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With reference to studies of the influence of turbulence on the feeding process of aquatic micro-
organisms, we analyze particle fluxes into absorbing surfaces in turbulent flows by numerical simu-
lations. The simultaneous trajectories of many point particles are followed in time in a fully three-
dimensional solution of the turbulent flow described by the Navier–Stokes equation. Selecting one of
these points to represent a predator, while the others are considered as prey, we obtain estimates for
the time variation of the statistical average of particle fluxes into a co-moving “sphere of interception”.
The essential restriction in the model, when applied to aquatic micro-organisms, is that self-induced
motions are ignored. Particles are assumed to be absorbed when crossing the surface. In this sense,
the problem can be analyzed as the one involving a perfectly absorbing surface. The variation of the
particle flux with the radius in the absorbing sphere, as well as the variation with basic flow parameters
is well described by a simple scaling law, expressed in terms of the radius of the sphere and the energy
dissipated per mass unit. The results also agree well with experimental results. In the present study,
we obtain a unique signal-to-noise ratio in the estimates. The analysis is extended by inclusion of
another dataset, with a somewhat smaller Reynolds number. The scaling laws obtained by a simple
dimensional reasoning agree well for the two datasets. The numerical simulations refer to two different
Reynolds numbers, but the scaling laws verified for these conditions can then be applied generally for
other flows, provided the basic assumptions are fulfilled: the turbulence has to be fully developed so
that a universal subrange exists, and the spatial scales defined by the radii of the absorbing spherical
surfaces have to be restricted to this subrange.

1. Introduction

Often the problem of turbulent diffusion in neutral turbulent flows is analyzed as an initial
value problem [1–3]. However, for many applications, a boundary value problem is more
relevant. Here, we consider a problem which has received particular interest by its importance
for aquatic micro-organisms. For small predators, fish larvae or copepods, for instance [4],
it is often assumed that their self-induced motion is small or negligible, and that they are
passively convected by the local flow velocity, at least to a good approximation. Similarly, it
can be assumed that their food, or “prey”, (micro-zooplankton, for instance) is also passively
convected by the same flow. The feeding process can be modeled by assuming that any
individual prey entering a suitably defined “sphere of interception” is captured with certainty.
In turbulent waters, the predator–prey encounter rate is thus related to the problem of relative
diffusion, but now considered as a boundary value problem, with the condition that the prey
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Table 1. Simulation I lasts 1167 time steps with dt = 0.005, and simulation II lasts 1841 time
steps with dt = 0.0023.

dx 2π/512 = 0.012 272 2π/1024 = 0.006 1359
ν 2.05 × 10−3 8.8 × 10−4

ε 0.885 3212 0.810 878
E = 1

2 〈u2〉 = 3
2 〈u2

rms〉 3.01 2.96
urms 1.42 1.40
λ 0.2642 0.179
Reλ 183 286
η 0.009 93 = 0.81 dx 0.0054 = 0.88 dx
τη 0.048 0.033
T 5.84 4.23

concentration vanishes at the surface of the sphere of interception. This sphere is moving with
the flow so that it has at all times the same particle at its center. This is the standard model
for this particular problem [5–7]. The surface is thus “virtual” in the sense that it does not
disturb the flow. The general interest in this particular problem arises essentially from the
simple observation that the food concentration in the near region of a predator will rapidly be
depleted, and without any self-induced motion a predator will be starving, unless the prey in
the vicinity of its sphere of interception is continuously replaced by turbulent motions in the
flow.

The problem of predator–prey encounter rates has been studied in controlled laboratory
experiments [8], and also by numerical simulations [9]. We here present a study based on
two datasets (sets I and II) from numerical solutions of the Navier–Stokes equation in three
spatial dimensions, performed in a 512 × 512 × 512 and a 1024 × 1024 × 1024 system of
grid-points for extended time periods of 1167 and 1841 time steps, respectively [10]. The
system is periodic in all three directions. From the numerically obtained flow field, a large
number (∼105) of point particle trajectories are constructed. The basic data for the simulations
are given in table 1, where Reλ denotes the Reynolds number and the Kolmogorov micro-scale
is η, the notation for the parameters being standard [10]. For both simulations, we have ε to
be approximately the same, but the two Reynolds numbers as well as the two Kolmogorov
scales are substantially different. The universal subranges for the two cases will consequently
be different. The dataset with the largest Reynolds number, see table 1, is our reference.

One important new result of the present analysis is a demonstration of a scaling law for the
turbulent particle flux; in terms of the radius R in the sphere of interception. An empirical
function is obtained for the entire time variation of the average flux, in particular also its
asymptotic value is obtained with high accuracy. This asymptotic value is the most interesting
one for the biological applications. The scaling law is found to be valid for scales where
also the universal Kolmogorov–Oubokhov law applies for the second-order velocity structure
function.

The simulations analyzed here can, by proper scaling of the variables, be directly applied as
models for turbulent flows with the Reynolds numbers listed in table 1. The numerical analysis
uses dimensionless numbers, which have to be related to physical quantities for practical
applications. We take the numerical value from the simulations to represent a physically
realistic quantity, which can have different values for varying conditions. Thus we have [6,
11], typical parameters as those summarized in table 2. The Kolmogorov scales given in
computational units in table 1 should be scaled to physical units as given in, for instance,
table 2. These length scales should in turn be compared to millimeter-scale capture ranges
of predators in nature. For herring larvae an estimated contact radius is ∼3 mm, for instance
[12, 13], for other species it can be smaller.
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Table 2. The Kolmogorov length scale is here η and the specific energy dissipation (dissipated
energy per gram fluid) is ε. The Kolmogorov times scale is denoted byτη .

Open ocean ε ∼ 10−4 − 1 mm2 s−2 η ∼ 10 − 1 mm τη ∼ 95 − 0.95 s
Shelf ε ∼ 10−1 − 1 mm2 s−2 η ∼ 2 − 1 mm τη ∼ 3.0 − 0.95 s
Coastal zone ε ∼ 10−1 − 102 mm2 s−2 η ∼ 2 − 0.2 mm τη ∼ 3.0 − 0.095 s
Tidal front ε ∼ 10 mm2 s−2 η ∼ 0.5 mm τη ∼ 0.3 s

For comparison with naturally occurring turbulence, we can, for instance, select a value
for η and determine a scaling factor making it consistent with that of the simulations. With
ν ≈ 0.88 × 10−6 m2 s−1 for water we have a scaling factor of 103 for viscosity in the ref-
erence simulation. By this we determine the scaling factor for ε = ν3/η4, as well as for the
Kolmogorov time scale τη = (ν/ε)1/2, consistent with table 2. The dimensionless simulation
Reynolds number will be a characteristic of the fluid as well, and with η given, this determines
the “outer” scale L. Hereby a relation is established between the simulation and the physical
spatial scales, noting that the Kolmogorov times scale τη is not an independent parameter.
The relation between the numerical and physical mean square fluctuation levels 〈u2〉1/2 is
established by 〈u2〉 ∼ (εL)2/3, where again L is the scale size of the largest energy containing
eddies in the system [14]. It is important to emphasize that the scaling laws verified for the
present parameters can with confidence be applied outside the parameter ranges analyzed
here. As long as the relevant length scale of the sphere of interception is within the universal
subrange, the scaling laws discussed in the present paper are supposed to be valid, provided
of course that the turbulence is fully developed so that a universal subrange exists.

2. Data analysis

With the records of many simultaneous trajectories being available, we can now select one
of these to represent the predator, while labeling all the others as prey. In figure 1, we
show a sample trajectory, prepared for three-dimensional visualization [15]. We can select a

Figure 1. Sample trajectory obtained from the simulations. The figure allows a stereoscopic, three-dimensional
view, by focusing the eyes approximately 20 cm behind the plane of the paper or computer screen. (It requires a little
exercise. In our experience, the distance to the eyes is not so critical provided it is sufficiently large, but it is essential
that the figure is kept plane and horizontally aligned with the observer’s eyes.) A similar type of presentation of curves
in 3 dimensions was used in several presentations, for instance [15], where many examples are found. The thick red
curve is the trajectory, the black curves are projections at the back, bottom, and left sides of the box, respectively.
The side-length of the box is 2π .
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predetermined radius R of a sphere of interception, and remove all the points which happen
to be inside this sphere at the initial time. During the subsequent Lagrangian motion of the
reference “predator”, we count the number of prey entering its co-moving sphere of inter-
ception between successive time steps. Each time a point enters, it is “eaten” in the sense
that it is removed from the data base. Here we are only interested in the time evolution of
the prey flux for times up to an eddy turn-over time, τF ≡ L/〈u2〉1/2, which is within the
time-span of the simulations. As long as R is much smaller than the size of the measur-
ing volume (here 2π ), we can with negligible error assume the prey concentration to be
constant at large distances, corresponding to ideally infinite systems. By choosing a large
number of realizations, we can give an estimate for the ensemble-averaged Lagrangian prey
flux after time of release. Parts of the analysis here follow the procedure used for analyz-
ing data from a laboratory experiment [16]. With the present large database, we are able to
present results with a hitherto unprecedented accuracy. It should be noted that these numer-
ical simulations have a Reynolds number approximately three times that of the laboratory
experiment [17]. Also, we emphasize that there is one basic difference between a laboratory
experiment and the present numerical analysis: here the turbulence is driven uniformly over
space [10], while in a laboratory experiment, where the turbulence is generated by moving
grids, we have basically decaying turbulence, in the sense that the energy in volume element
of the fluid decays, on average, as it is followed in the region between the two grids [17,
18].

In figure 2, we show examples for the time varying flux to a self-consistently moving
sphere of interception with a given radius, R, for our reference dataset. This flux is the re-
sult of a competition between, on one hand, the depletion of trajectories labeled “prey” in
the vicinity of the reference point, and on the other hand the influx of such point particles
due to the turbulent motions in the flow. In each realization, we divide the flux by the ini-
tial prey density for that particular realization, and the result thus represents the prey-flux
for unit density. For small values of the radius, R � L ≡ 2π , we find that the flux level is
almost constant in time. A trend for an initial decrease becomes conspicuous as the radius is
increased. We note that figure 2 is deceiving in one respect by indicating that the fluctuation
level decreases for small radii. In reality the relative noise level is increasing for decreasing

Figure 2. Time variation of the estimate for the ensemble averaged particle flux for unit density 〈J (t)〉/n0, to spheres
with different radii, R = 0.3–1.0, in steps of 0.1. The selected radii are all within the universal subrange. For this
case, we have Reλ = 286.
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Figure 3. Space-time evolution of the normalized average density around an absorbing spherical surface moving
with the flow, for R = 1. Note the steep concentration gradients at the surface r = R = 1.

R, since only a relatively small number of particles contributing to the fluxes for small
spheres.

To illustrate the space-time variation of the average particle density in the flow surrounding
the selected reference test particle, we show in figure 3 the radial variation of the particle
concentration for several times. The problem is spherically symmetric, so the radial variable
suffices. Initially, we have by construction zero concentration inside the reference sphere (here
chosen to have unit radius). Outside the sphere we have a uniform concentration of prey at
t = 0. At later times, the prey concentration is depleted in the near vicinity of the reference
sphere due to the absorption at the surface, while we at the same time have an influx of prey
from the unperturbed particle concentration at large r . We note the high numerical accuracy
in the result. The turbulence is time stationary in a statistical sense, but the turbulent particle
flux is not a time stationary random process (evidently) since the particle population is slowly
depleted. The average asymptotic steady-state particle distribution is a result of a statistical
equilibrium between absorption at the spherical surface and the new particles being mixed in
from large distances. It is interesting to note the steep gradient at the surface of the reference
sphere, here R = 1. If the fluxes were to be modeled by a diffusion equation, the diffusion flux
determined as the product of a diffusion coefficient and the concentration gradient at r = R,
would give very large fluxes, in variance with the observations. We tend to conclude that such
a diffusion model can only serve as an illustration.

3. Model discussion

The simplest approach to an analytical expression for the particle flux to a perfectly absorbing
surface can be obtained by dimensional reasoning. For scale sizes R in the universal subrange
of the turbulence, where viscosity is immaterial, we have only one length scale, namely R
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and one time scale, R2/3/ε1/3. A density dependence of the particle flux is trivial: doubling
the particle density uniformly over the system implies a doubling of the flux. Hence we are
only interested in the average particle flux divided by the reference particle density, taken at
infinity, 〈J 〉/n0. The only possible dimensionally correct combination is then

〈J 〉
n0

= R7/3ε1/3 F

(
tε1/3

R2/3

)
, (1)

where F is a dimensionless function of a dimensionless temporal variable. This function is
unknown, but from basic physical arguments, we can expect it to have a finite asymptotic
numerical value for t → ∞, this value being assumed to be universal. One important result
of our analysis is an empirical estimation of the universal function F in (1) and in particular
its asymptotic value for large normalized times.

Alternatively, dynamic model equations can be found for the problem. The prey flux to
a sphere of interception moving self-consistently with the flow has been modeled by, for
instance, a simple diffusion equation. With a properly chosen diffusion coefficient, which
depends on spatial separations, but independent of time [7], the prey flux can be evaluated.
The diffusion coefficient is found as the product of a velocity ∼ (εr )1/3, characterizing the
scale determined by r , and the length-scale which is also the separation coordinate r . For
predator–prey separations within the universal range of the Kolmogorov–Oubokhov structure
function, the equation proposed is actually identical to the one suggested by Richardson in his
study of distance-neighbor functions [1]

∂

∂t
n(r, t) = C

ε1/3

r2

∂

∂r
r10/3 ∂

∂r
n(r, t) , (2)

written for spherically symmetric geometry, with r being the radial coordinate taken from the
position of the predator, and C being a constant, related to the Richardson constant CR . To
illustrate this relation we use Richardson’s distance-neighbor function, which states that the
probability of finding two particles in a small volume d3r around a position r at at time t is
P(r, t)d3r, given that they initially, at t = 0, were infinitesimally close. The Richardson law
in spherical symmetry then states that

〈r2〉 ≡
∫ ∞

0
r2 P(r, t)4πr2dr = CRεt3 . (3)

The relation (3) serves to define the Richardson constant, where we are aware that also
other definitions can be found [19]. The definition (3) was used for comparison with recent
experimental as well as numerical results [17, 20]. Note that the Richardson law can be
obtained from several model equations [2, 17]. Experiments [17] as well as numerical studies
[20] indicate that CR ≈ 0.5, although the uncertainty on this estimate is negligible.

With the function P satisfying (2) we have the normalized expression

P(r, t) = 9

70π3/2

√
3

2

(
3

2Cε1/3t

)9/2

exp

(
− 9r2/3

4Cε1/3t

)
, (4)

which finally gives C = (3/2)(3CR/143)1/3.
From (2), it is easy to derive a steady-state diffusion flux to a sphere with radius R, as the

surface area 4πR2 multiplied by the product of the diffusion coefficient obtained for r = R
and the gradient of the density, also at r = R [16]. In particular, we find the asymptotic result
consistent also with the previous results [7]

J∞
n0

= 28π

3
Cε1/3R7/3, (5)
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Figure 4. Normalized presentation of the data in figure 2, here forR ≥ 0.2 in steps of 0.1. The dashed line represents
result for the flux function obtained by solving (2). The red line gives the empirical relation (6). The longest curves
(in time) correspond to the smallest R.

where n0 is the constant prey density at r → ∞. In figure 4, we show (with a dashed line)
a numerical solution of the time varying flux, by use of a normalized density obtained from
(2).

A recent study of particle pair releases in turbulent flows in a controlled laboratory ex-
periment [17] has given support for the applicability of the model equation (2), at least for
the times and spatial separations investigated there. For conditions with scales larger than the
integral length scale [21], it was on the other hand found that a diffusion equation with a simple
diffusion coefficient as suggested by Batchelor [2] was appropriate. These two cases [17, 21]
referred to particle releases considered as initial value problems. A description based on a
diffusion equation can be applied for analyzing relative diffusion, but it is also well known
that one cannot expect that a diffusion coefficient depending solely on relative times or spatial
separations will be universally applicable for this problem [3].

4. Discussions

In order to compare our analysis with analytical results, we re-plot the data from figure 2 in
a normalized form i, see figure 4. It turns out to be an advantage to consider two separate
intervals for R. As long as R > 0.2 in the present computational units, as in figure 4, we
find an excellent agreement with the scaling obtained by the dimensional analysis. We have
thus presented an empirical result for the function F in (1), with high accuracy. Its asymptotic
constant value is found to be 5.9, with an accuracy of ±3%. Empirically, we find that the
expression

F = 5.9 + 1.3 exp(−1.3tε1/3/R2/3) , (6)

gives an excellent approximation to the normalized flux in figure 4. Note that while the curves
in figure 2 all have the same temporal duration, their lengths become different when presented
in normalized time units. Also, we mention that the relative noise level, for a given number of
predator realizations is largest for the smallest radii, since there are fewer particles contributing
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to the flux for small separations. To partly compensate for this effect, we have chosen a larger
number of realizations in our analysis for the smallerR-values. Some of the implications of (6)
are discussed in Appendix A. When applied to a practical problem, we are usually interested
in the asymptotic flux only. In that case we can use J∞ ≈ 5.9 n0 ε1/3R7/3, with the relevant
flow parameters inserted, see for instance table 2.

By a dashed line in figure 4, we show the results obtained by solving (2) for a perfectly
absorbing spherical boundary. The value of the Richardson constant, CR , used to obtain the
analytical result in figure 4, has been subject to some controversy [17]. We used here the most
recent experimental value CR = 0.5 supported also by numerical results [20], and find that this
corresponds to C = 0.32. The flux curve found by the use of (2) differs in shape, and also in
asymptotic value from the data obtained by the direct numerical simulation of the flow. We can
make the asymptotic level to agree with the one obtained from the direct numerical simulation
by choosing CR = 0.17, approximately, which is, after all, not dramatically different from
the generally accepted value. As far as the initial variation of the flux curve is concerned,
it is obviously not possible to make the curve agree with the simulation results simply by
changing CR . The singularity around t ≈ 0 for the calculated curve is due to the infinite
density gradient at t = 0, see also figure 3. Such a singularity will be present in any model
based on a diffusion equation, which takes a step-function as initial condition. It might be
surprising that the solution of (2) gives an agreement which for the present problem is not
as good as when the same equation is applied to studies of two-particle relative diffusion
[17]. One reason may be that the latter problem only contains one length scale, namely the
separation between the two particles. In the present case, the same length scale is used in the
second-order structure function and then for constructing the effective diffusion coefficient.
The equation is subsequently used for studying a problem containing a different length scale,
namely the radius in the sphere of interception.

If we now consider the small radius limit, R ≈ 0.2, we find that our results are slowly
deteriorating relative to the scaling (1). The relative uncertainty is increasing for these
small separations, simply because there are relatively few particles being so close. There
are several physical effects which become conspicuous for small separations: (1) intermit-
tency, or (2) the influence of a viscous subrange, which are both properties of turbulent
flows in general, and alternatively (3) the so-called “bottle-neck” effect, which is a feature
of many numerical simulations of turbulent flows [22, 23]. Physically, the bottle-neck ef-
fect arises because of the finite resolution of the sub-Kolmogorov scales, giving a lack of
small scale vortices, which makes the energy cascade less effective around the Kolmogorov
scale, as compared to the ideal, physical, conditions. Some numerical results may indicate
that the bottle-neck effect is a consequence of viscous effects stabilizing small vortex tubes
against the kink instability [24]. The relative importance of these physical mechanisms is
of course different for the two realizations listed in table 1. It might be added here that the
bottle-neck effect is usually discussed in terms of the power spectra for the velocity fluc-
tuation [23], but this is just a formality, since the structure function and power spectra are
related by a simple Fourier transform. Also higher order correlations are interesting and
can be obtained, see Appendix B, but these effects are not directly relevant for the present
analysis.

The results corresponding to those shown in figure 4, but obtained for the second dataset are
shown in figure 5. The empirical relation shown by the red curve is still from (6). This result,
which was an excellent fit for the larger Reynolds number case, now falls approximately 2.5%
above the present simulation results, but the general trend is still in good agreement. We note
that the curve for the smallest radius, R = 0.2, falls below the others. This is unambiguously
attributed to the reduction in the second-order structure function, see figures 8 and 9, where
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Figure 5. Normalized presentation of the data with Reλ = 183, here for R ≥ 0.2 in steps of 0.1, up to 0.6. The
dashed line represents result for the flux function obtained by solving (2). The red line gives the empirical relation
(6).

the bending down is here assumed to be associated with the dissipation subrange. The smallest
radius does not fully satisfy the restriction R � η ≡ (ν3/ε)1/4.

To provide more details of the turbulent flow, we show in figure 6 the longitudinal and the
total structure function 〈(u‖(0) − u‖(r ))2〉 and 〈(u(0) − u(r )) · (u(0) − u(r ))〉 for the reference
case. The dashed lines are curves given by the Kolmogorov–Oubokhov result CK (εr )2/3,
and (11/3)CK (εr )2/3, respectively. We used the analytical relation 〈(u⊥(0) − u⊥(r ))2〉 =
(4/3)〈(u‖(0) − u‖(r ))2〉 between the longitudinal and transverse structure functions in the
universal subrange, as derived from the Kolmogorov–Oubokhov relation. We show, in fig-
ure 7 also the corresponding compensated structure functions, obtained by division by (εr )2/3.
We find evidence for a universal subrange up to spatial separations of ∼ 2 in the computational
units. An interesting observation is that the plateau value corresponds to the Kolmogorov–
Oubokhov constant, CK , which is here determined as 2.10 ± 0.05. This value is in the accepted

Figure 6. Numerically obtained structure functions. Dashed lines give a fit using CK (εr )2/3, with the Kol-
mogorov constant chosen as CK = 2.1. The smallest separations are poorly resolved with the given number of
particles.
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Figure 7. Compensated structure functions from figure 6.

range of 2–2.5 usually quoted [25, 26], but it is here determined with high accuracy. Note that
the present analysis is carried out by analyzing particle trajectories, and not by analyzing the
velocity field from the flow simulation as such. Since the particle positions are obtained by
integration of the velocity field with a finite (but high) accuracy, the two results will not be
perfectly identical.

For scales in the universal subrange but substantially larger than η in figure 7, we find
an excellent agreement with the universal Kolmogorov–Oubokhov (εr )2/3 scaling. With the
given particle data, we are not able to resolve scales in the dissipative subrange: these scales
are included in the simulation as such, see table 1, but the test particle spacing is on av-
erage too large to allow an acceptable signal-to-noise level in the estimator for these small
scales.

We have obtained the structure functions also for the dataset with the smaller Reynolds
number; see figures 8 and 9. In this case, we note that the best fit for the Kolmogorov–Oubokhov
constant is here determined to be approximately CK = 2.05 ± 0.05, i.e. slightly below the
previous value. Also the spatial interval for the validity of the ideal (εr )2/3 scaling seems to be
slightly reduced, implying that the universal subrange is not as well developed for the present
case in comparison with the reference case. The reduced value for CK is consistent with the
observed reduction in turbulent particle flux in figure 5: since the turbulence level is slightly
reduced as implied by the reduction in CK , a reduction in turbulent flux is to be expected, as
compared to the universal scaling.

Figure 8. Numerically obtained structure functions for the case with Reλ = 183. Dashed lines give a fit using
CK (εr )2/3, with the Kolmogorov constant chosen as CK = 2.0. The smallest separations are poorly resolved with
the given number of particles.
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Figure 9. Compensated structure functions from figure Fig. 8. The slight tendency to a reduction in the compensated
structure function for small separations is presumably the sign of a dissipation subrange.

5. Conclusions

In this correspondence, we have summarized the basic elements of a numerical method for
investigating particle fluxes to a spherical surface moving with the flow. The problem has
interest for the feeding process of aquatic micro-organisms. We found evidence for an accurate
R7/3 flux scaling (see figure 4) in terms of the radius of a sphere of interception. In the
asymptotic time limit, to the extent it can be reached in the present analysis, the data give a
flux well approximated by (5), provided R < L, with L being the outer scale. The agreement
in the asymptotic time limit can be made excellent by formally choosing a modified value
for the Richardson constant. The present results agree well with similar results obtained by
a laboratory experiment [16, 27], but here they are presented with a significantly improved
signal-to-noise level. In particular, we are able to present an accurate comparison with results
from a simple diffusion model, as in (2). The universal R7/3ε1/3-scaling resulting from (1) is
confirmed for the universal range, where the Kolmogorov–Oubokhov law applies. We obtained
an empirical result for the flux function F in (1), and in particular also its asymptotic constant
value; see also figure 4. For very small radii in the reference spheres our results become
uncertain, due to the relatively small number of close particles.

The results obtained for the reference dataset are, within 5%, consistent with results from
a different simulation, with a somewhat reduced Reynolds number. The deviations can be
explained by slight differences in the Kolmogorov–Oubokhov constant obtained from the two
simulations. The results based on dimensional reasoning do not include intermittency effects,
which do not seem to be important for the present phenomena. It might be that a significantly
improved signal-to-noise ratio can reveal intermittency effects also for the present problem,
but in that case we expect that noticeably larger Reynolds numbers should be used.

We emphasize that, as already mentioned, the present numerical results refer to a realization
of the turbulence which is somewhat different from those in the experimental studies, where
the ideas were tested first. We can thus argue that the results we obtained for the turbulent
particle fluxes are robust. We note one important difference between numerical studies like the
present one and the related laboratory experiments: here we use the average dissipated energy
per. unit mass 〈ε〉, which can be directly obtained. In laboratory experiments, this quantity is
not so easily determined [8, 17, 18]. What is mostly used is the best fit of the Kolmogorov–
Oubokhov law CK (εr )2/3. By using this procedure we ignore intermittency effects, i.e. the
analysis does not distinguish 〈ε2/3〉 and 〈ε〉2/3, for instance.

With relevance for the biological aspect of the problem mentioned previously, we would
like to point to one feature of the turbulent flux variation as illustrated in figure 2, which
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allows us a qualitative discussion of self-induced motions of these small aquatic predators.
Thus, the physical reason for the observed reduction in flux from F(0) to F(∞) is that initially
the predator is immersed in the maximal prey concentration. At later times this concentration
is depleted in its near environment as seen from, for instance, figure 3. The asymptotic flux
is determined by the balance of captured prey, and the transport of “fresh prey” into the
search volume due to the turbulent mixing in the flow. An imagined “jump-pause” predator
can move into a fresh fluid volume, which has not been searched for prey previously, by
jumping a distance �. Inspection of figure 3 indicates that �/R ∼ 3–4 suffices for this. In
the “pause” phase, the predator is moving with the flow, and captures a prey-flux as the one
illustrated in figure 2, starting at a value n0ε

1/3R7/3 F(0). The ratio F(0)/F(∞) � 1.22 (where
the dimensional coefficient ε1/3R7/3 has canceled), is a measure for the maximum possible
gain by this strategy. The precise numerical value for this gain is obtained most accurately by
numerical simulations as the present ones.

The limit relevant for marine environments [8] will in general involve length scales of the
same order, or larger, than the Kolmogorov scale. We suppose that the present observations
justify extrapolation to radii, R, in a universal subrange but smaller than those accessible
here. It will be interesting to carry out an extension of the present study, where the dissipative
subrange is better resolved, even if this will be on the expense of a fully developed universal
subrange.

The problem discussed in the present study has relevance also for the analysis of coagulation
of colloids in a turbulent environment [31]. As long as the geometrical size of the particles is
much smaller than the Kolmogorov length scale, η, the classical analysis [32] is likely to apply.
If, however, the size becomes larger than η, the rate of particle encounters will be dominated
by turbulence effects as discussed here.

We found that the model diffusion equation (2) can serve only as an approximation,
although it reproduces some overall features quite well. In order to obtain a general
analytical model replacing a simple diffusion equation like (2), to give results for ex-
tended time periods and all R, we will have to allow for a diffusion coefficient which
depends on time as well as spatial separations, in particular including also memory
effects [3].

Appendix A: Interpretations of the flux-depletion

The depletion of the flux to an absorbing spherical surface for increasing times as observed
in, for instance, figure 4 and modeled by (6), has a simple physical interpretation: at the
time of release, the spherical surface is surrounded by a statistically uniform distribution of
point particles at maximum concentration n0. For increasing times, some of these particles
are absorbed and there is a non-vanishing probability for the sphere to enter, at least partially,
a region of the fluid which has already been evacuated. We can imagine the sphere to be
trailed by a cylindrical region with radius R, with this region being deformed by the turbulent
motions in the flow. The volume of the “evacuated” fluid increases slower than linearly with
time, since there is, as said, a finite probability to pass through such regions several times.
Using (6), we can evidently interpret the ratio P∞ ≡ 1−F(∞)/F(0) ≈ 0.18 as the asymptotic
probability for a surface element of the reference sphere to enter a region which is void of
marker particles. By asymptotic we here mean t � τ0 ≡ 0.77 R2/3/ε1/3, where τ0 is the
time constant in (6). It is important to note that P∞ is, at least formally, independent of R
as well as ε, the implied restriction being that R > η ≡ (ν3/ε)1/4 for the scale size of the
sphere being in the universal subrange, with η being the Kolmogorov scale expressed in terms
of ε and the kinematic viscosity ν. Since η can be very small for realistic flow conditions,
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we can use P∞ as an estimate also for infinitesimal spherical scales. Since F(∞) > 0 for
three-dimensional incompressible turbulence, there is a finite probability that parts of the fluid
are never traversed by the reference sphere, irrespective of its size, as long as the turbulence
volume can be considered infinite.

It can be instructive to compare the foregoing results for what is obtained by simple dif-
fusive Brownian motion for spherically symmetric conditions. In this case, the flux to the
surface is obtained as J (t) = −4π DR2∂n(r, t)/∂r |r=R, where the space-time variation of the
marked particle density is determined by the diffusion equation ∂(rn)/∂t = D∂2(rn)/∂r2,
here written for spherical symmetry, with D being the constant diffusion coefficient. We
find

J (t)/n0 = 4π DR
(

1 + R√
π Dt

)
. (A1)

The analysis can be found in the literature [32, 33]. Evidently, J (0) diverges due to the
form of the diffusive flux which contains a gradient, which is infinite for t = 0 for the present
conditions, and we cannot here define the ratio J (∞)/J (0). On the other hand, we still have
J (∞) > 0, and can argue also here for a finite probability at t → ∞ for fluid elements not
being visited.

The analysis outlined before refers to an absorbing surface at rest. In case the sphere is
itself participating in a diffusive motion, the relative motion of the particles involved should
be considered [32]. This can, for the present simple case, be done by replacing the diffusion
constant D in (A1) with 2D.

The result (A1) applies for diffusion in three spatial dimensions. If we repeat the analysis for
diffusion in two dimensions, we find after some algebra the normalized diffusive flux through
a cylinder segment of interception of length L to be

J (t)/n0 = LRD
8

π

∫ ∞

0

e−λ2 Dt

J 2
0 (λR) + Y 2

0 (λR)

dλ

λ
, (A2)

in terms of Bessel functions J0 and Y0. (The analysis turns out to be slightly more complicated
than the three-dimensional case [16].) Evidently, the flux does not reach a stationary level for
t → ∞ in this case, J (t → ∞) → 0. For two dimensions all of the fluid will be traversed
as t → ∞. This observation is consistent with the properties of a random walk model [34],
where a diffusion equation models a limiting case.

From a general diffusion model like ∂n/∂t = ∇·D(r, t)∇n we readily obtain a diffusion flux
density in the form f(r, t) = −D(r, t)∇n. The expression (2) is a special case of this general
diffusion equation. A diffusion velocity is then found as U ≡ f/n = −D(r, t)∇ ln n, where
we for the most general case allow for both a space and time dependence of the diffusion
coefficient D. For the special case (2), we have the diffusion coefficient being a function
of position only. The important observation is now that the diffusion velocity is in general
compressible, ∇ · U �= 0, and it therefore does not properly represent the underlying velocity
field for the present problem. Any model based on a diffusion equation like the one mentioned
before will have this property. The only way to “patch-up” the diffusion velocity will be to let
D depend on density, which seems unacceptable here.

Appendix B: Triple velocity correlations

Although not directly relevant for the present analysis, we found it worthwhile to study
also third-order correlation functions, in particular U 3k(r ) ≡ 〈u2

‖(0)u‖(r )〉; see figure 10. We
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Figure 10. The triple correlation function k(r ) ≡ 〈u2
‖(0)u‖(r )〉/U 3. Note that the magnitudes of the normalized

triple correlations are smaller than for second-order structure functions, so the noise level is more apparent. We have
here Reλ = 286. Also the compensated function k(r )/(εr ) is shown.

introduced U 2 ≡ 1
3 〈u2〉. Other triple correlations can be derived from k(r ), given homoge-

neous and isotropic conditions [35]. Also here we attempt a compensated presentation, here
carried out by division by (εr ), which is the simplest extension of the Kolmogorov dimen-
sional arguments. We find that a plateau is not evident here, in contrast to the case of the
compensated second-order structure functions. We can nonetheless determine a constant Ck

in an approximation for small r , with U 3k(r ) ≈ Ckεr . We find Ck ≈ −0.05, which is in fair
agreement with experimental results [36]. It is not probable to find particles with very small
separations with the available data, and this gives enhanced uncertainties for small separa-
tions. For the dataset with Reλ = 183, the number of particles is even smaller than for the
reference set, and the noise level correspondingly larger. For these other data we find the same
features as shown in figure 10, see figure 11, but the signal-to-noise ratio is slightly worse.
Seemingly, the numerical coefficient in k(r ) decreases slightly with decreasing Reynolds
number, but at present we only have these two datasets, and the trend cannot be further
quantified.

The result 〈(u‖(0) − u‖(r ))3〉 = − 4
5εr is supposed to be exact [37] for infinite Reynolds

numbers. With this result and 〈u2
‖(0)u‖(r )〉 = −〈u2

‖(0)u‖(−r )〉, we find in the large Reynolds
number limit C (∞)

k = −4/30 ≈ −0.13, i.e. approximately twice the number we found before.
It is, however, obvious that the present Reynolds number, see table 1, is not sufficiently large
to allow the use of the limiting value of Ck for Reλ → ∞.

Figure 11. The triple correlation function k(r ) ≡ 〈u2
‖(0)u‖(r )〉/U 3 for the smaller dataset. We have here Reλ = 183.

The compensated function k(r )/(εr ) is shown here as well.
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