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Structure functions and energy dissipation dependence
on Reynolds number
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The dependence of the statistics of energy dissipation on the Reynolds number is investigated in an
experimental jet flow. In a range of about one decade of Rel ~from about 200 to 2000! the
adimensional mean energy dissipation is found to be independent on Rel , while the higher moments
of dissipation show a power-law dependence. The scaling exponents are found to be consistent with
a simple prediction based on the multifractal model for inertial range structure functions. This is an
experimental confirmation of the connection between inertial range quantities and dissipation
statistics predicted by the multifractal approach. ©2002 American Institute of Physics.
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I. INTRODUCTION

There is considerable experimental1 and numerical2 evi-
dence that the longitudinal velocity difference structure fu
tions

Sq~, ![^du~, !q&5Cq^e&q/3,q/3S ,

L D zq2q/3

, ~1!

are affected by intermittency corrections in the scaling ex
nents zq which deviate from the Kolmogorov self-simila
prediction zq5q/33,4 (Cq is a constant possibly dependin
on the Reynolds number,e is the turbulent kinetic energy
dissipation,, is a generic length scale andL is the integral
length scale!. The estimate ofzq is now available for a wide
range of Reynolds numbers and different flow configu
tions. The analysis of experimental data shows that struc
functions display the scaling behavior~1! for sufficiently
high Reynolds numbers, Re, and that in such conditions
longitudinal exponentszp become independent on Re.5,6

There is also experimental support for the scaling expon
to be Re-independent also at small Re@when the scaling
behavior in~1! is even not observable# if one make use of the
so-called extended self-similarity analysis~ESS!.7 However,
the precise relation between this empirical result and
classical scaling behavior~1!, expected from dimensional a
guments, is not well understood. We will not further discu
this point here.

The basic fundamental property of fully developed tu
bulence is that the average energy dissipation^e& entering in
~1! is asymptotically Re-independent, when adimension
ized with large scale variables.3,8,9 On the other hand, it is
well known that the statistics of the local energy dissipati
which assuming isotropy can be defined in terms of its o
dimensional~1D! surrogate
3451070-6631/2002/14(10)/3453/6/$19.00
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, ~2!

strongly depends on Re, becoming more and more inter
tent with increasing Re.10,11This effect is also reflected in th
tails of the pdf of velocity increments at very sma
separations.12–14 A statistical description of the behavior o
the local energy dissipation~2! can be obtained in terms o
quantities defined in the inertial range, such as~1!, within the
multifractal approach. This approach, originally introduc
as a phenomenological model for the inertial ran
statistics,15,16 has been extended to the prediction of dissip
tive scale statistics.4,10,11,17,18In particular, the multifractal
model predicts a scaling behavior of the moments of~2! with
Re,19 which has been recently measured in a simplifi
model of turbulence.20

In the present paper we investigate the Reynolds dep
dence of the statistics of~2! in a experimental water jet. We
have examined a series of data obtained from laser Dop
anemometer~LDA ! measurements which cover about o
decade of Reynolds numbers. The quality of the statis
allows us to compute high-order structure functions with r
sonable accuracy and to partially resolve the dissipa
scales. Our main result is that the dependence of the stati
of dissipation on the Reynolds number is found to be con
tent with the multifractal prediction obtained by assuming
fluctuating dissipative scale.

The remaining of the paper is organized as follow
In Sec. II we introduce the theoretical models for the sta
tics of dissipation. In Sec. III, the experimental setup and
data analysis procedure. Section IV is devoted to the pre
tation of the results, whereas concluding remarks are gi
in Sec. V.
3 © 2002 American Institute of Physics
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II. MULTIFRACTAL DESCRIPTION OF ENERGY
DISSIPATION

A phenomenological description of intermittency
given by the multifractal model.15 This model introduces a
continuous set of scaling exponentsh which locally relates
the velocity fluctuations at scale, entering in ~1! with a
large-scale velocity fluctuationu8

du~, !;u8S ,

L D h

. ~3!

The local exponenth is realized with a probability which
scales with (,/L)Z(h) whereZ(h) is the codimension of the
fractal set on which theh-scaling holds. The scaling expo
nent of structure functions~1! are obtained by a steepe
descent argument overh

zq5 inf
h

@qh1Z~h!#. ~4!

The scaling region of~3! is bounded from below by the
Kolmogorov dissipative scaleh at which dissipation starts to
dominate, i.e., at which the local Reynolds number is
order 1

hdu~h!

n
.1. ~5!

From ~3! and~5! one obtains that in the multifractal descri
tion of intermittency the dissipative scale is a fluctuati
quantity, i.e., depends on the local scaling exponenth ac-
cording to

h;LS u8L

n D 21/~11h!

;L Rel
22/~11h! , ~6!

where Rel5u8l/n is the Reynolds number based on the Ta
lor microscalel5A15nu82/^e&.

Below the dissipative scale the flow can be assum
smooth and one can replace the derivative in~2! with

e515nS du~h!

h D 2

. ~7!

Assuming that the multifractal model can be pushed down
the dissipative scale, one can evaluate the statistics of~2! by
inserting ~3! and ~6! into ~7!. One ends with the
expression4,19,20

^ep&;^e&pE dm~h!Rel
22@3ph2p1Z~h!#/~11h!

;^e&p Rel
22up, ~8!

where again the integral has been evaluated by a stee
descent argument as

up5 inf
h

F3ph2p1Z~h!

11h G . ~9!

The standard inequality in the multifractal model~fol-
lowing from the exact resultz351), Z(h)>123h,4 implies
for ~9! u150 which is nothing but the request of finite no
Downloaded 06 Sep 2002 to 193.205.65.5. Redistribution subject to A
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vanishing dissipation in the limit Re→`. For p.1, up,0,
i.e., the tail of the distribution ofe becomes wider with the
Reynolds number.

Let us remark that the prediction~9! is based on the
assumption of a fluctuating dissipative scaleh according to
~6!. If one assume, on the contrary, that dissipation enter
~7! as an average quantity one ends up with a different p
dictions for the exponentsup

21 @see below Eq.~13!#. Nu-
merical simulations with a simplified model of turbulent ca
cade have shown that the exponents~6! are indeed observed
and the alternative prediction is ruled out.20 In the next sec-
tion, we will see that also our experimental data are in agr
ment with prediction~9!.

In the following we will consider data analysis of on
component of the velocity in water jets at different Reyno
numbers. Because of the discretization of the acquisition,
are forced to replace spatial derivatives with velocity diffe
ences at small scales. The key quantity for our discussio
a generalization of~2! over a finite scale,

E~, ![15nS du~, !

, D 2

. ~10!

E(,) is a convenient definition of surrogate energy dissip
tion if the scale, is sufficiently small. The average dissipa
tive scale dependence on Reynolds number can be obta
from ~7! and ~1! as

h̄.L Rel
22/~22z2! . ~11!

In the analysis of experimental data it is convenient to n
malize separations withh̄ and we will consider~10! at fixed
,* 5,/h̄.

In the limit of very small separations~i.e., ,*.1! ~10!
recovers the finite difference representation of the 1D-ene
dissipation~7! and thus, from~8!

^E~, !p&

^E~, !&p 5
^ep&

^e&p .Rel
22up, ~12!

with the exponentsup given by ~9!.
In the case of separations in the inertial range, from~1!

we have^E(,)p&/^E(,)&p.,z2p2pz2. Because,5,* h̄, us-
ing ~11! we end with the prediction that the exponents of~12!
are given by

up5
z2p2p

22z2
. ~13!

Let us remark that the set of exponents~9! and ~13! are
expected to be not very different~they are both zero for
nonintermittent turbulence! and thus a discrimination be
tween the two predictions require good accuracy. Sca
exponents~13! have been previously proposed to hold ev
in the dissipative scales.21 We will see that on these scale
experimental data are more in favor of the set of expone
~9!.

III. EXPERIMENTAL SET-UP AND DATA ANALYSIS

The experimental setup consists of a water jet in a clo
circuit facility as shown in Fig. 1. A centrifugal pump move
water from a primary tank into a settling chamber which
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. Sketch of the experimenta
setup.
p
a
n-

e
ar
je

ry
an
ve
pe
an
-

f

mm
e
led
ed

o

ns
d by
as

nd
e

t
ber
equipped with a valve to damp oscillations due to the pum
A series of contractions leads to a 1.5 m long pipe, with
inner diameter of 14 cm which is followed by the final co
traction ~1:50 in area! to the jet. The jet ~diameter d
520 mm) exits into a large water-filled tank~height 30d,
width 30d, length 60d) from which the water returns to th
primary tank. The pipe, the contraction and large tank
made of perspex to allow optical access to the flow. At the
exit, the flow is axisymmetric and has no swirl; prelimina
measurements also confirmed that it is unaffected by
external forcing due to the pump. The jet has a top-hat
locity profile at the nozzle exit with a boundary layer sha
parameter~defined as the ratio between the displacement
momentum thickness at the outlet! equal to 3.29 and a tur
bulent intensity equal to about 0.021 on the jet axis.

Velocity measurements are performed by means o
forward-scatter laser Doppler anemometer~LDA ! equipped
with two Bragg cells. The fringe spacing is 3.416mm and the
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measurement volume size is about 0.1, 0.1, and 0.8
along thex, y, and z axes, respectively. The LDA data ar
randomly distributed in time; therefore, they are resamp
by using a linear interpolation to obtain evenly spac
samples and also to provide unbiased statistics.22 The value
of Rel is sufficiently large to expect the LDA noise not t
affect the behavior of structure functions in the IR.23 The
LDA data on longitudinal and transverse structure functio
and on scaling exponents were compared to data obtaine
hot wire anemometry in a similar jet; the agreement w
good up to 8th order.22

Measurements were made atx/d.40 ~x is measured
from the nozzle exit plane!, where the flow field may be
considered to be approximately self-preserving a
isotropic.23 The jet exit velocityU0 was selected so that th
exit Reynolds number Red[U0d/n changes from about 2
3104 to 23105. As a consequence, Rel changes from abou
200 to almost 2000 at the measurement location. The num
it
TABLE I. Parameters of the experiments on the jet atx/d540 ~except for the outlet mean velocity and the ex
Reynolds number computed atx/d50).

Outlet mean velocity
U0 (cm/s) 102 196 304 487 1060

Red 20 400 39 200 60 800 97 400 21 2000
Local mean velocity
U (cm/s)

15.3 30.4 41.4 72.1 167

Local rms velocity
u8 (cm/s)

4.4 9.2 12.3 23.8 50.1

Rel 230 308 435 926 1840
Local integral scale
L (cm)

5.5 6.3 9.4 22.0 41.1

Local Kolmogorov scale
h ~cm!

0.0181 0.0097 0.0086 0.0066 0.0045
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of collected samples is about 106 in each run. As usually
done in practice, we resort to Taylor hypothesis to transfo
time differences into space differences by means of the lo
mean velocityU. The number of independent samples, giv
by UTS/2L ~whereTS is the total record duration!, is about
104. Probability density functions of the longitudinal velo
ity increments have been calculated at different values of,* .
The distributions indicate that the number of samples is
equate for achieving a closure of the integrand associ
with the structure functionsSq(,) at least up toq56. In
Table I we summarize some parameters of the experime

Because the acquisition rate is constant for the differ
runs (dt5531024 s) the smallest resolved scaledx5Udt
varies with Rel . By increasing Rel we have both an increas
ing of dx ~as Rel

2) and a decreasing of the dissipative scaleh̄
according to~11!. Together, they limit the possibility to com
pletely resolve dissipative scales. In Fig. 2 we plot the
locity power spectra for the two extreme runs Rel5230 and
Rel51840 normalized with Kolmogorov scale and veloci

FIG. 2. Velocity power spectra at Rel5230 ~thin line! and Rel51840~tick
line! normalized with Kolmogorov scale and velocity. Dashed line repres
the Kolmogorov spectrum,E(k)5Ck25/3 with C52. In the inset we show
in lin-log plot the compensated spectraE(k)k5/3 together with the extrapo-
lated spectrum at Rel5230 ~dashed line! in order to shown the dissipative
range.

FIG. 3. Structure function of order 2 and 4 for different values of Rl

compensated with the scaling behavior~1!. The x axis is adimensionalized
with the Kolmogorov scale.
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In the latter, more severe, case the compensated spec
E(k)k5/3 displays an exponential decay at large wave num
up to aboutk50.15h21. We can thus safely compute veloc
ity differences down to,*.10 which is just at the border o
the dissipative range.24 Despite these limitations, we are con
fident that are able to capture, at least, the scaling behavio
small scale statistics, as shown below by the constancy o
mean energy dissipation.

In Fig. 3, the second and fourth-order structure functio
obtained for Rel5230 and for Rel51840 compensated with
the scaling behavior~1! are plotted~Kolmogorov length and
velocity scales are used to adimensionalize the horizo
and vertical axes!. Scaling exponents can be derived fro
structure functions of Fig. 3 within the inertial range~ap-
proximately from,.80 to,.500, using a criterion based o
3% difference from the maximum in the third-order structu
function divided by,!. The result (z250.70860.020 and
z451.26560.035 for Rel5230) agrees with those obtaine
numerically and experimentally by other authors.4

IV. RESULTS AND COMPARISON WITH THEORETICAL
PREDICTIONS

In Fig. 4 we plot the average surrogate energy dissi
tion ^E(,)&, computed from~10! and adimensionalized with
large scale quantityu83/L, as a function of Rel . A constant
value of energy dissipation is expected from energy bala
arguments.3 Thus, the observed independence of^E(,)&,
computed at fixed,*510, on Rel is a confirmation that at
least the scaling behavior of the dissipative scales is c
tured. We can give a different estimation of the dissipat
on the basis of the energy spectrum. The advantage in
case is that we can reduce the noise by interpolating
spectrum at small scales, as shown in the inset of Fig. 23,25

The result for our data, also plotted in Fig. 4, is consist
with the previous one.

In order to verify the prediction forup of Sec. II, the
scaling laws~12! of the moments ofE(,) with Rel must be
computed. In Fig. 5, an example of this scaling, computed
,*510, is given for different values ofp. We are confident
that at least up top52 the scaling exponents can be eva
ated with an error on the fit less than 5%.

t

FIG. 4. Average energy dissipation computed from definition~10! ~1! at
,*510 and from the energy spectrum~3! as function of Rel .
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The resulting exponentsup are given in Fig. 6. They
have been computed at two different values of the separa
,* 510 and,* 5400. Asexpected, for separations movin
from the dissipative range into the inertial range, the curve
the exponentsu(p) becomes flatter and approaches the p
diction ~13!. In Fig. 6 we also plot the two predictions~9!
and~13!. These have been obtained by computing the str
ture function scaling exponentszq ~1! as discussed above, a
the largest Rel available. Given the exponentszq , the codi-
mensionZ(h) has been obtained by numerical inversion
~4!. Finally, ~9! is used to predict the values ofup . The
agreement of our data with the two predictions~9! and ~13!
is remarkable. Some deviations are observed, especially
higher moments. Indeed, according to~10!, the computation
of up corresponds roughly to the computation of the struct
function of order 3p.

The theoretical picture described in Sec. II is that t
two sets of exponents~9! and~13! are asymptotically recov
ered for separations within the dissipative scales and the
ertial range scales, respectively. This is indeed observed

FIG. 5. Rel dependence of̂E(,)p& normalized with^E(,)&p for p52/3
~1!, p54/3 ~3!, and p52 ~* ! at ,510h. The lines represent the best fi
with a power law with exponentup .

FIG. 6. Exponentsup obtained from the data of Fig. 5 for,510h ~1! and
,5400h ~3!. The continuous line is the intermittent prediction~9!, the
dashed line is the prediction~13!. In the inset the value ofu2 obtained at
different scales is shown as a function of the scale.
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shown in the inset of Fig. 6 where the value ofu2 is plotted
as a function of the separation. Despite the wide range
crossover, two constant asymptotic values are clearly obs
able.

Let us remark again that the difference between pred
tions ~9! and~13! is based on the assumption of a dissipat
scale fluctuating with the local energy dissipation. Our e
perimental data demonstrate that this is indeed the case

V. REMARKS AND CONCLUSIONS

In this paper, the scaling of velocity increments at ve
small scales in a turbulent flow is investigated with spec
focus on Reynolds number dependence. Within the mu
fractal framework it is possible to derive a relation betwe
the scaling of the energy dissipation statistics with the R
nolds number and the scaling exponents of the velocity st
ture functions at fixed Reynolds number. This relation
found to fit well experimental data taken into a water jet ov
about a decade of Rel . The one-dimensional surrogate o
energy dissipation is estimated from velocity differences
different scales, from the border of the dissipative range
the deep inertial range. It is shown that our statistics gi
asymptotically two sets of exponents for very small or in
tial range separations. The rather wide region of crosso
indicates a penetration of dissipative contribution within t
inertial range.

The agreement of the experimental results with the t
sets of exponents is a demonstration of the connection
tween dissipative scales and inertial range scales as desc
by multiplicative models. Moreover, the difference betwe
the two sets of exponents is the signature of the fluctua
dissipative scale. If these results are dependent on the
finite value of the Reynolds number or on the anisotropy
the flow field is left as a subject for future investigations.
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