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Abstract. The optimal performance of a non-monotonic neural network is studied by the replica 
method. In analogy 10 what happens in multi-layered nehvodts, we show that replica symmetry 
breaking (nss) is required. The distribution of the patterns stabilities, the conelations in the 
dishibution of the intemal representarion and the optimal capacity per synapse (e II 4.8) are 
COmpUted with OW Step Of  RSB. 
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Over the past few years, much effort has been concentrated in studying optimal storage 
capabilities of neural networks. Using the framework developed by Gardner-Demda [l], 
many different aspects, as for instance the architecture of the networks, the nature of their 
synapses and the statistical distribution of the pattems, have been shown to iniluence 
storage capacity. An open and more difficult question concerns the role played by the 
possible dynamical schemes of the single formal neuron for the computation capabilities 
of neural networks with given synaptic configuration and architecture. In most of the 
models considered so far, the neurons are defined in terms of sigmoidal (monotonic) 
transfer functions describing the mean firing rate of the neurons as a function of their 
local field, or post-synaptic potential (in the limit of infinite gain, those transfer functions 
become step-like, leading to the binary neurons of spin-glass models). Recently, the 
introduction of non-monotonic transfer functions (instead of the usual sigmoidal or sign- 
type outputs) was shown to play a significant role both for associative performance (storage 
capacity) [Z-51 and for computational capabilities (dynamical selection of optimal sub- 
networks) [5].  In the latter models, non-monotonicity is thought to describe an effective 
behaviour of the formal neurons, due to the presence of local inhibitory feedbacks (caused 
by inhibitory inter-neurons) which control the system dynamics by lowering the neural 
activity. Beside the biological motivations mentioned (which, to our knowledge, are not 
established experimentally) and computational arguments, the theoretical problems arising 
in the context of the statistical mechanics of non-monotonic networks (NMN) are worth being 
discussed for their general interest. This is the purpose of the present letter. The optimal 
associative performance (storage capacity) of NMN is deeply related to the role played, in 
the space of interactions, by symmetry breaking, as it is for multi-layered networks (MLN). 
As we shall see below, the model discussed can be mapped straightfonvardly onto a two 
layer parity machine, which makes the connection with the theory of leaming in MLN even 
more clear. The NMN therefore provides us with a toy model of MLN which is analytically 
tractable and allows for a very simple way of labelling the couplings domains of the broken 
symmetry phase, diversely from what happens for the classical two-layers networks. 
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The model we investigate here is the simple fully connected non-monotonic network 
with binary neurons; we study, in particular, the fractional volume [I] in the space of 
couplings such that the condition of learning is satisfied for all the patterns. As far as optimal 
capacity is concemed, our system is equivalent to a feed-forward perceptron including N 
inputs St (i = 1, . . . , N), connected to an output cell a by real valued synapses Ji. When 
an input pattern is presented, the network computes the output field h = J . E (5’ is 
normalized to 1) and a is equal to +1 if h < -y - k or k < h < y - k, -1 otherwise. k 
is the stability parameter (for simplicity we will assume hereafter k = 0), y is an arbitrary 
threshold and we recover the usual sign function for y = 03. Let us consider now P pairs 
(E”% a’) of random and unbiased binary patterns. Each pattern E” is said to be stored if it 
is mapped onto its corresponding output U”, or in other words, if its stability 

A’ G u’J. E” (1) 

belongs to ] - 03, - y ]  or [O, y ] .  In the large N limit, the critical capacity a, is defined as 
the maximum ratio P f N  below which there exists a vector of couplings storing the whole 
training set [I]. 

Before turning to the analytic results, it is worth obserying that when the transfer 
function is truly non-monotonic (i.e. y is finite), the space of the couplings storing the 
patterns perfectly is not connected. Let us indeed consider two synaptic vectors J, K and 
a stored pattern E l ,  the stabilities of which are respectively lower than -y (with J) and 
between 0 and y (with K). Obviously, for any path linking J to K on the unit sphere, 
there exist weigh& which do not store (its stability would belong to [-y.01). This 
situation is quite reminiscent of &e multi-layered networks, for which finding a storage 
algorithm whose running time would be polynomial in N seems to be unlikely. A second 
consequence is that the symmetry of the replicas should be broken for the computation of 
aC. The analogy with multi-layered networks is even stronger when one realizes that the 
present model is equivalent to a fully connected parity machine with three hidden units 
(whose thresholds are - y .  0 and +y)  and where the three synaptic vecton are equal to 
-J. The number of allowed internal representations is however four and not eight, and 
thus the computational abilities of the non-monotonic model should rather be compared to 
the two hidden units parity network, both of them dividing the input patterns space in four 
different regions. The study of the latter network [7] (with non-overlapping fields) showed 
that replica symmetry breaking is required and that the one-step RSB solution makes ac 
decrease from 5.5 (symmetric calculation) to 4. Such a behaviour may be qualitatively 
expected in our case. 

Let V be the fraction of the couplings storing the training set perfectly 

P 
J ~ T s ( J ~ - I ) I - I ~ ~ ( A ’ )  

(2) 
!A-1 v ( (E” ,  U”}) = 

[dJS(J’  - 1) 

where 0, (A) is defined by 

and the stability A is given in (I) .  In the thermodynamic limit, f = ( I / N ) W  (the bar 
indicating the average over the pattern distribution) is assumed to be self-averaging and 
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is computed using the replica method [1,6]. As is customary in the replica approach, we 
introduce the matrix of the overlaps between the different replicas qUb = J' . Jb .  The 
replica symmetric (RS) ansatz gives 

(4) 

where Dx is the Gaussian measure and H ( x )  = jx*Dy. The typical overlap q is 
determined by the saddle-point equation associated with (4) and the critical capacity & 
is reached when q -+ 1 [1,41 

We see in figure 1 that ac is maximum (ac N 10.5) for yn N 1.2; such a value for the 
capacity is much higher than the monotonic perceptron one (ac = 2, see also [41). In order 
to check the reliability of the RS result, one has to analyse the transverse stability of the 
symmetric saddle-point [1,9]. It turns out [SI that the condition of stability (a&) c 2) is 
never satisfied on the critical line a&) (when y is finite), thus, as expected, the symmetry 
of the replicas must be broken. 

F p r e  1. Critical capacity as a function of y. 1 /'\--------1 The upper (dashed) curye is obtained within the RS 
assumption, w h e w  the lower one is the result of 
the one-sfep RSB computation. The maximum values 
of storage capacity are 10.5 and 4.8 respectively, 
corresponding to two different optimal choices of y Q 1 2 3 4 

1 (1.2forthe~scaseandO.SforUleone-stepnsscase). 

..__ -...__. -. .. % 
... 4 

2 '  

Performing one step of RSB, f becomes a function of three parameters 41, go and m [6]. 
Being interested in the critical capacity, we focus on the limit q1 = 1 - E ,  E -+ 0, i.e. when 
the overlap between two vectors of couplings belonging to the same pure state goes to 
one. The saddle-point equations lead to the scaling relations qo -+ Q and m/E -+ p; in 
particular weobtain f,&lrqO,m,a) = ( I / E )  F(p ,  Q,a)+O( ln~)  where 
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and 

P ( X )  = [/'-(XI + G - ( x )  + po(x) + C + ( x )  + p+(x)]-' 

The saddle-points equations with respect to p, Q and E 

give the critical values pe, Q, and cr,. The RS solution is recovered when pLc = 0 or Q, = 1; 
discarding this trivial saddlepoint, we have solved numerically the three coupled equations 
(8) and the resulting critical capacity is plotted in figure 1. The maximum CY, IT 4.8 is 
reached for ynb Y 0.8. It is worth noticing that the critical capacity we find is larger than 
the one (cut = 4) of the two hidden units parity machine. 

The increase of CY, above the perceptron storage capacity may be understood using 
a geometrical approach due to Cover [IO]. Each set of N synaptic couplings defines a 
dichotomy of the training set, labelled by the outputs of the P patterns. The number of 
such different dichotomies is C,(P, N).  Let us consider a new pattern 'A'. The dichotomies 
of the first P patterns may be divided in three different types: 

(i) The D# dichotomies (type I) defining three hyperplanes (A = -y, 0, y )  such that none 
of them can include A. 
(ii) The DO dichotomies (type II) defining three hyperplanes such that the central hyperplane 
(A = 0) may contain A. 
(iii) The D, dichotomies (type III) defining three hyperplanes such that the central 
hyperplane (A = 0) cannot contain A but one of the two others (A = hy) may include A. 

We obviously have C,(P, N )  = Dp +DO + D,. Each type I dichotomy will provide only 
one dichotomy of the whole training set, whereas types 11 and 111 will give two dichotomies 
each. We obtain C, (P  + 1, N )  = D+ + 2D0 + 20, = C J P ,  N )  + DO + D,. Type II 
dichotomies are equivalent to the dichotomies in the hyperplane including the origin 0 and 
orfhogonal to the line (OA) and thus DO = C,(P, N - 1). In contrast to the usual perceptron 
case ( y  = 0 or y = CO) we have the additional term D, > 0; therefore one may conclude 
that CY, 2 2 due to the larger number of dichotomies allowed by the separating hyperplanes. 

As we have seen, RSB leads to a substantial modification (reduction) of CY,. In order to 
shed some light on the physical meaning of replica symmetry breaking, we have analysed 



Letter to the Editor L511 

0.77 0.7 I 

A A 

Figure 2. Distributions of the stabilities for the RS ansalz (a) and for one step of RSB (b), for 
y = and ymb respectively. The lengths of lhe m w s  are equal to the Dirac weighis PO. p+ 
and p- .  

how the network stores the patterns, i.e. the distribution of the stabilities (I), comparing the 
results with those found assuming unbroken symmetry. Within the RS ansaiz, the distribution 
of the stabilities A is easily obtained on the critical line a&) [8] 

Y 1 
2 P- = H (z) - H ( y )  PO = - - H (5) p+ = H ( y )  

and the result is plotted in figure 2(u) for y = ym. One can notice three Dirac peaks, half of 
the patterns belonging to the three separating hyper-planes. The stabilities of the remaining 
patterns obey a Gaussian law with zero mean value. When y = ys. the fractions of patterns 
stored with negative and positive stabilities are equal to 0.27 and 0.73, and the values of the 
weights p-, po and p+ are 0.16,0.23 and 0.1 1 respectively. The latter stabilities distribution 
does not appear to be consistent since one can expect that in an N-dimensional space, the 
number of patterns satisfying a system of linear equations AP = zky, 0 must be lower than 
N (i.e. we expect to find (pa + p+ + p- )P  < N). For the RS dismbution this is clearly not 
the case because, as we have seen, po + pt + p -  = 0.5, implying that 0.5acN M 5.25N 
patterns should be stored on the hyperplanes (it is worth remembering that for the simple 
perceptron one finds N such patterns). 

Performing the same calculation with one step of RSB, we find 

P d A )  = P- &(A + Y )  + PO S(A) + P+ W - Y )  

Numerical computation of (IO) leads to the results reported in figure 2(b); when y = yrsb 
we find for p-. po and p+ 0.06, 0.08 and 0.06 respectively. The comparison with the 
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RS distribution (figure 2(a)) is straightforward and shows a reduction of the fraction of 
patterns memorized on the hyperplanes: such a new fraction becomes consistent with the 
geometrical argument discussed in that being po + p+ + p -  % 0.2, the number of pattems 
stored on the hyperplanes is 0.2aCN FJ 0.96N c N .  

1 .O 

0.9 

7 

P i  3. mid overlap r between different 
domains defined by (13). as a function of y .  For 
y --L 0 or m the RS solution becomes exact and 
r tends to one. The value of y that minimizes the 
overlap r (y = 1.1 and r 0.22) h close (but not 
equal) to the optimal value found in maximizing ihe i 

critical capacity. 

Let us now consider a vector J storing all the pattems. We can define the internal 
representation of the training set with respect to J as the P-component b i n q  vector RJ 
such that 

(RJ)’ = sign(u’J. <’). (11) 

Replica symmetry breaking implies that there exist different d i ~ c o ~ e c t e d  domains Di of 
synaptic weights, each of them storing all the patterns. As a result of the connectivity 
of each single domain, two couplings vectors J and K belonging to the same Dj give 
identical internal representations of the training set, i.e. RJ = RK = 4. For a continuous 
normalization condition of the type Jj E [ - l / a  l / f iJ ,  one may furthermore prove that 
two different domains Dt and D j  must store at least one identical pattern with two stabilities 
of opposite signs. Hence, the normalized overlap rij between their intemal representations 
vectors 

(12) 

is in this case strictly lower than 1 (with the classical constraint E, J: = 1 used here, we 
have only q j  < 1). Using a replica calculation, we have computed the mean overlaps rmp 
between the domains belonging to two pure states or and ,9. With one step of breaking, on 
the critical line, r,, = 1 and r = rep (or + ,9) is given by 

r ,=  [, Dx P*@) [(Po(x) + Gt(4  + pt(x)) - (P-W + G-(x))]*. (13) 

From the plot in figure 3, one notices that close to the optimal value of the threshold y,  
there is a strong effect of symmetry breaking corresponding to a small overlap (r N 0.2) 
between different domains, while for very small or very large values of y (i.e. when the 
network recovers the standard perceptron and the RS solution becomes exact) the mutual 
overlap of the various domains tends to one. 

This work was partially supported by the Annethe-I” Italian project. 
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