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We investigate Lagrangian relative dispersion in direct numerical simulation of two-dimensional
inverse cascade turbulence. The analysis is performed by using both standard fixed time statistics
and an exit time approach. The latter allows a more precise determination of the Richardson
constant which is found to beg.4 with a possible weak finite-size dependence. Our results show
only small deviations with respect to the original Richardson’s description in terms of diffusion
equation. These deviations are associated with the long-range correlated nature of the particles’
relative motion. The correlation, or persistence, parameter is measured by means of a Lagrangian
‘‘turning point’’ statistics. © 2002 American Institute of Physics.@DOI: 10.1063/1.1498121#
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I. INTRODUCTION

Understanding the statistics of particle pairs dispers
in turbulent velocity fields is of great interest for both the
retical and practical implications. At variance with sing
particle dispersion which depends mainly on the large sc
energy containing eddies, pair dispersion is driven~at least at
intermediate times! by velocity fluctuations at scales comp
rable with the pair separation. Since these small scale fl
tuations have universal characteristics, independent on
details of the large scale flow, relative dispersion in fu
developed turbulence is expected to show unive
behavior.1,2 From an applicative point of view, a deep com
prehension of relative dispersion mechanisms is of fun
mental importance for a correct modelization of small sc
diffusion and mixing properties.

Since the pioneering work by Richardson,3 many efforts
have been done to confirm experimentally or numerically
description.2,4–10 Nevertheless, the main obstacle to a de
investigation of relative dispersion in turbulence remains
lack of sufficient statistics due to technical difficulties
laboratory experiments and to the moderate inertial ra
reached in direct numerical simulations.

In this paper we present a detailed investigation of
statistics of relative dispersion from extensive direct num
cal simulations of particle pairs in two-dimensional Navie
Stokes turbulence. We will see that the main ingredient of
original Richardson description, i.e., Richardson diffusi
equation, is sufficient for a rough description of relative d
persion in this flow. Nevertheless, our simulations show th
at least at finite Reynolds numbers, two-particle statistic
rather sensible to finite size effects. This demands for a
ferent analysis based on doubling time statistics which
been recently introduced for the analysis of Lagrang
dispersion.11 Comparison of numerical results with one
based on the Richardson’s equation shows that the last d
3221070-6631/2002/14(9)/3224/9/$19.00
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ers a qualitatively good description of the doubling-tim
distributions. The quantitative deviations found are attribu
to the fact that the dispersion process is not purely diffus
and is influenced by ballistic~persistent! motion.

The article is organized as follows: In Sec. II we discu
the Richardson’s approach to the two-particle dispersion
Sec. III the fixed-scale properties of dispersion process~such
as doubling-time statistics! are considered. The numerica
approach and the results of simulations are discussed in
IV. Section V is devoted to conclusions. The mathemati
details of calculations of doubling-time statistics for the R
chardson’s case are given in Appendices A and B.

II. STATISTICS OF RELATIVE DISPERSION

Relative dispersion in turbulence is often phenome
logically described in terms of a diffusion equation for th
probability density function of pair separationp(r ,t)

]p~r ,t !

]t
5

]

]r i
S Ki , j~r ,t !

]p~r ,t !

]r j
D , ~1!

with a space and time dependent diffusion coefficie
Ki , j (r ,t)2. The original Richardson proposal, obtained fro
experimental data in the atmosphere, corresponds toK(r ,t)
5K(r )5k0«1/3r 4/3, where « has the dimension of energ
dissipation~see below! andk0 is a dimensionless constant. I
the d-dimensional isotropic case, this diffusion equati
takes the form

]p~r ,t !

]t
5

1

r d21

]

]r
r d21K~r !

]p~r ,t !

]r
. ~2!

Its solution leads to the well-known non-Gaussian distrib
tion

p~r ,t !5
A

~k0t !3«
expS 2

9r 2/3

4k0«1/3t D , ~3!
4 © 2002 American Institute of Physics
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whereA is a normalizing factor. The growth of pair separ
tion is described in terms of a single exponent as

R2n~ t ![^r 2n~ t !&5C2n«nt3n, ~4!

and the so-called Richardson constant isg5C25 1280
243 k0

3.
The Richardson’s conjecture was formulated based

the scaling nature of the diffusion coefficient and in analo
with diffusion. No information about the nature of the p
was available by that time. Any choice of the formK(r ,t)
.r 4/32a^r 2(t)&a/2 @i.e., K(r ,t).r 4/32at3a/2# would give the
same scaling lawR2}t3 but with different pdf’s~see Refs. 1,
2, 12–14!.

The possibility to describe the dispersion process
means of a diffusion equation is based on essentially
important physical assumptions which can be verifieda pos-
teriori. The first one is that the dispersion process is s
similar in time, which is a reasonable assumption in the c
of nonintermittent velocity field;9 the second one is that th
velocity field is short correlated in time.15 Indeed, in the limit
of velocity field d-correlated in time the diffusion equatio
~1! becomes exact.16,17As we proceed to show, the Richard
son’s conjecture~2!, which is exact under small values of th
persistence parameter of the flow,15,18 still delivers a qualita-
tively good approximation for realistic two-dimensional~2D!
turbulent flows, whose persistence parameter of the orde
1.

Richardson scaling in turbulence is a consequence
Kolmogorov scaling for the velocity differences.2 Under
Kolmogorov scaling, the mean-square relative velocity a
the correlation time in the inertial range are given by

^dv~r !2&.v0
2S r

r 0
D 2/3

.«2/3r 2/3 ~5!

and

t~r !.t0S r

r 0
D 2/3

.«21/3r 2/3, ~6!

where r 0 , t0 , and v0 are some~large scale! characteristic
length, time, and velocity scale and«.v0

2/t0 is the energy
flux in the inertial range. The value of the dimensionle
combinationPs5v0t0 /r 0 remains, however, unspecified b
scaling considerations. It is referred to as a persistence
rameter of the flow and plays a central role in describ
single particle diffusion and pair separation.15,18 The persis-
tence parameterPs introduced here is related to a Kubo num
ber of Ref. 19. Note however, that in our case this param
is scale-independent within the inertial range.

The persistence parameter gives the ratio of the velo
correlation time to the Lagrangian characteristic time. In
der to see howPs influences Lagrangian dispersion, let
consider the following simple model, which has been used
a basis for building a stochastic model of turbule
dispersion.15 We take that the magnitude of the separat
velocity ~i.e., the projection of the velocity difference on th
line connecting the particles! is a function ofr only so that
dv(r )5v0(r /r 0)1/3. The temporal changes of the flow can
accounted for by letting the particle change its velocity
rection from time to time, while keeping the velocity’s ma
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nitude constant. Let us consider the probability that the re
tive velocity of particle separation changes its directi
during time intervaldt ~i.e., the probability that the trajector
of the relative motion has a turning point at the current p
ticles’ positions!. Note that the corresponding probabilit
density has a dimension of inverse time, and may depend
r. According to the scaling assumption the only correspo
ing form can bedp.dt/t(r ). The growth of the magnitude
of the interparticle separationr (t) in dt is dr.dv(r )dt, thus
the probability to change the direction of velocity withindr
is, using~5! and ~6!

dp5p~r !dr5
dr

]v~r !t~r !
5

r 0

v0t0

dr

r
5

1

Ps

dr

r
. ~7!

The distribution of the position of turning points in the sep
ration follows from~7!.18 The conditional probability density
to find a next turning point atr 2 provided a previous one wa
at r 1,r 2 is given by

C~r 2ur 1!5
1

Psr1
S r 2

r 1
D 21/Ps21

. ~8!

Note that the dependence ofC(r 2ur 1) only on the relative
positions of the turning points, i.e., onr 2 /r 1 , is a clear con-
sequence of scale invariance.

The tail of C(r 2ur 1) decides about the existence of th
second moment of this distribution, i.e., on the fact whet
the corresponding motion is short- or long-range correla
in space. Depending on the persistence parameterPs, the
dispersion can be either diffusive (Ps!1) or ballistic (Ps
@1) in nature. In what follows~8! will be used as a defini-
tion of Ps. Note that the power-law tail of the distribution
make the problem extremely sensitive to the finite-size
fects, especially for largePs, when the weights of ballistic
events~Lévy-walks20! is considerable.

We note that the value ofPs is not a free parameter, bu
is fixed for a given physical situation. The scaling nature
turbulence supposes that this parameters is a constant
pending only on general properties of the flow, e.g., on its
or 3D nature~in this last case also the overall geometry
the flow can be of importance!. On the other hand, since th
nature of dispersion process depends crucially on the v
of Ps, the only way for getting quantitative informatio
about the dispersion is through direct numerical simulatio
or laboratory experiments. The strong finite-size effects
relative dispersion statistics call for the introduction of qua
tities which are less sensitive to finite resolution.

III. EXIT TIME STATISTICS

In general, statistical properties of fully developed turb
lence can be observed only in high-Reynolds number flo
in which the inertial range, where the scaling laws hold,
sufficiently wide. The needs for large Reynolds numbers
particularly severe in the case of Richardson dispersion,
consequence of the long tails in the distribution~3!. More-
over, the observation of time scaling laws as~4! requires
sufficiently long times in order to forget the initia
separation.2
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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For these reasons, the observation of Richardson sca
@i.e., ~3! or ~4!# is very difficult in direct numerical simula
tions where the Reynolds number is limited by the reso
tion. The same kind of limitations arise in laboratory expe
ments, as a consequence of the necessity to follow
Lagrangian trajectories which limits again the Reyno
number.7,8

To partially overcome these difficulties, an alternati
approach based onexit time statistics has been recent
proposed.9,11 Given a set of thresholdsRn5rnR(0) within
the inertial range, one computes the ‘‘doubling time’’Tr(Rn)
defined as the time it takes for the particle pair separatio
grow from thresholdRn to the next oneRn11 . Averages are
then performed over many dispersion experiments, i.e.,
ticle pairs, to get the mean doubling time^Tr(R)&. The out-
standing advantage of this kind of averaging at fixed sc
separation, as opposite to a fixed time, is that it remo
crossover effects since all sampled particle pairs belong
the same scales.

The problem of doubling time statistics is a first-passa
problem for the corresponding transport process. For the
chardson case, in 2D it is given by the solution of the Ric
ardson’s diffusion equation, Eqs.~2!, with initial condition
p(r ,0)5d(r 2R/r)/2p and absorbing boundary atr 5R @so
thatp(R,t)50#. The pdf of doubling time can be obtained
the time derivative of the probability that the particle is s
within the threshold

pD~ t !52
d

dt Eur u,R
p~r ,t !dr . ~9!

Using ~2! one obtains

pD~ t !522p«1/3k0R7/3
]p~r ,t !

]r U
r 5R

. ~10!

The solution using the eigenfunction decomposition is giv
in Appendix A and shows that the long-time asymptotic
pD(t) is exponential

pD~ t !.exp~2kk0«1/3R22/3t !, ~11!

wherek'2.93 is a number factor. This exponential nature
the tail of pD(t)-distribution will be confirmed by direc
simulations in Sec. IV.

Note that the combination«21/3R2/3 has a dimension o
time and is proportional to the average doubling tim
^Tr(R)&. This time can be obtained by a simple argume
reported in Appendix B. In the two-dimensional case o
obtains

^Tr~R!&5
3

4

r2/321

«1/3r2/3

R2/3

k0
. ~12!

Prediction ~12! contains the parameterk0 which, as
shown in Sec. II, is dependent on the Richardson constag.
As a consequence, the computation of average doubling
can be used for an alternative~and more robust, as we wil
see! estimation ofg. It is convenient to rewrite the doublin
time pdf~11! in terms of the average doubling time^Tr(R)&.
Making use of~12! one obtains in 2D the asymptotic expre
sion
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which is a parameterless, universal function.

IV. DIRECT NUMERICAL SIMULATIONS

Pair dispersion statistics has been investigated by ex
sive direct numerical simulations of the inverse energy c
cade in two-dimensional turbulence.21 There are several rea
sons for considering 2D turbulence. First of all, th
dimensionality of the problem makes feasible dire
numerical simulations at high Reynolds numbers. Moreov
the observed absence of intermittency22 makes the 2D in-
verse energy cascade an ideal framework for the study
Richardson scaling in Kolmogorov turbulence.

The 2D Navier–Stokes equation for the vorticityv5¹
3v52Dc is

] tv1J~v,c!5nDv2av1f, ~14!

wherec is the stream function andJ denotes the Jacobian
The friction linear term2av extracts energy from the sys
tem to avoid Bose–Einstein condensation at the grav
modes.23 The forcingf is active only on a typical small scal
l f and is d-correlated in time to ensure the control of th
energy injection rate. The viscous term has the role of
moving enstrophy at scales smaller thanl f and, as customary
it is numerically more convenient to substitute it by a hyp
viscous term~of order eight in our simulations!. Numerical
integration of~14! is performed by a standard pseudospec
method on a doubly periodic square domain of sizeL52p at
resolutions ranging fromN5128 up to N52048. All the
results presented are obtained in conditions of stationary
bulence.

In Fig. 1 we plot the typical energy spectrum, whic
displays Kolmogorov scalingE(k)5Ce2/3k25/3 over about
two decades with Kolmogorov constantC.6.0. In the inset
we plot the third-order longitudinal structure functionS3(r )
5^dv(r )3& compensated with the theoretical predictio
S3(r )53/2«r . The observation of the plateau confirms t

FIG. 1. Energy spectrumE(k) of the inverse cascade simulations at res
lution N52048 with random forcing around scalel f.0.0074. The dashed
line is the Kolmogorov spectrumE(k)5C«2/3k25/3 with C56.0. In the inset
it is shown the compensated third-order longitudinal structure funct
S3(r )/(«r ) with the prediction 3/2~dashed line!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3227Phys. Fluids, Vol. 14, No. 9, September 2002 Statistics of two-particle dispersion
existence of an inverse energy cascade and indicates th
tension of the inertial range. Previous numerical investi
tion has shown that velocity differences statistics in the
verse cascade is not affected by intermittency correction22

In this case we may expect the Lagrangian statistics to
self-similar with Richardson scaling.9

Lagrangian statistics is obtained by integrating the t
jectories of many~up to 64 000! particle pairs in the turbu-
lent velocity field, initially uniformly distributed with con-
stant separationR(0).

The Lagrangian data reported below are in dimensi
less units in which separations are rescaled with the box
L and time with the large scale timeT05(L2/«)1/3.

A. Relative dispersion analysis

In Fig. 2 we plot the relative dispersionR2(t) in the
highest resolution simulations for two different initial sep
ration, R(0)5dx/2 andR(0)5dx ~wheredx52p/N is the
grid mesh andN52048!. The Richardsont3 law ~4! is ob-
served in a limited time interval, especially for the larg
R(0) run. Aymptotically,R2(t) is independent on the initia
separation but it is remarkable that the relative separa
law displays such a strong dependence on the initial co
tions even in our high resolution runs.

This dependence makes the determination of the R
ardson constant particularly difficult. In the inset of Fig. 2 w
show the compensated plotR2(t)/t3 which, in the dimen-
sionless units, should directly give the constantg. It is clear
that a precise determination ofg is impossible; even the Ri
chardson scaling~4!, when looked in a compensated plot,
rather poor. Figure 2 suggests that starting with an inter
diate initial separation would give a wider scaling range.
course, one would like to avoid this ‘‘fine tuning,’’ which i
probably impossible to implement in the case of experim
tal data. These effects are even more dramatic in the cas
low resolution simulations~see Appendix C!. In the follow-
ing Section we will introduce a technique which avoids th
problems.

The probability distribution function of pair separation

FIG. 2. Relative dispersionR2(t) with R(0)5dx/2 ~1! andR(0)5dx ~3!
and the Richardson lawR2(t)5g«t3 with g53.8. In the inset the compen
sated plotR2(t)/(«t3) is displayed.
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is plotted in Fig. 3 for theR(0)5dx/2 run. At short timet
50.015, in the beginning of thet3 range in Fig. 2, we found
that the Richardson pdf~3! fits pretty well our data, although
some deviations can be detected. Of course, at time com
rable with the integral timet50.77, particle separations ar
of the order of the integral scale and we observe Gaus
distribution. The crossover between these two regimes is
tremely broad: Deviations from Richardson pdf are clea
seen already for the times well within the Richardson’st3

range. To observe better this transition, in Fig. 4 we plot,
log–log plot, the right tail of2 ln(p(r,t)/p(0,t)). The far tails
of p(r ,t) represent pairs at large separation which are fi
affected by finite-size effects. As a consequence, the slop
the tail can be fitted with an exponenta which change con-
tinuously in time, from 2/3 to the Gaussian value 2~see the
inset of Fig. 4!. Thus self similarity, if it exists, is reduced t
the very short time at the beginning of dispersion. Moreov
the scaling region is strongly affected by the choice of init
separation, as shown in Fig. 2.

FIG. 3. Probability distribution function of relative separations at timet
50.031~* ! andt50.77~3! rescaled withR(t)5^r 2(t)&1/2. The continuous
line is the Richardson prediction~3!, the dashed line is the Gaussian dist
bution.

FIG. 4. Right tail of 2 log(p(r,t)/p(0,t)) at times t50.015 ~1!, t50.041
~3!, t50.067~* !, andt50.77 ~h! in log–log plot. The two lines represen
the Richardson slope 2/3 and the Gaussian slope 2. The inset show
exponent of the right tail of the pdf as a function of time.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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B. Doubling time data

The same Lagrangian trajectories discussed in the pr
ous section have been used for computing exit time statis
In Fig. 5 we plot the average doubling time for theN
52048 simulation together with the dimensional predicti
^T(R)&.R2/3. The improvement in the scaling of Fig. 5 wit
respect to Fig. 2 is evident thus allowing for a more prec
determination of the constant. Let us also observe that
definition, exit time statistics is independent on the init
separationR(0) ~as far as is it sufficiently small! thus the
two realizations of Lagrangian trajectories shown in Fig
give the same result.

In Fig. 6 we plot the quantity20
9 @(r2/321)3/r2](R2

/«^T&3) which from ~4! and ~12! gives the value of the Ri-
chardson constant, for different resolutions. As expected,
extension of the scaling region~i.e., the plateau in Fig. 6!
increases with the resolution. In the inset we plot the
obtained value ofg as a function of the forcing scalekf

FIG. 5. Mean doubling timêT(R)& as function of the separationR. The
ratio is r51.2 and the average is obtained over about 53105 events. The
line represent the dimensional scalingR2/3.

FIG. 6. Mean doubling time compensated as (20/9)@(r2/321)3/
r2](R2/«^T&3) in order to give the Richardson constantg for different reso-
lutions: N5128, l f5L/40 ~1!, N5256, l f5L/80 ~3!, N5512, l f5L/160
~* !, N51024, l f5L/320 ~h! andN52048, l f5L/640 ~s!. In the inset the
value ofg as a function ofl f is plotted.
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52p/l f ~i.e., the extension of the inertial range!. It is inter-
esting to observe that the estimated value ofg is significantly
smaller at low resolution simulation. In the limit of hig
resolution the Richardson constant approaches the valug
.3.8, although a residual weak dependence on resolu
cannot be excluded.

It is interesting to compare our result with previous e
timations ofg. The only experimental estimation ofg for 2D
inverse cascade7 gives a value about seven times smaller, b
the Reynolds number in the experiment is even smaller t
in present simulations and thus finite size can have e
more dramatic effects~see Appendix C!. Other estimations
of g are based on kinematic simulations with synthetic flow
In all these cases5,6,24the reported values are even smaller.
the case of kinematic simulations one has obviously«50
and g is defined by means of the Kolmogorov constantC.
From this point of view, it is interesting to compare the 2
and 3D cases. Kolmogorov scaling requiresg}C3/2 and us-
ing the ratio C2D /C3D.4.02, one has thatg2D /g3D.8.0.
Thus, from this very crude argument~which, for example, do
not take into account the role of the dimensionality!, our
finding g2D.3.8 predictsg3D.0.48 which is indeed very
close to recent experimental8 and numerical25 results. It is
also interesting to observe that our numerical finding is
far from the prediction of turbulence closure theory.13,26

From Fig. 5 we observe that at very small separatio
R.1023, the doubling time has a tendency to a const
value ^T(R)&.0.0016. On these scales we are below
forcing scale~see Fig. 1!, and the velocity field can be as
sumed smooth. As a consequence of Lagrangian chaos
expect on these scales an exponential amplification
separations27 at a rate given by the Lagrangian Lyapuno
exponent l. The latter can be obtained asl
5 limR→0 ln r/^T(R)&11 and givesl.110 ~in dimensionless
units!. The Lagrangian Lyapunov exponentl is a small scale
quantity ~i.e. depends on the Reynolds number of the sim
lation!, and thus has to be compared with a small scale c
acteristic time. One can estimate the smallest character
time tmin by the minimum value of (k3E(k))21. We obtain
l.0.23tmin

21 .
In Fig. 7 we plot the doubling time pdfpD(T) compen-

sated with the mean valuêT(R)& at different scales in the
inertial range 0.003<R<0.046. First, we obtain a very nic
collapse of the different curves, indicating that relative d
persion in two-dimensional turbulence, when looked in t
correct way, is a self similar process. Second, we observe
exponential tail predicted in Sec. III with a fitted coefficie
0.3 which is indeed not far from the theoretical predicti
~13! based on the Richardson’s picture. The difference
tween the predicted and measured values of the prefacto
not large, but perceptible: It shows that the Richardso
equation gives a correct qualitative description of the disp
sion process, but is not exact. The reasons for deviat
from the diffusive picture proposed by Richardson are
long-range correlations in the particles’ motion, as seen fr
the analysis of the turning points of their relative trajectori
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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C. Turning points statistics and the persistence
parameter

A possible explanation for the deviations of our hig
resolution numerical data from the Richardson’s picture
the not very small value of the persistence parameter.
discussed in Sec. II, at large values ofPs the contribution of
ballistic events may lead to non-Richardson distributions
moreover makes the dispersion strongly sensible to fin
size effects, cutting the longer trajectories.

We have computed the persistence parameter making
of ~8!. We have recorded, for each pair, the set of turn
points r i at which the pair’s relative velocity changes sig
From the set ofr i we have then computed the pdf of the ra
r i 11 /r i , accumulating for all thei and all the pairs. The
result, plotted in Fig. 8, givesPs.0.87. The requiremen
that bothr 1 and r 2 are in the inertial range, strongly limit
the statistics on turning points and the numerical resul
affected by rather large uncertainty. Nevertheless, it is
markable that the power law tail in the conditional probab

FIG. 7. Pdf of doubling times at resolutionN52048 for distancesR
50.003~1!, R50.075~3!, R50.02~* ! andR50.046~h!. The dashed line
is the exponential exp(20.3T/^T&).

FIG. 8. Probability density function of turning point ratioC(r 2 /r 1). The
exponent of the power law~dashed line! gives the valuePs.0.87.
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ity densityC(r 2ur 1) is well observed in our numerical simu
lations. This justifies, a posteriori, the use of models ba
on C(r 2ur 1) for describing relative dispersion.15 The nu-
merical value of the effective persistence parameterPs
.0.87 is not so small, and can explain the observed de
tions from Richardson pdf~which are, however, less pro
nounced in a 2D flow than in a theoretical one-dimensio
model18!: The transport in a 2D turbulent flow is neithe
purely diffusive nor ballistic.28

In order to be more confident on the numerical value
Ps obtained through the turning-points statistics, let us sh
that it agrees with a simple estimates based on the value
the Kolmogorov’s and the Richardson’s constants. Accord
to the Kolmogorov’s scaling, the mean squared relative
locity of the pair is given by

^dv2~r !&5C2«2/3r 2/3, ~15!

with C2.13.22 If the particles separate ballistically with th
rms velocity

dv~r !5C2
1/2«1/3r 1/3, ~16!

the distance between them should grow as

Rmax
2 5S 2

3D 3

C2
3/2«t3. ~17!

On the other hand, due to the unsteadiness of the separ
velocity, the distance between the particles grows slow
namely asR25g«t3, so that the factor

j25R2/Rmax
2 5S 3

2D 3 g

C2
3/2, ~18!

serves as a measure of this unsteadiness andj2 is connected
with the value of the persistence parameter. In our casej2

'0.28. Within the stochastic model of Ref. 18 this corr
sponds to a value ofPs between 1.1 and 1.2, in reasonab
agreement with the direct measurement from the turni
point statistics, and again corroborates the stochastic
proach.

We also note a possibility to ‘‘tune’’ thePs value by
performing simulations in which the Lagrangian trajector
are integrated according toẋ5lv(x,t). By changing the
value of parameterl one effectively changesv0 and thusPs.
In the extreme casel→0 the trajectories resemble those in
time d-correlated velocity field. In the opposite limit,l@1
we have dispersion in a quenched field. Of course, it is o
for the standard valuel51 that Lagrangian trajectorie
move consistently with velocity field~i.e., for n5a5f50
~14! conserves vorticity along the Lagrangian trajectorie!.
For other values ofl such simulations suffer the typica
problem of advection in synthetic field~i.e., wrong reproduc-
tion of the sweeping effect, see Ref. 9 for a discussio!.
Simulations for several values ofl show that existence o
the power-law tails ofC(r 2ur 1) is a robust effect, as sup
posed by the model of Refs. 15 and 18, and thatPs grows
with l. As an example, in Fig. 9 we plot the probabilit
density C(r 2ur 1) obtained from a simulation withl50.5.
All the Eulerian parameters are the same of Fig. 8. We ag
observe a clear power law tail but now withPs.0.58.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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V. CONCLUSIONS

We have investigated the Lagrangian relative dispers
in direct numerical simulation of two-dimensional turb
lence. The inverse energy cascade of two-dimensional tu
lence displays Kolmogorov scaling without intermitten
and it is thus the natural framework for investigating possi
deviations from the classical Richardson picture.

The analysis of the numerical data was performed
using both standard statistics at fixed time and exit time
tistics at fixed scale. The latter is shown to be more robus
finite Reynolds situations. An application of exit time stat
tics is developed for measuring the Richardson constant
good accuracy. The numerical result obtainedg.3.8 is pos-
sibly still affected by weak finite-size effects, at is it show
by comparison with simulations at different resolutions.

We have studied the distribution of particle pair sepa
tions in the spirit of Richardson’s diffusion equation. Th
rather large deviations~with respect to Richardson theory!
observed in the tails of the pdf at fixed times are mos
related to crossover effects due to finite Reynolds numb
and disappear when looking at exit time statistics. Thus,
Richardson’s equation gives a good basis for qualitative
scription of the dispersion in turbulent flows.

Paying attention to the turning points of the relative t
jectories allows for estimating the effective persistence
rameter of the motion which is found to be of the order
unity. Thus, the motion shows a relevant ballistic compon
and is not purely diffusive. Nevertheless, the correlations
not too strong to fully destroy the Richardson’s picture. T
observation can be a starting point for further theoreti
considerations.

We note that the methodology of analysis proposed h
based on the fixed-scale statistics and on the analysis o
relative trajectories can be also applied to the analysis
laboratory experiments. It would be extremely interesting
see whether in this way one can reduce the disagreem
with the simulations and obtains a consistent picture of re
tive dispersion in two-dimensional turbulence.

FIG. 9. The same of Fig. 8 but forl50.5. The persistence parameter is no
Ps.0.58.
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APPENDIX A: THE PDF OF DOUBLING TIMES

Let us discuss the probability densitypD(t) of the time
when the a pair of particles initially at distanceR/r separates
up to the distanceR, and obtain its asymptotic decay of th
probability for t large.

Changing to a variablej5(k0«1/3)21/2r 1/3 reduces~2! to
a radial part of a spherically symmetric diffusion equati
with constant diffusion coefficient. In 2d one has

]p

]t
5

1

9j5

]

]j
j5

]

]j
p, ~A1!

with the initial condition p(j,0)5d(jmin2j) with jmin

5(k0«
1/3)21/2(R/r)1/3 and with the boundary condition

p(jmax,t)50, with jmax5(k0«
1/3)21/2R1/3.

The solution of a boundary-value problem for~A1! can
be obtained by means of eigenfunction decomposition.
suming the variable separation we get the solution in

form p(j,t)5S ie
2l i

2tc i(j), wherec i(j) is an eigenfunc-
tion of the equation

1

9j5

]

]j
j5

]

]j
c i52l i

2c i , ~A2!

satisfying the boundary conditionc(jmax)50. The corre-
sponding solution which is nonsingular in zero isc i

5j22J2(3l ij) ~J2 is the Bessel function29!. The fact thatc
vanishes atjmax gives 3l ijmax5j2,i , where j 2,i is the i-the
real zero ofJ2(x). For example, the smallest eigenvalue
l1

25 j 2,1
2 /9jmax

2 '2.93k0«1/3R22/3. Since the projection of the
initial condition onto the eigenfunction corresponding to th
eigenvalue does not vanish, the long-time asymptotic of
doubling-time distribution is exp(22.93k0«1/3R22/3t).

APPENDIX B: AVERAGE DOUBLING TIME

The mean doubling time can be obtained from a stati
ary solution of the Richardson diffusion equation. Imagi
that one particle per unit time is introduced atr 5R/r and
there are, respectively, a reflecting and absorbing bounda
at r 50 andr 5R. The stationary solution of~2! in 2D with
the appropriate boundary conditions and continuity areR/r
is

p~r !5H C@r4/321# for 0,r ,R/r

CF S r

RD 24/3

21G for R/r,r ,R
. ~B1!

The number of particle inr ,R is

N5E
ur u,R

p~r !dr52pE
0

R

rp~r !dr ~B2!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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By using ~B1! one obtains

N52pC~12r22/3!R2. ~B3!

The current atr 5R, i.e., the number of particle exiting
from the boundaryR per unit time, is given, as in~10!, as

J522p«1/3k0R7/3
]p~r !

]r U
r 5R

5
8p

3
C«1/3k0R4/3. ~B4!

The mean doubling time is the average time spent b
particle atr ,R. It is given by the ratioN/J and thus

^Tr~R!&5
3

4

r2/321

«1/3k0r2/3R2/3, ~B5!

which is Eq.~12!.

APPENDIX C: FINITE-SIZE EFFECTS

In this appendix we briefly discuss the effect of fini
resolution on the evaluation of relative dispersion. Let
consider an incompressible turbulent flow with inertial ran
defined on scalesl f,r ,L. In the case of 2D turbulencel f

represents the forcing scale andL the integral scale, while in
the 3D case they are the dissipative and the forcing sca
respectively. The velocity field is thus assumed smooth@i.e.,
^dv(r )2&;r 2# for r , l f , Kolmogorov-type@i.e., ^dv(r )2&
;r 2/3# in the inertial range and saturates@^dv(r )2&
52^v2&# at the integral scale. The separation between
particles placed at initial distanceR(0), l f grows exponen-
tially as long as it remains below the inertial range. In t
inertial range the Richardson scalingR2(t);t3 is expected.
For R(t).L the behavior depends on the boundary con
tions: In the present case of numerical simulations with
riodic boundary conditions standard diffusive behav
R2(t)52Dt is expected.

It is evident that a cleart3 law can be observed only i
L@ l f , i.e., in the case of high-Reynolds number flows. O

FIG. 10. Relative dispersionR2(t) for the low resolution simulation with
l f5L/10 at initial separationsR(0)5 l f /10 andR(0)5 l f /20. In the inset the
compensated plotR2(t)/(«t3) is shown.
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erwise, detailed numerical simulations performed with sy
thetic velocity field9,11 have shown that the broad crossov
from the exponential regime and to the diffusive regime c
completely hide the intermediate inertial range regime.

An example of this effect is given in Fig. 10 whic
shows the behavior ofR2(t) for low resolution simulation
with l f5L/10.0.63 for two different initial separations
R(0). Theapparentt3 regime is spurious, in the sense that
is not related to Kolmogorov velocity scaling but it is simp
an artifact induced by the crossover from the exponentia
the diffusive regime. As a consequence, the value of the
chardson constant computed from the compensated
strongly depends on the initial separation@from g.0.3 tog
.0.5 for R(0)50.005L to R(0)50.01L#.

In Fig. 11 the result of the computation of mean do
bling time is presented. The two lines represent the expon
tial and diffusive regimes and no RichardsonR2/3 regime is
observed~compare with Fig. 5!. Thus, also in this case o
extremely low resolution, the advantage of doubling tim
statistics for the interpretation of Lagrangian data is evide
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