, labeled with B.

FIG. 2. Structure of the separatrices in the 5-mode model (22) with Re = Re1 − 0.05.

Generically, in one-dimensional Hamiltonian systems, a periodic perturbation gives origin

to chaotic motion in a domain containing the hyperbolic fixed points [14,34]. A method

due to Melnikov [34] allows to prove the existence of the chaotic layer in the phase space.

However such a technique is not straightforward (one has to compute explicitly an integral

which can involve complicated functions). On the other hand we have a rather strong

numerical evidence for the existence of the chaotic regions, see Figure 3.
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Chaotic and regular motion for small ε = Re1 −Re can be studied by the Poincaré map

x(nT ) → x(nT + T ), (27)

where (at a given ε) the period T (ε) is computed numerically. The size of the stochastic

layers rapidly increase with ε. At ε = εc ≈ 0.7 they overlap, according to the resonance

overlap mechanism introduced by Chirikov [14], and it is practically impossible to distinguish

between regular and chaotic zones. At ε > εc there is always diffusive motion.

FIG. 3. Poincaré map for three trajectories of the 5-mode model with Re = Re1 + 0.05. The

initial conditions are selected close to a separatrix, case a) (x1(0) = 3.2, x2(0) = −1.6), or far from

the separatrices, cases b) (x1(0) = 4.3, x2(0) = −2.0) and c) (x1(0) = 4.267, x2(0) = −3.009).

We stress that this scenario for the onset of Lagrangian chaos in two-dimensional in-

compressible fluids is generic and does not depend on the particular truncated model. In

fact, it is only related to the appearance of stochastic layers under the effects of small time-

dependent perturbations in one-dimensional (i.e. with two degrees of freedom) integrable

Hamiltonian systems. As consequence of general features of one-dimensional Hamiltonian

systems we expect that a stationary stream function becomes time periodic through a Hopf
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bifurcation as occurs for all known truncated models of Navier-Stokes equations.

We have seen that there is no simple relation between Eulerian and Lagrangian behaviors,

i.e. there is no simple relation between λL and λE . In the following, we shall discuss two

important points:

• (i) what are the effects on the Lagrangian chaos of the transition to Eulerian chaos,

i.e. from λE = 0 to λE > 0.

• (ii) whether a chaotic velocity field (λE > 0) always implies an erratic motion of fluid

particles.

The first point can be studied again within the F = 5 modes model (23). Increasing Re,

the limit cycles bifurcate to new double period orbits followed by a period doubling transition

to chaos and a strange attractor appears at Rec ≈ 28.73, where λE becomes positive. These

transitions have no signature on Lagrangian behavior, as shown in Figure 4, i.e. the onset

of Eulerian chaos has no influence on Lagrangian properties.

FIG. 4. Lyapunov exponents λE (+) and λL (×) as function of Re around Rec, for the 5-mode

model.
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This feature should be valid in most situations, since it is natural to expect that in generic

cases there is a strong separation of the characteristic times for Eulerian and Lagrangian

behaviors.

The second point – the conjecture that a chaotic velocity field always implies chaotic

motion of particles – looks very reasonable. Indeed, it appears to hold in many systems [15].

Nevertheless, one can find a class of systems where this is false, e.g. the equations (15), (16)

may exhibit Eulerian chaoticity λE > 0, even if λL = 0 [6].

B. Lagrangian chaos in point-vortex systems

Let us consider again the two-dimensional Euler equation. We assume that the vorticity

ω = ∇ × v, namely its component ω(r, t) perpendicular to the plane of the flow, at the

initial time t = 0 is localized on N point-vortices:

ω(r, 0) =
N∑

i=1

Γiδ(r− ri(0)), (28)

where Γi is the circulation of the i−th vortex. As consequence of the Kelvin’s circulation

theorem, which states that in an ideal incompressible fluid, in absence of forcings, the

circulation around a closed material curve moving with the fluid is constant, one has that,

at any time, ω(r, t) must still remain localized on N point-vortices:

ω(r, t) =
N∑

i=1

Γiδ(r− ri(t)), (29)

where ri = (xi, yi) evolves according to:

Γi
dxi

dt
=
∂H

∂yi
(30)

Γi
dyi

dt
= −∂H

∂xi

(31)

where

H = − 1

4π

∑
i�=j

ΓiΓj ln rij (32)
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and r2
ij = (xi − xj)

2 + (yi − yj)
2.

Therefore the motion of N point vortices is described by a Hamiltonian system whose

canonical coordinates are (xi,Γiyi). Because of the presence of global conserved quantities,∑
i Γixi = const.,

∑
i Γiyi = const.,

∑
i Γi(x

2
i +y2

i ) = const. and H = const., a system of three

vortices is integrable and there is no exponential divergence of nearby trajectories in phase

space [1]. For N ≥ 4, numerical studies show that, apart from non generic initial conditions

and/or values of the parameters Γi, the system is chaotic [1].

The motion of a passively advected particle located in (x(t), y(t)) in the velocity field

defined by (30-31) is given by

dx

dt
= −∑

i

Γi

2π

y − yi

R2
i

(33)

dy

dt
=
∑

i

Γi

2π

x− xi

R2
i

(34)

where R2
i = (x− xi)

2 + (y − yi)
2.

It is interesting to discuss the analogy between point-vortex systems and Celestial Me-

chanics. We notice that the problem of passive particles advected by N vortices is formally

equivalent to the case of N + 1 vortices with ΓN+1 = 0, in particular the case N = 3 is

integrable. In Celestial Mechanics, in the restricted 3-body problem the asteroid has a neg-

ligible mass while the sun and the planet follow Keplerian orbits. Therefore one has that

the problem of a passive particle (i.e. a vortex with negligible circulation) advected by three

vortices is rather similar to the restricted 3-body problem. The system (30), (31), (33) and

(34), with N ≥ 4, corresponds, in Celestial Mechanics, to the case of sun, two or more

planets and an asteroid.

Let us first consider the motion of advected particles in a three-vortices (integrable)

system in which λE = 0. In this case, the stream function for the advected particle is periodic

in time and the expectation is that the advected particles may display chaotic behavior.

The typical trajectories of passive particles which have initially been placed respectively in

close proximity of a vortex center or in the background field between the vortices display
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a very different behavior. The particle seeded close to the vortex center displays a regular

motion around the vortex and thus λL = 0; by contrast, the particle in the background field

undergoes an irregular and aperiodic trajectory, and λL is positive.

We now discuss a case where the Eulerian flow is chaotic i.e. N = 4 point vortices.

Let us consider again the trajectory of a passive particle deployed in proximity of a vortex

center. As before, the particle rotates around the moving vortex. The vortex motion is

chaotic; consequently, the particle position is unpredictable on long times as is the vortex

position. Nevertheless, the Lagrangian Lyapunov exponent for this trajectory is zero (i.e.

two initially close particles around the vortex remain close), even if the Eulerian Lyapunov

exponent is positive, see Figure 5.
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FIG. 5. Particle trajectories in the four-vortex system. Eulerian dynamics in this case is chaotic.

The left panel shows a regular Lagrangian trajectory while the right panel shows a chaotic La-

grangian trajectory. The different behavior of the two particles is due to different initial conditions:

particles initially close to one vortex (left panel) and particles initially distant from the vortices

(right panel).

This result indicates once more that there is no strict link between Eulerian and La-

grangian chaoticity.

One may wonder whether a much more complex Eulerian flow, such as 2D turbulence,

may give the same scenario for particle advection: i.e. regular trajectories close to the
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vortices and chaotic behavior between the vortices. It has been shown that this is indeed

the case [6] and that the chaotic nature of the trajectories of advected particles is not strictly

related to the complex time evolution of the turbulent flow.

We have seen that there is no general link between Lagrangian and Eulerian chaos. In the

typical situation Lagrangian chaos may appear also for regular velocity fields. However, it is

also possible to have the opposite situation, with λL = 0 in presence of Eulerian chaos, as in

the example of Lagrangian motion inside vortex structures. As an important consequence

of this discussion we remark that it is not possible to separate Lagrangian and Eulerian

properties in a measured trajectory, e.g. a buoy in the oceanic currents [33]. Indeed, using

the standard methods for data analysis [18], from Lagrangian trajectories one extracts the

total Lyapunov exponent λT and not λL or λE.

IV. ASYMPTOTIC TIME BEHAVIOR: TRANSPORT AND DIFFUSION

Let us now discuss the asymptotic behavior, i.e. at long times and large spatial scales,

of the Lagrangian trajectories. The simplest model of diffusion is the Brownian motion,

the erratic movement of a grains suspended in a liquid observed by the botanist Robert

Brown as early as in 1827. After the fundamental work of Einstein [16], Langevin [25] and

Smoluchovski [36], Brownian motion became the prototypical example of stochastic process.

From a discrete random walk model, i.e. a walker that moves randomly making jumps

of ±∆x every time step ∆t, it is easy to obtain the diffusion equation:

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
(35)

where one takes the limit ∆x,∆t → 0 in such a way that (∆x)2/∆t → 2D (the factor 2 is

purely conventional). The solution to (35) is readily obtained as

p(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
, (36)

with 〈x2〉 = 2Dt. Diffusion equation (35) is here written for the probability p(x, t) of

observing a marked particle (a tracer) in position x at time t. The same equation can have
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another interpretation, in which p(x, t) = θ(x, t) represents the concentration of a scalar

quantity (marked fluid, temperature, pollutant) as function of time. The only difference is,

of course, in the normalization.

It is rather clear that time decorrelation is the key ingredient for normal diffusion. In the

random walker model it is a consequence of randomness: the jumps are random uncorrelated

variables and this assures the applicability of central limit theorem. But we can have a

finite time correlation and thus diffusion also without randomness. A popular example is

the following symplectic system (standard map [14]):

J(t+ 1) = J(t) +K sin θ(t)

θ(t+ 1) = θ(t) + J(t+ 1).
(37)

This map is a paradigmatic model which shows the generic behavior of chaotic symplectic

systems. In particular one has large-scale chaotic behavior for K > Kc 	 0.9716 and, as a

consequence of deterministic chaos, J(t) has diffusive behavior. For long times, J(t) is large

and thus the angle θ(t) rotates rapidly. In this limit, we can assume that at each step θ(t)

decorrelates and thus write

J(t)2 = K2

(
t∑

t′=1

sin θ(t′)

)2

	 K2〈sin2 θ〉t = 2Dt. (38)

The diffusion coefficient D, in the random phase approximation, i.e. assuming that sin θ(t) is

not correlated with sin θ(t′) for t 
= t′, is obtained by the above expression as DRPA = K2/4.

As a consequence of non trivial dynamical effects (long memory due to the presence of

accelerator modes) the random phase approximation is rather rough. Nevertheless, at least

at qualitative level, this is able to grasp the basic ingredients of the diffusion process.

The two examples discussed above are in completely different classes: stochastic for the

random walk and deterministic for the standard map (37). Despite this difference in the

microscopic dynamics, both lead to a macroscopic diffusion equation and Gaussian distribu-

tion. This suggests how the diffusion equation (35) is of general applicability, and, therefore,

a diffusive behavior at macroscopic scale says nothing on the underlying microscopic dynam-

ics.
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Let us now consider the more complex situation of dispersion in a non-steady fluid with

velocity field v(x, t). For simplicity will we consider incompressible flow (i.e. ∇·v = 0) which

can be laminar or turbulent. In presence of v(x, t), the diffusion equation (35) becomes the

advection-diffusion equation for the concentration θ(x, t) (1). This equation is linear in θ

but nevertheless it can display very interesting and non trivial properties even in presence

of simple velocity fields, as a consequence of Lagrangian chaos.

Let us start with some general considerations. We know that in physical systems the

molecular diffusivity is typically very small. Thus in (1) the advection term dominates over

diffusion. This is quantified by the Peclet number, which is the ratio of the typical value of

the advection term to the diffusive term

Pe =
v0l0
D

(39)

where v0 is the typical velocity at the typical scale of the flow l0. With τ0 	 l0/v0 we will

denote the typical correlation time of the velocity.

The central quantity in the following discussion is the concept of eddy diffusivity. The

idea is rather simple and dates back to the classical work of Taylor [38]. To illustrate this

concept, let us consider a Lagrangian description of dispersion in which the trajectory of a

tracer x(t) is given by (2). Being interested in the limit Pe → ∞, in the following we will

neglect, just for simplicity, the molecular diffusivity D, which is generally much lesser that

the effective dynamical diffusion coefficient.

Starting from the origin, x(0) = 0, and assuming 〈v〉 = 0 we have 〈x(t)〉 = 0 forever.

The square displacement, on the other hand, grows according to

d

dt
〈1
2
x(t)2〉 = 〈x(t) · vL(t)〉 =

∫ t

0
〈vL(s) · vL(t)〉ds (40)

where we have introduced, for simplicity of notation, the Lagrangian velocity vL(t) =

v(x(t), t) +
√

2D0η(t), where the term η(t) is a three-dimensional, δ-correlated, normally

distributed, stochastic variable, with zero mean and unit variance, and D0 = l0v0. Let us

define the Lagrangian correlation time τL from
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∫ ∞

0
〈vL(s) · vL(0)〉ds = 〈vL(0)2〉τL (41)

and assume that the integral converge so that τL is finite. From (40), for t� τL we get

〈x(t)2〉 = 2τL〈v2
L〉t (42)

i.e. diffusive behavior with diffusion coefficient (eddy diffusivity) DE = τL〈v2
L〉.

This simple derivation shows, once more, that diffusion has to be expected in general in

presence of a finite correlation time τL. Coming back to the advection-diffusion equation

(1), the above argument means that, for t � τL, we expect that the evolution of the

concentration, for scales larger than l0, can be described by an effective diffusion equation,

i.e.

∂〈θ〉
∂t

= DE
ij

∂2〈θ〉
∂xi∂xj

. (43)

The coefficients DE
ij are related to the statistical properties of the trajectories:

DE
ij = lim

t→∞
1

2t
〈xi(t)xj(t)〉. (44)

The original idea of a hydrodynamic analysis to derive eq. (43) from eq. (1) is due

to Maxwell. However, only in recent years the multiscale techniques allowed for a rigorous

derivation of the Fick’s equation (43), as well as its range of validity, and a systematic method

for the computation of the effective diffusion coefficients DE
ij [8,28]. The idea behind this

method has close connection with Lindstedt-Poincaré’s perturbation theory, in Celestial

Mechanics, where the asymptotic effects of the nonlinearities, in an ordinary differential

equation, are treated with the introduction of (slow) frequencies which depend on the initial

conditions and the nonlinear terms [32]. Since in the diffusion process one is interested in

large scales and long times, let us assume the existence of some (small) parameter ε. One can

thus introduce, in addition to the natural (fast) variables x and t, slow variables X = εx and

T = ε2t. Treating the two sets of variables (slow and fast) as independent, and expanding θ

in a perturbative series

19



θ(x, t;X, T ) = θ(0)(X, T ) + εθ(1)(x, t;X, T ) + ... (45)

one has a set of equations for θ(0), θ(1), ... . Using the linear structure of the problem

and imposing the solvability conditions [8,28] (this is the analogue of the suppression of the

secular terms in the multiple-scale approach for the ordinary differential equations [7]) one

has that θ(0) obeys to the Fick’s equation (43).

The computation of the eddy diffusivity for a given Eulerian flow is not an easy task.

However it is possible to show that

DE
ij = Dδij − 1

2
[〈viwj〉 + 〈vjwi〉] (46)

where the vector w satisfies the equation

∂tw + (v · ∇)w = D∇2w − v. (47)

Let us stress that with the multiple-scale approach one has that the asymptotic behavior

of the transport equation (1) is well approximated by the Fick’s law (43) where the eddy

diffusivity tensor DE depends on the advection field v. This is rather close, both from

a technical and conceptual point of view, to the Lindstedt-Poincaré method in Mechanics

where the asymptotic effect of the nonlinear terms is to induce a renormalization of the

frequencies, which depend on the initial conditions and the nonlinear terms, see [35] vol. II,

chap. 9, and [32]. The explicit computation can be done only in the case of simple flows

[28,8]. On the other hand, in the general case, it is relatively simple [8] to give some bounds,

the simplest one being tr(DE) ≥ D ·d, with d equal to the space dimension, i.e. the presence

of an incompressible velocity field enhances large-scale transport.

Diffusion equation (43) is the typical long-time behavior in generic flow. However there

exists, also, the possibility of the so-called anomalous diffusion, i.e. when the spreading of

particle do not grow linearly in time, but with a power law:

〈x2(t)〉 ∼ t2ν (48)

with ν 
= 1/2. The case ν > 1/2 (formally DE = ∞) is called superdiffusion; subdiffusion,

i.e. ν < 1/2 (formally DE = 0), is possible only for compressible velocity fields.
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Super-diffusion arises when the Taylor argument for deriving (42) fails and formally

DE → ∞. This can be due to one of the following mechanisms:

a) the divergence of 〈v2
L〉 (which is the case of Lévy flights), or

b) the lack of decorrelation, i.e. 〈vL(t)vL(0)〉 ∼ t−β, with β ≤ 1, and thus τL → ∞ (Lévy

walks).

The second case is more physical and it is related to the existence of strong correlations

in the dynamics, even at long times and large scales.

Avellaneda and Majda [28] obtained a very general important result for the validity of

eq. (43) in an incompressible velocity field. If the molecular diffusion coefficient D is non

zero and the infrared contribution to v is weak enough, namely∫
dk

〈|v̂(k)|2〉
k2

<∞ (49)

where 〈·〉 indicates the time average and v̂ is the Fourier transform of v, then one has

standard diffusion, i.e. the DE
ij are finite. Therefore there exist two possible origins for

superdiffusion:

I) D > 0 and, in order to violate (49), a velocity field with very long spatial correlations;

II) D = 0 and strong correlation between v[x(t)] and v[x(t+ τ)] at large τ .

An example of anomalous diffusion, according to the mechanism I, is a 2D random shear,

i.e. v = (v(y), 0) where v(y) is a random function obtained with a spatial Brownian process.

For such a case it is possible to show that 〈x2(t)〉 ∼ t3/2 and, in addition, the pdf is non

Gaussian [28,22,11]:

p(x, t) ∼ t−3/2 exp

(
−c|x

4/3|
t2

)
. (50)

Let us now briefly discuss anomalous diffusion due to the mechanism II: consider a simple

model simulating Rayleigh-Bénard convection:

Ψ(x, y, t) = Ψ0 sin(x+B sin(ωt)) sin(y). (51)

The even oscillatory instability is accounted for the term B sin(ωt) representing the lateral

oscillations of the rolls. In spite of its apparent simplicity, this model is able to capture the
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essential features of the convective problem [37]. For a generic value of ω one has standard

diffusion, and the only role of the advection term is to enhance DE. For special values of

ω (resonance with the characteristic frequency of the passive particle motion in the steady

case) one has, in the limit D → 0, superdiffusion, i.e. 〈x2(t)〉 ∼ t2ν with ν > 1/2.

A similar behavior, i.e. standard diffusion for generic values of the control parameters

and superdiffusion for specific values, has been observed for the standard map. In this system

at certain values of K the accelerator modes induce a superdiffusion with a non gaussian

shape of the pdf [21,11].

Therefore, on the basis of the above results (and similar results found for other symplec-

tic systems [26]), one can say that the mechanism II is non generic. Introducing a small

perturbation O(ε) in the evolution law, superdiffusion disappears i.e. it is present only for a

transient time up to t∗ ∼ ε−α. At longer times standard diffusion takes place with a rather

large diffusion coefficient: we can say that, even if the true (i.e. asymptotic) anomalous

diffusion is very rare, its ghost is still visible [11].

V. CONCLUSIONS

The recent advances in the understanding of the chaotic behavior and the (asymptotic)

diffusive properties of Lagrangian trajectories, advected by laminar velocity fields, stem from

ideas and techniques borrowed from Poincaré’s contributions to Celestial Mechanics (mainly

the homoclinic intersection mechanism and multiple-scale expansion). This bears the indeli-

ble mark of the genius of Henri J. Poincaré and shows how many areas of Mathematics and

Physics have been affected by his works.

We acknowledge the fruitful and friendly collaboration of many colleagues who shared

with us their knowledge and research, in particular P. Castiglione, A. Celani, M. Cencini,

M. Falcioni, A. Mazzino, P. Muratore-Ginanneschi, S. Musacchio and M. Vergassola.

22



References

[1] H. Aref, Integrable, and turbulent vortex motion in two-dimensional flows, Ann. Rev. Fluid

Mech. 15, 345 (1983).

[2] H. Aref, Stirring by chaotic advection, J. Fluid Mech. 143, 1 (1984).

[3] H. Aref and S. Balachandar, Chaotic advection in a Stokes flow, Phys. Fluids, 29, 3515 (1986).

[4] V.I. Arnold, Sur la topologie des ecoulements stationnaires des fluides parfaits, C. R. Acad.

Sci. Paris A, 261, 17 (1965).

[5] V.I. Arnold and B.A. Khesin, Topological methods in hydrodynamics, Applied Math. Sciences,

125, Springer-Verlag, Berlin (1998).

[6] A. Babiano, G. Boffetta, A. Provenzale and A. Vulpiani, Chaotic advection in point vortex

models and two-dimensional turbulence, Phys. Fluids A 6, 2465 (1994).

[7] C. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers,

McGraw-Hill, New York (1978).

[8] L. Biferale, A. Crisanti, M. Vergassola and A. Vulpiani, Eddy diffusivities in scalar transport,

Phys. Fluids 7, 2725 (1995).

[9] C. Boldrighini and V. Franceschini, A five-mode truncation of the plane Navier-Stokes equa-

tions, Commun. Math. Phys., 64, 159 (1979).

[10] J.P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: statistical mecha-

nisms, models and physical applications, Phys. Rep. 195, 127 (1990).

[11] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi and A. Vulpiani, On the strong anoma-

lous diffusion, Physica D, 134, 75 (1999).

[12] J. Chaiken, C.K. Chu, M. Tabor and Q.M. Tan, Lagrangian turbulence in Stokes flow, Phys.

23



Fluids, 30, 687 (1987).

[13] S. Chandrasekhar, Stochastic problems in Physics and Astronomy, Rev. Mod. Phys. 15, 1

(1943).

[14] B.V. Chirikov, A universal instability of many dimensional oscillator systems, Phys. Rep. 52,

263 (1979).

[15] A. Crisanti, M. Falcioni, G. Paladin and A. Vulpiani, Lagrangian chaos: transport, mixing

and diffusion in fluids, Riv. Nuovo Cim. 14, 1 (1991).

[16] A. Einstein, On the movement of small particles suspended in a stationary liquid demanded

by the molecular kinetic theory of heat, Ann. Phys. (Leipzig) 17, 549 (1905).

[17] M. Falcioni, G. Paladin and A. Vulpiani, Regular and chaotic motion of fluid-particles in

two-dimensional fluids, J. Phys. A: Math. Gen., 21, 3451 (1988).

[18] P. Grassberger and I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal,

Phys. Rev. A, 28, 2591 (1983).
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