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The dependence of the statistics of energy dissipation on the Reynolds number is investigated in an
experimental jet flow. In a range of about one decade of @®m about 200 to 2000the
adimensional mean energy dissipation is found to be independent,grnvRiée the higher moments

of dissipation show a power-law dependence. The scaling exponents are found to be consistent with
a simple prediction based on the multifractal model for inertial range structure functions. This is an
experimental confirmation of the connection between inertial range quantities and dissipation
statistics predicted by the multifractal approach. 2802 American Institute of Physics.
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I. INTRODUCTION ou\2
e(x)= 151/( &) , 2
There is considerable experimentahd numeric&l evi-

dence that the longitudinal velocity difference structure func-

tions
strongly depends on Re, becoming more and more intermit-

tent with increasing R&! This effect is also reflected in the
, (1) tails of the pdf of velocity increments at very small

separation$®~1* A statistical description of the behavior of

the local energy dissipatiof2) can be obtained in terms of
are affected by intermittency corrections in the scaling expoguantities defined in the inertial range, suct{Bswithin the
nents {; which deviate from the Kolmogorov self-similar multifractal approach. This approach, originally introduced
prediction {,=q/3** (C, is a constant possibly depending as a phenomenological model for the inertial range
on the Reynolds numbeg is the turbulent kinetic energy statistics:>'® has been extended to the prediction of dissipa-
dissipation,f is a generic length scale artdis the integral  tive scale statistic$1®*1"8|n particular, the multifractal
length scalg The estimate of , is now available for a wide model predicts a scaling behavior of the moment&2pfvith
range of Reynolds numbers and different flow configuraRel® which has been recently measured in a simplified
tions. The analysis of experimental data shows that structurg,oqel of turbulenc&®
fu_nctions display the scaling behavit()_l) for sufficie_r_wtly In the present paper we investigate the Reynolds depen-
high Reynolds numbers, Re, and that in such conditions th@a e of the statistics @) in a experimental water jet. We
Iongnudmal expongntsgp become mdependen_t on RE. have examined a series of data obtained from laser Doppler
There is also experimental support for the scaling eXponentgnemometer(LDA) measurements which cover about one

to be .Re.-lnde.pendent also at sme_lll Rehen the scaling decade of Reynolds numbers. The quality of the statistics
behavior in(1) is even not observablé& one make use of the : . .
allows us to compute high-order structure functions with rea-

so-called extended self-similarity analy$SS.” However, . S
éonable accuracy and to partially resolve the dissipative

the precise relation between this empirical result and th i , .
classical scaling behaviet), expected from dimensional ar- scales. Our main result is that the dependence of the statistics
Jof dissipation on the Reynolds number is found to be consis-

guments, is not well understood. We will not further discus : X > X X
this point here. tent with the multifractal prediction obtained by assuming a

The basic fundamental property of fully developed tur-fluctuating dissipative scale.
bulence is that the average energy dissipatiorentering in The remaining of the paper is organized as follows.
(1) is asymptotically Re-independent, when adimensional!n Sec. Il we introduce the theoretical models for the statis-
ized with large scale variablé€:® On the other hand, it is tics of dissipation. In Sec. lll, the experimental setup and the
well known that the statistics of the local energy dissipationdata analysis procedure. Section IV is devoted to the presen-
which assuming isotropy can be defined in terms of its onetation of the results, whereas concluding remarks are given
dimensional(1D) surrogate in Sec. V.

€)5q_q’3

S(£)=(8u(€£)%=C E>q/3€q/3<f
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Il. MULTIFRACTAL DESCRIPTION OF ENERGY vanishing dissipation in the limit Rex. For p>1, ¢,<0,
DISSIPATION i.e., the tail of the distribution o becomes wider with the
Reynolds number.
Let us remark that the predictiof®) is based on the
assumption of a fluctuating dissipative scal@ccording to
(6). If one assume, on the contrary, that dissipation enters in
(7) as an average quantity one ends up with a different pre-
dictions for the exponentﬁp21 [see below Eq(13)]. Nu-
g\h merical simulations with a simplified model of turbulent cas-
5U(€)~U'(E) : (3)  cade have shown that the expone(fisare indeed observed
and the alternative prediction is ruled éfitin the next sec-
The local exponenh is realized with a probability which tion, we will see that also our experimental data are in agree-
scales with ¢/L)?™ whereZ(h) is the codimension of the ment with prediction(9).
fractal set on which thé-scaling holds. The scaling expo- In the following we will consider data analysis of one
nent of structure function$l) are obtained by a steepest component of the velocity in water jets at different Reynolds
descent argument ovér numbers. Because of the discretization of the acquisition, we
. are forced to replace spatial derivatives with velocity differ-
gq:u;f [gh+Z(]. (4) ences at small scales. The key quantity for our discussion is
a generalization of2) over a finite scald

A phenomenological description of intermittency is
given by the multifractal modéf This model introduces a
continuous set of scaling exponetitsvhich locally relates
the velocity fluctuations at scalé entering in(1) with a
large-scale velocity fluctuation’

The scaling region of3) is bounded from below by the

2
Kolmogorov dissipative scalg at which dissipation starts to E(¢)=15v 5u((€)) . (10)
dominate, i.e., at which the local Reynolds number is of ¢
order 1 E(€) is a convenient definition of surrogate energy dissipa-

su(n) tion if the scalef is sufficiently small. The average dissipa-
R ) (5) tive scale dependence on Reynolds number can be obtained
v from (7) and (1) as

From(3) and(5) one obtains that in the multifractal descrip- 7=LR -202-5) 11
. : : > . . e (11
tion of intermittency the dissipative scale is a fluctuating
quantity, i.e., depends on the local scaling exportertc-  In the analysis of experimental data it is convenient to nor-
cording to malize separations witly and we will conside10) at fixed
—1/(1+h) e =0ln.
nNL(&) ~L Re;Z/ (1+h) 6) In the limit of very small separationg.e., €*=1) (10)
v recovers the finite difference representation of the 1D-energy

where Re=U'\ v is the Reynolds number based on the Tay—d'SS'patlon(7) and thus, from)
lor microscalex = \15vu’?/{€). (E(€)P)  (€P) ~20,

Below the dissipative scale the flow can be assumed W ()P =Re P, (12)
smooth and one can replace the derivativé2nwith

with the exponent#®, given by (9).
( su(n)|?
e=15v

In the case of separations in the inertial range, fidn
() we have(E(£)P)/(E(£))P= 2~ P2, Because = (* 7, us-
ing (11) we end with the prediction that the exponent$1f)
Assuming that the multifractal model can be pushed down tgre given by
the dissipative scale, one can evaluate the statisti¢8) dfy

inserting (3) and (6) into (7). One ends with the 0 _S2p—P (19
expressiofi®20 P2-4
Let us remark that the set of exponef@ and(13) are
(eP)~ (6>pf du(h)Re, 23Ph-przhli+h) expected to be not very differerithey are both zero for
nonintermittent turbulengeand thus a discrimination be-
~(e)P Re;zop, (8) tween the two predictions require good accuracy. Scaling

_ _ exponentg13) have been previously proposed to hold even
where again the integral has been evaluated by a steepgftthe dissipative scalés.We will see that on these scales

descent argument as experimental data are more in favor of the set of exponents
A 3ph—p+2(h)} o ©.
=infl ————|.
P
h 1+h Ill. EXPERIMENTAL SET-UP AND DATA ANALYSIS

The standard inequality in the multifractal modébl- The experimental setup consists of a water jet in a closed
lowing from the exact resulf;=1), Z(h)=1—3h,*implies  circuit facility as shown in Fig. 1. A centrifugal pump moves
for (9) 6,=0 which is nothing but the request of finite non- water from a primary tank into a settling chamber which is
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FIG. 1. Sketch of the experimental
setup.

equipped with a valve to damp oscillations due to the pumpmeasurement volume size is about 0.1, 0.1, and 0.8 mm
A series of contractions leads to a 1.5 m long pipe, with aralong thex, y, andz axes, respectively. The LDA data are
inner diameter of 14 cm which is followed by the final con- randomly distributed in time; therefore, they are resampled
traction (1:50 in area to the jet. The jet(diameterd by using a linear interpolation to obtain evenly spaced
=20mm) exits into a large water-filled tarkeight 3@, samples and also to provide unbiased statigfie value
width 30d, length 6@) from which the water returns to the of Re is sufficiently large to expect the LDA noise not to
primary tank. The pipe, the contraction and large tank araffect the behavior of structure functions in the ¥RThe
made of perspex to allow optical access to the flow. At the jet. DA data on longitudinal and transverse structure functions
exit, the flow is axisymmetric and has no swirl; preliminary and on scaling exponents were compared to data obtained by
measurements also confirmed that it is unaffected by anhot wire anemometry in a similar jet; the agreement was
external forcing due to the pump. The jet has a top-hat vegood up to 8th orde?
locity profile at the nozzle exit with a boundary layer shape = Measurements were made atd=40 (x is measured
parametefdefined as the ratio between the displacement anffom the nozzle exit plane where the flow field may be
momentum thickness at the oujletqual to 3.29 and a tur- considered to be approximately self-preserving and
bulent intensity equal to about 0.021 on the jet axis. isotropic?® The jet exit velocityU, was selected so that the
Velocity measurements are performed by means of &xit Reynolds number ReUqd/v changes from about 2
forward-scatter laser Doppler anemometieDA) equipped X 10* to 2x 10°. As a consequence, Rehanges from about
with two Bragg cells. The fringe spacing is 3.4461 and the 200 to almost 2000 at the measurement location. The number

TABLE |. Parameters of the experiments on the jet/at=40 (except for the outlet mean velocity and the exit
Reynolds number computed atd=0).

Outlet mean velocity

Uy (cm/s) 102 196 304 487 1060
Rey 20400 39200 60 800 97 400 212000
Local mean velocity 15.3 30.4 41.4 72.1 167
U (cm/s)

Local rms velocity 4.4 9.2 12.3 23.8 50.1
u’ (cm/s)

Re, 230 308 435 926 1840
Local integral scale 55 6.3 9.4 22.0 41.1
L (cm)

Local Kolmogorov scale 0.0181 0.0097 0.0086 0.0066 0.0045
7 (cm)
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In the latter, more severe, case the compensated spectrum
e E(k)k>? displays an exponential decay at large wave number
10000 |+ up to abouk=0.15;". We can thus safely compute veloc-
ity differences down td* =10 which is just at the border of
the dissipative rang#. Despite these limitations, we are con-
fident that are able to capture, at least, the scaling behavior of
small scale statistics, as shown below by the constancy of the
mean energy dissipation.

In Fig. 3, the second and fourth-order structure functions
obtained for Re=230 and for Re=1840 compensated with
the scaling behaviofl) are plotted Kolmogorov length and
velocity scales are used to adimensionalize the horizontal
and vertical axes Scaling exponents can be derived from
structure functions of Fig. 3 within the inertial rangap-

FIG. 2. Velocity power spectra at Re230 (thin line) and Rg=1840 (tick proximately from¢=80 to £=500, using a criterion based on
'tir?:)}?o?ma"zed with Kolmogorov scale %ft‘: ée'ozcnllg %Zsrnesde t'"JVZ f:ﬁ;ivse“G% difference from the maximum in the third-order structure
e gorov spectrun(k) =Ck =" with €=2. . function divided by¢). The result {,=0.708=0.020 and

5/3
in lin-log plot the compensated specték) k> together with the extrapo- {4=1.265+0.035 for RQZZSO) agrees with those obtained

lated spectrum at Re-230 (dashed lingin order to shown the dissipative - )
range. numerically and experimentally by other authdrs.
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IV. RESULTS AND COMPARISON WITH THEORETICAL
of collected samples is about ®@n each run. As usually PREDICTIONS
done in practice, we resort to Taylor hypothesis to transform

. . . : In Fig. 4 we plot the average surrogate energy dissipa-
time differences into space differences by means of the local . . . .
mean velocityJ. The number of independent samples, giver‘?Ion (E(€)), computed from(10) and adimensionalized with

. ,3 .
by UT4/2L (whereTg is the total record durationis about large scale quantity’*/L, as a function of Re. A constant

10°. Probability density functions of the longitudinal veloc- value of egnergy dissipation is exp_ected from energy balance
ity increments have been calculated at different value&' of arguments. Thus, the observed independence (&(()),

P . . )
The distributions indicate that the number of samples is ad(_;omputed at f_|xedf _10.’ on Rg Is a cpnfl_rmanon tha_t at
s . . Igast the scaling behavior of the dissipative scales is cap-
equate for achieving a closure of the integrand associate . : S S
ith the structure function$,(¢) at least up tog=6. In tured. We can give a different estimation of the dissipation
wit q p tog=6.

Table | we summarize some parameters of the experimentsqn the basis of the energy spectrum. The advantage in this

Because the acquisition rate is constant for the diﬁerengaZitr'jr;h;t svr\:leaIICEZalr:Sugg éuiwmoziethbeyir:rs]:aetrg?ls%ggz the
runs (St=5x10"“s) the smallest resolved scafx=U 6t b ' -

varies with Re. By increasing Rewe have both an increas- The result for our data, also plotted in Fig. 4, is consistent
. ; L — _with the previous one.

ing of &x (as Ré) and a decreasing of the dissipative scale In order to verify the prediction fod, of Sec. II, the
according ta(11). Together, they limit the possibility to com- P p T

pletely resolve dissipative scales. In Fig. 2 we plot the Ve_scalmg laws(12) of the moments oE(£) with Re, must be

locity power spectra for the two extreme runs, R&30 and computed. In Fig. 5, an example of this scaling, computed at

. : . £*=10, is given for different values gf. We are confident
Re,=1840 normalized with Kolmogorov scale and velocity. that at Ieasgt up tp=2 the scaling exgjonents can be evalu-

ated with an error on the fit less than 5%.

S,(r) - Re,=230 -+
séfr) 'Re,21840  « 07
1000 S (4()|') -RRengig * ]
r - he,= [a}
4 x 0.6 |
100} o mm\ 05 |
10 [ X X X XXX ]
x x \ 03 +
1+ PR \_ 0.2
10 100 1000 0.1 . .
r 200 500 1000 200
Re;\'

FIG. 3. Structure function of order 2 and 4 for different values of Re
compensated with the scaling behavidy. The x axis is adimensionalized
with the Kolmogorov scale.

FIG. 4. Average energy dissipation computed from definitid@) (+) at
¢*=10 and from the energy spectrum) as function of Re.
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100 . r - T shown in the inset of Fig. 6 where the value&fis plotted
g as a function of the separation. Despite the wide range of
L S crossover, two constant asymptotic values are clearly observ-
e e able.

Let us remark again that the difference between predic-
oy 1 tions (9) and(13) is based on the assumption of a dissipative

_____ I e scale fluctuating with the local energy dissipation. Our ex-
------------- e perimental data demonstrate that this is indeed the case.

V. REMARKS AND CONCLUSIONS

In this paper, the scaling of velocity increments at very
. L ' L small scales in a turbulent flow is investigated with special
200 500 1000 2000 focus on Reynolds number dependence. Within the multi-
Rey, fractal framework it is possible to derive a relation between

FIG. 5. Re dependence of E(¢)?) normalized with(E(€))® for p—2/3 the scaling of the energy Q|SS|pat|on statistics with the Rey-
(+), p=4/3 (x), andp=2 () at €=10y. The lines represent the best it Nolds number and the scaling exponents of the velocity struc-
with a power law with exponent, . ture functions at fixed Reynolds number. This relation is
found to fit well experimental data taken into a water jet over
) _ S about a decade of Re The one-dimensional surrogate of
The resulting exponents,, are given in Fig. 6. They energy dissipation is estimated from velocity differences at
have been computed at two different values of the separatiogiferent scales, from the border of the dissipative range to
€*=10 and(* =400. Asexpected, for separations moving the deep inertial range. It is shown that our statistics gives
from the dissipative range into the inertial range, the curve ofsymptotically two sets of exponents for very small or iner-
the exponents)(p) becomes flatter and approaches the preyjg| range separations. The rather wide region of crossover

diction (13). In Fig. 6 we also plot the two prediction)  ingjcates a penetration of dissipative contribution within the
and(13). These have been obtained by computing the strucperiial range.

ture function scaling exponentg (1) as discussed above, at  The agreement of the experimental results with the two
the largest Reavailable. Given the exponendg, the codi-  sets of exponents is a demonstration of the connection be-
mensionZ(h) has been obtained by numerical inversion ofyyeen dissipative scales and inertial range scales as described
(4). Finally, (9) is used to predict the values @f,. The by myltiplicative models. Moreover, the difference between
agreement of our data with the two predictid®$ and(13)  {he two sets of exponents is the signature of the fluctuating

is remarkable. Some deviations are observed, especially fjissipative scale. If these results are dependent on the still
higher moments. Indeed, according(fd), the computation  finjte value of the Reynolds number or on the anisotropy of

of 6, corresponds roughly to the computation of the structurgne flow field is left as a subject for future investigations.
function of order 3.
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