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PACS. 52.35Ra – Plasma turbulence.

Abstract. – The analogue of the Kolmogorov’s four-fifths law is derived for two-dimensional,
homogeneous, isotropic EMHD turbulence in the energy cascade inertial range. Direct numerical
simulations for the freely decaying case show that this relation holds true for diÆerent values of
the adimensional electron inertial length scale, de. The energy spectrum is found to be close to
the expected Kolmogorov spectrum.

The statistical theory of three-dimensional fully developed hydrodynamic turbulence relies
on one outstanding issue: the nonlinear transfer of energy from large to small scales [1]-[3]. It
is therefore interesting to look for two-dimensional turbulent fluid dynamical systems sharing
this same feature. Actually many of them exhibit a reversed energy flux, from the small
scales to the larger ones, as is the case of 2D Navier-Stokes turbulence [4]-[7], Hasegawa-Mima
turbulence [8] or its geophysical counterpart, equivalent barotropic turbulence [9]. In this
framework 2D electron-magnetohydrodynamic (EMHD) turbulence deserves special attention,
beyond its modeling applications, since it has been shown to display, for the freely decaying
case, a forward energy cascade à la Richardson-Kolmogorov [10].

In this letter a relation is introduced which is the counterpart of the Kolmogorov four-fifths
law for homogeneous and isotropic 2D EMHD turbulence. Its content is compared with the
results obtained by direct numerical simulations.

EMHD equations are a fluid dynamical model for a cold electron plasma, moving in a
uniform charge-neutralizing background of stationary ions. In recent years this model has
received considerable interest for its relation to inertially confined plasma and to laser-plasma
interactions, but the comparison with experimental results is limited by the fact that plasma
which evolve according to EMHD equations is usually short-lived.
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The equations for the electron plasma in adimensional form are [11]

d2e
@v

@t
+ d2ev ·rv = °rp°E° v£B+ ∫q(°r)2qv . (1)

The velocity field v, the magnetic field B, and the electric field E are allowed to have a nonzero
component in any direction of three-dimensional space, meanwhile their functional dependence
is restricted to the plane coordinates ( @@x3 ¥ 0). The equations have been adimensionalized
with respect to the characteristic macroscopic length L, the typical magnetic field B0, the
characteristic time ø = mec/(eB0d2e) and de = [mec2/(4ºe2nL2)]1/2 is the ratio of the inertial
electron length scale to the integral scale L. The density of the number of electrons n is
assumed to be uniform according to the incompressibility of the velocity field r · v = 0.
The approximation made by considering motionless ions requests that the adimensional ion
inertial length, di, must be larger than unity, thus limiting the range of admissible values for
de = di(me/mi)1/2 to the interval de 0.02. As long as we are dealing with a fluid description
of plasma, all the lengthscales under consideration must largely exceed the Larmor radius. For
stationary ions and negligible displacement current, the Ampère law becomes

v = °r£B . (2)

The last term in eq. (1) is a dissipative term which mimics the eÆects of electron viscosity
(q = 1) or resistivity (q = 0). The total energy of the electron fluid

E =
1

2

Z
(d2ev

2 +B2)d2x (3)

is conserved by these equations in the ideal, non-collisional case.
In the spirit of Kolmogorov analysis [1], [2], one takes under consideration the spectral

energy budget

@

@t
E(K) +¶(K) = °D(K) , (4)

where E(K) =
RK
0 E(k) dk is the mean cumulative energy per unit mass contained at wave

numbers smaller than K, and E(k) is the energy spectrum. ¶(K) is the energy flux (per unit
mass) from wave numbers k ∑ K to larger wave numbers, and D(K) is the cumulative energy
dissipation up to wave number K. Since the dissipation is localized to high wave numbers
k ∏ Kd, there is a range of wave numbers K0 ø K ø Kd where D(K) ' 0, and the energy
flux ¶(K) is determined by the inertial transfer of energy from the energy containing eddies
at wave numbers around K0. When the large scale energy input due to the straining of energy
containing eddies at scale K0 is equilibrated by dissipation taking place at small scales, one
expects the energy flux through wave number K, ¶(K), to be independent of K [3]. Actually
it must be remarked that, due to the energy decay, the flux approaches a constant value, equal
to the total dissipation, only for very large K, and the crossover to the asymptotic behavior is
very slow [12]. In an analogous fashion as in three-dimensional hydrodynamic turbulence, in
the limit of vanishing viscosity, ∫ ! 0, the energy flux is expected to achieve a finite positive
limit, depending on the value of de, "̄ > 0,

¶(K) ' "̄ , K0 ø K ø Kd . (5)

This is a strong request which in 3D hydrodynamics has experimental evidence; in the case
under consideration it will be shown that numerical simulations provide reasonable support to
this hypothesis.
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Assuming statistical homogeneity, the energy flux ¶(K) can be expressed by means of
physical space statistics by performing the Fourier transform of (4). The result is

¶(K) =
1

2º

Z
d2` K

J1(K`)

`
"(`) , (6)

where J1 is the first-order Bessel function of the first kind, and the energy flux in the physical
space is given by

"(`) = °
@
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ØØ
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, (7)

where the subscript NL stands for the nonlinear contribution to the time derivative of the
fields, as can be extracted by the equations of motion (1), and the brackets h. . .i express
ensemble averages. Using (1) and (2), making repeatedly use of statistical homogeneity, of
incompressibility of the velocity field and solenoidality of the magnetic field, one obtains the
following relation:

"(`) =
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where i = 1, 2 denotes the planar components. The expression (8) for the physical space
energy flux is the analogue of the Kármán-Howarth-Monin relation [2], and it involves only
diÆerences of dynamical fields as ±v = v(x + `) ° v(x). To proceed further, one assumes
statistical isotropy and it is then possible to show that the physical space energy flux is
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(9)

in which the following third-order structure functions appear:

S3(`) = h±vk±vk±vki , T3(`) = h±vk±Bk±Bki ,

U3(`) = h±vk±B?±B?i , V3(`) = h±v3±v3±vki ,

W3(`) = h±v3±B3±Bki , X3(`) = h±B3±B3±vki ,

(10)

where the standard notation for longitudinal, ±vk = ±vi`i/`, and transverse diÆerences, ±v? =
≤ij±vi`j/`, has been used.

As a consequence of hypothesis (5), it can be shown by a saddle-point argument that the
physical space flux, "(`), must behave as

"(`) ' "̄ , ∏ø `ø `0 , (11)

in the limit of vanishing viscosity, where the inertial range of length scales is now delimited
by the “Taylor scale”, ∏ = (∫qE/D)1/2q, where D is the energy dissipation, and the energy-
containing scale `0 ª 1/K0. Inserting the expression for the energy flux (9) inside relation (11),
one obtains the 2D EMHD counterpart of Kolmogorov’s four-fifths law [1], [2]

Q3(`) ' "̄` , (12)
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Fig. 1. – Energy flux in wave number space normalized to energy dissipation. (a) de = 0.3. Continuous
line: N = 512; ∫4 = 10°12. Dotted line: N = 1024; ∫4 = 10°13. (b) de = 0.02. Continuous line:
N = 512; ∫4 = 10°13.
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Relation (12) relies only on the aforementioned hypothesis here recalled: homogeneity, isotropy,
and the existence of an inertial range of wave numbers in which the energy flux is constant,
with a value tending to a finite positive limit for vanishing viscosity. The most remarkable
aspect of relations (12), (13) is that they do not only provide a linear scaling for the third-order
structure function Q3(`) within the inertial range of length scales, but they also prescribe the
value of the numerical coe±cient appearing in front of the scaling relation. Moreover, it is
valid for any value of de, meanwhile no power law scaling relation is expected to hold for, say,
the second-order structure functions, apart from limiting cases such as de ª 1 and de ø 1 [10].

To check the validity of the EMHD Kolmogorov law (12), eqs. (1) are solved in a square box
of size 2º£2º imposing periodic boundary conditions, by means of a standard pseudospectral
method with resolution N £N . Hyperdissipation with q = 4 is employed in order to achieve
a larger extent of the inertial range, which in physical space is known to be much narrower
than in spectral space [2]. Hyperviscosity is set to ∫4 = 10°12, 10°13 for N = 512 simulations
and ∫4 = 10°13 for N = 1024.

The initial conditions are v(k) ª k2 exp[°k2/2k20] with random phases, k0 = 1 and total
energy of order unity in both resolution simulations. After a transient of a few large eddy
turnover times, when the energy initially contained at the lowest wave numbers starts to
cascade down to small scales, the energy dissipation reaches a maximum value and then a
self-similar stage of decay sets in [10]. The energy flux is approximately constant throughout
the inertial range of wave numbers (see fig. 1), and, in agreement with the assumption (5), its
value appears to be asymptotically independent of viscosity.

The structure function Q3(`) is computed during the self-similar stage of decay. The results
are obtained after averaging over a short time in order to get better statistics at small scales. As
shown in fig. 2 the compensated structure function Q3(`)/("̄`) approaches unity, as prescribed
by the relation (12) in an interval delimited from below by the “Taylor scale” ∏ and above
by the energy-containing scale `0. By lowering the viscosity (crosses, N = 1024) the scaling
range extends to smaller scales over almost one decade. As previously remarked, the width of
the inertial range is actually diminished by the fact that, for a decaying flow, the energy flux
in wave number space is not constant except asymptotically (see fig. 1).
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Fig. 2. – Compensated structure function Q3(`)/("̄`). (a) de = 0.3. Diamonds: N = 512; ∫4 = 10°12.
Crosses: N = 1024; ∫4 = 10°13. (b) de = 0.02. Diamonds: N = 512; ∫4 = 10°13.

These results are an evident numerical confirmation of the validity of the Kolmogorov-type
relation (12). This kind of assessment is important since it lies at the foundations of the
statistical study of turbulence.

Introducing the further hypothesis of statistical self-similarity, one can infer the following
scaling behavior for the velocity and for the magnetic-field diÆerences in the asymptotic case:

Ω
±v(`) / "̄ 1/3` 1/3,
±B(`) / "̄ 1/3` 4/3,

`ø de , (14)

which leads to the small-scale energy spectrum, dominated by kinetic energy,

E(k) = CK "̄ 2/3k°5/3 , kde ¿ 1 . (15)

On the other hand, for scales larger than de, the expected self-similar scaling is
Ω
±v(`) / "̄ 1/3`°1/3,
±B(`) / "̄ 1/3` 2/3,

`¿ de , (16)

Fig. 3. – Energy spectrum. (a) de = 0.3. Diamonds: N = 512; ∫4 = 10°12. Crosses: N = 1024;
∫4 = 10°13. The dashed line is the Kolmogorov spectrum (15) with CK = 2.0. (b) de = 0.02.
Diamonds: N = 512; ∫4 = 10°13. The dashed line is the spectrum (17) with C0K = 8.0
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leading to the energy spectrum, dominated by magnetic energy,

E(k) = C0K "̄
2/3k°7/3 , kde ø 1 . (17)

The slopes of the computed spectra, as shown in fig. 3, are close to the estimates (15) and (17)
over a wide range of wave numbers.

As a final remark we observe that in the limit de ¿ 1 (i.e. at scales ` ø de) 2D-EMHD
equations reduce to two-dimensional Navier-Stokes equations which do not display forward
energy cascade. In this limit one would expect a direct cascade of enstrophy Z =

R
(r£v)2d2x,

which is a second inviscid invariant. Actually in our simulations a clear forward energy cascade
is detected also for ` < de. This apparent paradox is explained by inspection of the enstrophy
budget in (1). Indeed there appears an enstrophy source term ≠ = d°2e r £ v ·r £ (v £B)
which, according to (14), scales as ≠` ª d°4e `

0 injecting enstrophy at all wave numbers. Thus
for the EMHD equations, enstrophy is not conserved in the limit ` ø de and one does not
recover the 2D Navier Stokes behavior unless de !1.

The main results of this work are the derivation of a Kolmogorov-type relation for 2D EMHD
decaying turbulence, and its numerical confirmation. Since Kolmogorov’s law represents a
starting point for the study of the statistical features of turbulence, the present result forms
the basis of further analysis, starting from the issue of intermittency.
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