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Abstract
2D-EMHD turbulence is studied in the freely decaying case and in the
random forced one. The analogue of the KolmogorovÏs four-Ðfths law [3]
is derived under the assumptions of statical homogeneity and isotropy.
Direct numerical simulations show that it holds true for di†erent values of
the adimensional electron inertial length scale In the regime, thede . de D 1
energy spectrum is found to be close to the Kolmogorov spectrum.

1. Basic equations

A plasma of cold electrons can be described in the frame-
work of Electron-MagnetoHydrodynamics, hereafter
EMHD, [1], which is a Ñuid-dynamical model representing
the behaviour of electrons in a neutralizing background of
motionless ions. In recent years, this model has received
considerable interest for its application to the study of laser-
plasma interactions and inertially conÐned plasmas. The
(dimensionless) equation of motion is given by :

de2
L¿
Lt

] de2¿ Æ È¿ \ [Èp [ E [ ¿ ] B (1)

where the Ðelds are three-dimensional vectors, depending
only on the plane coordinates, and de2 \ c2/upe2 \

is the (square) dimensionless electron skinmc2/4nne2L2
depth. To normalize the equation, the macroscopic size L
was used as a scale length, is a characteristic magneticB0
Ðeld, the inverse gyrofrequency was taken asuce~1 \ mc/eB0
a scale time and the density n was supposed to be constant.

Neglecting dissipation e†ects, the electron equation
reduces to a frozen-in law for the curl of the canonical
momentum in the velocity Ñow [2]. Using Ampère equation

the above statement can be written in(¿ \ [(c/4nne)+–B),
the following dimensionless form:

LX
Lt

] $–($–B–X) \ 0, (2)

where is the curl of the canonical momen-X \ (1 [ de2+2)B
tum, sometimes called generalized vorticity. Using incom-
pressibility for the velocity Ðeld and solenoidality for the
magnetic Ðeld, it is easy to obtain two scalar equations :

L(t [ de2+2t)
Lt

] [r, t [ de2+2t] \ 0, (3)

L(r [ de2+2r)
Lt

] [r, r [ de2+2r] \ [t, t [ de2+2r], (4)

where the Jacobian operator is deÐned as usual [a, b] \
and B(x, y) \ r(x, soLx aLy b [ Lx bLy a y)ez ] $–(t(x, y)ez),

that +2t and +2r are respectively the current and the vor-
ticity along z direction.

The following three quadratic quantities are conserved by
eqs (1) :

E \
P

d2x(¿2 ] B2) \
P

d2x

] (r2 ] ($t)2 ] de2[($r)2 ] (+2t)2))], (5)

H \
P

d2x(t [ de2+2t)2, (6)

K \
P

d2x(t [ de2+2)(r [ de2+2r). (7)

2. EMHD turbulence

Dissipation can be taken into account by means of a di†u-
sive term, so that (1) becomes

de2
L¿
Lt

] de2¿ Æ +¿ \ [+p [ E [ ¿ ] B ] lq([+)2q¿. (8)

The dissipation coefficient is the analogue of the inverselq
Reynolds number, normalized on the inverse electron gyro-
frequency instead that on the eddy turnover time, as usually
done. In our numerical simulations we actually used hyper-
viscosity (q [ 1), while q \ 1 corresponds to electron vis-
cosity and q \ 0 to resistivity.

One of the more interesting question is : how the ideal
invariants (5), (6), (7) are nonlinearly transferred among the
lengthscales? To answer this question we followed a sta-
tistical approach mainly due to A. N. Kolmogorov, who
developed the three-dimensional hydrodynamic (3D-NS)
turbulence theory [3, 4], showing that, in the limit of van-
ishing viscosity and due to the hypotheses of statistical
homogeneity and isotropy, the turbulent regime is charac-
terized by a forward energy cascade, by a Ðnite value of
energy dissipation and by the existence of a range (inertial
range) of scales in which the energy Ñux is constant.

It was recently proved [5] that 2D-EMHD turbulence
resembles 3D-NS turbulence, at least in the regime.de D 1
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Fig. 1. Energy spectrum. (a) Diamonds : N \ 512 ;de \ 0.3 ; l4 \ 10~12.
Crosses : N \ 1024 ; The continuous line is the Kolmogorovl4 \ 10~13.
spectrum (11) with (b) Diamonds : N \ 512 ;CK \ 2.0. de \ 0.02 ; l4 \
10~13. The continuous line is the spectrum (12) with CK@ \ 8.0.

This is quite surprising, because many two-dimensional
systems exhibit a reversed energy Ñux, from the small scales
to the larger ones, as it happens for 2D-NS turbulence
[6È9], Hasegawa-Mima turbulence [10] or equivalent-
barotropic turbulence [11]. The case of 2D-MHD turbu-
lence is di†erent, since this is a direct energy cascade, but it
is probably driven by the Alfvèn e†ect [12].

In order to investigate how the energy Ñows among the
lengthscales, starting from the energy budget obtained by
(1), we derived [13] the 2D-EMHD counterpart of Kolmo-
gorovÏs four-Ðfths law [3, 4]. We made the following hypo-
theses : statistical homogeneity and isotropy,
incompressibility and the existence of an inertial range in
which the energy Ñux is constant We found a relation(e6 ).
that can be read as a scaling law for the third order struc-
ture function :

Q3(l) \ [23de2Sdv
A

dv
A

dv
A
T [ 12de2Sdv3 dv3 dv
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T

] 12Sdv
A

dB
A

dB
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] 12Sdv3 dB3 dB
A
T [ 14SdB3 dB3 dv

A
T ^ e6 l, (9)

where di†erences of dynamical Ðelds (d¿ \ ¿(x ] l) [ ¿(x))
appear, the brackets mean ensemble averages and the sub-
scripts express increments taken longitudinally (dv

A
\

or transversally The linear scalingdvi li/l) (dv
M

\ vij dvi lj/l).
and the value of the numerical coefficient in (9) were con-
Ðrmed by numerical simulations [13].

The most remarkable feature of (9) is that it is valid for
any values of Using a Kolmogorov-type analyis (i.e. sup-de .
posing the cascade to be self-similar), it is easy to estimate
the slopes of the energy spectra in two limiting cases, shown
in Fig. 1.

If the energy is dominated by its kinematic contribution
from (9) we have :(de P 1),

dv(l) P e6 1@3l1@3 (10)

which leads to the energy spectrum:

E(k) \ CK e6 2@3k~5@3. (11)

In the opposite regime, the magnetic energy dominates
in (9) so that :(de > 1)

dB(l) P e6 1@3l2@3

and the spectrum is given by :

E(k) \ CK@ e6 2@3k~7@3. (12)

The presence of a third lengthscale in addition to the(de),
inertial scale and the Kolmogorov scale which are the upper
and lower limit of the inertial range, and the existence of the
quantity (6) which is not only passively advected, makes
2D-EMHD turbulence di†erent from the other 2D turbu-
lent systems.

In the regime, we observed the decoupling of thede ? 1
planar motion and the axial one : eq. (4) reduces to the vor-
ticity equation in 2D-NS turbulence, while the current along
z-axis is advected (3) as a passive scalar by the planar veloc-
ity Ðeld. Axial kinetic energy (6) and planar kinetic energy
(5) are both (ideally) conserved, but the decoupling intro-
duces new planar invariants, such as enstrophy.

In the regime, mean square potential (6) and mag-de > 1
netic energy (5) are conserved, so that one can expect an
inverse cascade of H and a direct cascade of E, as it happens
in 2D-MHD, which is consistent with the energy spectrum
slope found [14].

It is worth noticing one more case : for energy isde D 1,
dominated by its kinematic part, but the forcing term in (4)
is not negligible, since it behaves like an enstrophy source
active at any lengthscale in the inertial range [13].

3. Is there a Whistler e†ect?

It is known [1] that linearizing eq. (1) against a uniform
background magnetic Ðeld one Ðnds the whistler waves,B0
sometimes called helicons, whose dispersion relation is given
by

u(k) \ kk
A

de2 uce
1 ] k2de2

(13)

where is the electron girofrequency anduce \ eB0/me c k
A

means that whistlers propagate along the equilibrium mag-
netic Ðeld The role of whistlers in EMHD could beB0 .
analogous to the role of Alfve� n waves in MHD: they are
responsible of a mechanism of energy transfer in com-
petition to the non linear one. Following a Kraichnan-type
[12] analysis, it is possible to evaluate the corrections to the
energy spectrum due to the ““whistler e†ectÏÏ. Contrary to
Alfve� n waves, whistlers are dispersive waves, thus we can
expect di†erent results in the asymptotic regimes that we
studied above.

In the magnetic regime relation dispersion (13)(kde > 1),
reduces to

u(k) B k2de2 uce
and whistlers propagate with group velocity

vg B 2de2 uce k. (14)
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Then supposing the energy to be transferred in the inertial
range during the non linear time of interaction of whistler
wavepackets, one Ðnds the following energy spectrum

E(k) D e6 1@2de uce1@2k~2. (15)

In the kinematic regime (13) becomes(kde ? 1)

u(k) B uce
and whistler waves reduce to non propagating oscillations :
there cannot exist a whistler e†ect.

4. Forced EHMD turbulence

2D-EMHD turbulence was proven [5, 13] to exhibit a Kol-
mogorov energy spectrum, for in the freely decayingde D 1,
case. It is interesting to test how strong is this behaviour,
namely to Ðnd a corresponding statistically stationary state.
Taking into account forcing and dissipation, eq. (1) becomes

de2
L¿
Lt

] de2 ¿ Æ +¿ \ [+p [ E [ ¿ ] B

] l
q
([+)2q¿ ] F (16)

To solve (3) and (4) we used a pseudo-spectral code in a
square box, with periodic boundary conditions and 2/3-rule
deliasing. We chose a large scale forcing in order to achieve
a stationary state, in which the turbulent cascade is main-
tained by externally injected energy. To avoid accumulation
of energy at large scale, which could be due to the inverse
cascade of H, we forced the Ðeld using at [ de2+2t
Langevin-type scheme

dx(t)
dt

\ [x(t) ] g(t) (17)

where the random noise g(t) is delta-correlated in time and
only wavevectors with (k O 3) were forced. The Ðeld /

was left freely decaying, with the aim of investigat-[ de2+2/
ing the role of the Lorentz forcing term in (4). Starting from
an initial condition in which both Ðelds were zero, we
observed the raising up of H, due to the random forcing,
followed by that of energy E. After a linear phase, when H
grows linearly in time, a stationary state was reached in
which total energy and dissipation oscillated around a Ðnite
value (Fig. 2(a)). During this stationary phase, the energy
spectrum was found to be close to the Kolmogorov one, as

Fig. 2. (a) Total energy and dissipation versus time for a Langevin forced
run. Output time corresponds to N \ 256. Atuce~1. de \ 0.3, l4 \ 10~10,
t \ 100 was reduced to a half. (b) Energy spectrum.l4 de \ 0.3, l4 \ 10~13,
N \ 1024. The continuous line is the Kolmogorov spectrum (11).

Fig. 3. Direct plot of the Ðeld t [ de2+2t during the stationary phase
shown in Fig. 2(a).

shown in Fig. 2(b). Direct plots of the Ðelds (see Fig. 3) are
clearly recognizable as fully developed turbulent state.

This behaviour does not hold out for an asymptotically
long time : in fact, when the Lorentz force in (4) starts to act
as a consistent source of planar kinematic energy, the
energy spectrum slope becomes steeper than the Kolmogo-
rov one. The Lorentz force cannot be treated as a large scale
forcing, since it injects energy at all lengthscales and the
standard picture à la Richardson needs to be modiÐed.
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