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Geotropic tracers in turbulent flows: a proxy for fluid acceleration
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We investigate the statistics of orientation of small, neutrally buoyant, spherical tracers
whose centre of mass is displaced from the geometrical centre. If appropriate-sized par-
ticles are considered, a linear relation can be derived between the horizontal components
of the orientation vector and the same components of acceleration. Direct numerical
simulations are carried out, showing that such relation can be used to reconstruct the
statistics of acceleration fluctuations up to the order of the gravitational acceleration.
Based on such results, we suggest a novel method for the local experimental measure-
ment of accelerations in turbulent flows.
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1. Introduction

The Lagrangian investigation of turbulence has dramatically improved in the last few years
in experimental techniques, theoretical models and numerical simulations [1]. These pro-
gresses benefited from the increased range of Reynolds numbers accessible for investigation
(in particular, for simulations) and the improved accuracy of measurement techniques. On
the theoretical side, we have now phenomenological models able to quantitatively explain
the Lagrangian properties of turbulence such as the statistics of velocity increments [2]
and accelerations [3]. Grounded on the successes of Lagrangian investigations, recent ex-
perimental and numerical studies started to investigate the motion of complex objects in
turbulent flows [4–9]. The motivations are both fundamental and applicative. In this short
note, we suggest a possible technique to measure turbulent accelerations without the need
of particle tracking, by means of the local measurement of the orientation of finite-size
particles. The idea relies on spherical particles whose average density is that of the carrier
fluid (so that they are neutrally buoyant), but whose centre of mass is displaced with respect
to the geometrical centre (implying that the orientation is determined by the gravitational
torque and that due to the fluid). By means of direct numerical simulations (DNS), we show
that information on particle orientation can be used to estimate fluid accelerations up to the
order of gravitational acceleration.

The paper is organised as follows. In Section 2, we discuss the theoretical basis of the
technique in its simplest implementation. Section 3 presents some preliminary validation
of the method based on numerical simulations. Finally, Section 4 is devoted to conclusions
and perspectives.
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Figure 1. An example of geotropic particle with black and white pattern. Forces are represented as
measured in the reference frame of the particle’s centre. Acceleration of the particle by the fluid (which
is due to surface forces acting on the geometrical centre of the body) produces in this non-inertial
frame an apparent force added to gravity and acting on the centre of mass.

2. The motion of geotropic tracers

We consider the trajectory, x(t), of a neutrally buoyant sphere small enough such that its
dynamics can be approximated by that of a passive tracer,

dx
dt

= u(x, t), (1)

transported by a flow u(x, t). As sketched in Figure 1, we assume that the particle centre
of mass C is displaced by a distance h with respect to the geometrical centre O (which is
the centre of buoyancy). The displacement determines the particle orientation, defined by
the unit vector p directed opposite to the centre of mass. The direction p is determined
by the balance between the different torques acting on the particle. Because of particle
asymmetry, an external force f acting on the centre of mass such as gravity mg, results
in a torque T f = −h p × f . In addition, the particle immersed in a fluid experiences a
viscous torque T v = 8πνρr3(ω/2 − �), where ω = ∇ × u is the fluid vorticity, ν and ρ

are the fluid kinematic viscosity and density, respectively, and � is the angular velocity of
the sphere. If the particle Reynolds number is very small, we can assume creeping flow
conditions around the sphere, which impose equilibrium between the external forces and
the viscous ones, in this particular case zero total torque T f + T v = 0. From the solid body
rotation formula ṗ = p × � and p × (T f + T v) = 0, we end with the following equation
for the orientation [10]:

d p
dt

= − 1

2v0
[A − (A · p) p] + 1

2
ω × p, (2)

where A has the dimension of an acceleration and denotes the sum of gravity and inertial
forces per unit mass, as measured in the reference frame of the sphere. The constant
v0 = 3ν/h, having the dimension of a velocity, weighs the contribution of external forces
to particle orientation. We remark that in the case of axisymmetric non-spherical particles
an additional term is present in (2) [8–10].

Equations (1) and (2) are valid in the limit of small, neutrally buoyant particles. If
inertia is taken into account, particle motion is described by integro-differential equations
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containing added mass and history effects (see Ref. [11]). No such effects will be con-
sidered here, consistently with our approximations. In a fluid at rest, fluid acceleration
and vorticity vanish and the only external force entering Equation (2) is gravity, so that
A = g = (0, 0,−g). Consequently, Equation (2) predicts that particles orient upwards with
a relaxation time O(v0/g). Such phenomenon is well known in bio-fluid-dynamics and is
at the basis of the ability of some bottom-heavy phytoplankters to swim towards the sea
surface (a phenomenon dubbed negative gravitaxis [10]), maximising the exposition to
light and thus the photosynthetic activity.

In a turbulent flow, advected particles are subject to intense accelerations, so that,
locally, gravity must be corrected due to inertial forces. The total acceleration A acting
on the particle is thus given by A = g − a, where a = du/dt is the fluid acceleration at
the particle position. Again, the assumption that the acceleration of the particle is equal to
that of the fluid implies particles smaller than few η. Numerical [12,13] and experimental
[14,15] investigations showed that particles larger than η sense accelerations smaller than
tracers. If one restricts to diameters up to 4η the error on the rms value should be less than
20%. There is indication that such larger particles can accurately be described by including
Faxen’s corrections in the equation of motion [12,13].

In the following, for the sake of simplicity, we assume that fluid acceleration is smaller
than gravity, i.e. g � arms. This is true for flows at moderate Reynolds numbers only
[16], but this assumption greatly simplifies the analysis of (2). Formally, we can write
A = g − εa in Equation (2), with ε a small nondimensional number. Further we consider
the limit of fast reorientation, which amounts to requiring that the reorientation time v0/g is
smaller than the Kolmogorov time τη. If one estimates arms ∼ ε3/4/ν1/4 and assumes h ∼ η

in the definition of v0, fast orientation consistently implies g � arms.
When the vortical term ω × p is small, i.e. when v0ωrms � arms, Equation (2) reduces

to A = (A · p) p, which explicitly reads

εax = (εa · p + gpz)px,

εay = (εa · p + gpz)py, (3)

εaz + g = (εa · p + gpz)pz .

From (3) one can see that the orientation vector must have the form p = (εqx, εqy, 1),
indeed as p2 = 1 the correction to pz will be O(ε2) so that we can neglect it at this level.
Plugging the expression for p in Equation (3), at O(ε) we obtain q = (ax/g, ay/g, 0). In
conclusion, from the orientation of the particle with respect to the vertical we can measure
two components of the fluid acceleration

p =
(

ax

g
,
ay

g
, 1

)
. (4)

This result is valid under the assumption that arms � g and, therefore, in general for not
too high Re. This condition together with the smallness of the vorticity term implies fast
orientation (v0/g � τη). As a consequence, if v0 is too large, the first effect we expect is
that vorticity becomes relevant, with an increase of the tilting angle, so that using (4) could
lead to an over-estimate of accelerations. In more general conditions, it is in principle still
possible to use (2) to gather information on the acceleration statistics but this requires less
direct procedures, which we will not consider in this preliminary study.
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Table 1. Parameters of the simulations made dimensional on the basis of laboratory experiments at
similar Reynolds numbers [7,14].

Reλ η τη urms ε L arms T
(m) (s) (ms−1) (m2s−3) (m) (ms−2) (s)

200 191 × 10−6 37 × 10−3 0.037 7.1 × 10−4 0.07 0.24 8.22
400 98 × 10−6 9.5 × 10−3 0.097 9.1 × 10−3 0.10 1.5 2.58

Notes: η = (ν3/ε)1/4 is the Kolmogorov scale, τη = (ν/ε)1/2 is the Kolmogorov time, urms is the root mean square
of the velocity, ε is the energy dissipation per unit mass, L = u3

rms/ε is the integral length scale, arms is the root
mean square acceleration. T is the integration time. For both simulations g = 9.8 ms−2.

3. Numerical simulations of geotropic tracers in turbulence

In this section, we illustrate the behaviour of geotropic particles in realistic turbulent flows
and explore the range of validity of the result (4) by means of DNS of the dynamics of
geotropic tracers together with the Navier–Stokes equations for an incompressible flow.
Trajectories (up to 2 × 105) are stored together with a and ω in statistically stationary con-
ditions. Equation (2) is then integrated starting from random orientations and for different
values of v0. After an initial transient of the order of v0/g, during which particles forget their
initial orientation, we can compare the acceleration a with the prediction of Equation (4).

We have performed simulations of homogeneous-isotropic turbulence by means of a
parallel pseudo-spectral code in a cubic box with periodic boundary conditions at Reλ � 200
with resolution 5123. Statistical stationarity was maintained via a Gaussian, delta-correlated
in time, random forcing at small wave-numbers. Equation (1) is integrated evaluating the
velocity at particle position by means of trilinear interpolation. Moreover, we have also
exploited a database [17] of previously simulated Lagrangian trajectories at resolution
20483 and Reλ � 400, for which acceleration and vorticity were available. Equation (2)
was integrated using a second-order Adams–Bashforth scheme. In order to get physical
relevance from the DNS, we rescale space and time with dimensional values. This is easily
done by matching the Kolmogorov scale and time with experimental values at similar Reλ,
as shown in Table 1. We remark that this rescaling is not unique as Reλ fixes a ratio of scales
(and times) and not an absolute scale. This point is crucial as the parameter v0 is limited
by the size of the particle and g is obviously fixed. In the following, we use laboratory
experiments with an integral scale of the order of few cm for rescaling our simulations to
physical values [7,14].

Figure 2 shows an example of time series of the two components of the acceleration ax

and ay obtained following a Lagrangian tracer in the flow at Reλ = 200. The initial condition
of the orientation is along the z-axis, p(0) = (0, 0, 1). The dashed red line represents the
acceleration obtained according to (4) from the x-component of the orientation vector,
ax = gpx of a particle with v0 � 0.006 ms−1. The corresponding relaxation time under
gravity is τ = v0/g � 6 × 10−4 s. In this case arms � g and, therefore, the estimation (4)
is fully justified and indeed the acceleration is reproduced quite accurately.

In Figure 3, we show an example for a trajectory in a turbulent flow at Reλ = 400.
Although the rms of acceleration arms � ε3/4ν−1/4 is smaller than g, particles experience
fluctuations comparable to, or even larger than g, where the assumptions leading to (4) are
not applicable. These large fluctuations of Lagrangian acceleration are typical in turbulence
and physically correspond to event of trapping of tracers in small scale vortices [3,16,18].
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28 F. De Lillo et al.

Figure 2. x-component (top) and y-component (bottom) of the acceleration of one particle computed
from numerical simulations at Reλ = 200 (black line) together with the acceleration estimated from
the x- and y-component of the orientation vector, i.e. ax = gpx ay = gpy see (4), of a geotropic
particle with v0 = 6 mm s−1 corresponding to a displacement h = 0.5 mm.

As shown in Figure 3, during these events the orientation vector p is unable to accurately
follow the acceleration fluctuation, which results to be slightly underestimated.

On a more quantitative level, Figure 4 shows the probability density function (PDF)
of acceleration compared with the estimation obtained via (4). For each value of Reλ

considered, we simulate the results of three hypothetical experiments, with particles of
different sizes. As discussed above, geotropic orientation is expected to be a good proxy
for acceleration only in the limit of small v0, i.e. for fast orientation. As apparent from
both panels in Figure 4, when a large enough displacement h is considered, the statistics of
acceleration is reproduced remarkably well by particle orientation. However, this is not the

Figure 3. The same of Figure 2 for a geotropic trajectory with h = 0.2 mm and v0 = 15 mm s−1 in
a turbulent flow at Reλ = 400.
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Figure 4. PDFs of acceleration in one horizontal direction for Reλ = 200 (a) and Reλ = 400 (b).
Estimates obtained according to (2) (X = gpx , symbols) are compared with fluid acceleration (X =
ax , line). Three values of particle bias were used, which rescaled on experimental values correspond
to h = 0.1 mm (circles), 0.2 mm (triangles) and 0.5 mm (squares). By comparison, it is evident that
the intermediate value gives a good estimate at higher Reλ but is not satisfying at the lower one (see
the text). In (b) the value of g (vertical lines) marks the upper cut-off for measurable accelerations.
In the inset of (a): relative error on the estimate of σ = √〈a2

x〉 as a function of h, for Reλ = 200,
�σ = g

√〈p2
x〉 − σ .

case if less biased particles are considered. This clearly implies a lower limit in the size of
particles used, a factor that must be taken into account in the design of possible experiments.
As mentioned above, vorticity can be neglected only if v0ωrms/arms ∼ v0/δuη < 1. By
applying the definition of the Kolmogorov scale δuηη/ν = 1 and that of v0, the constraint
reduces (a part from order-one coefficients) to η � h. This inequality can pose a problem
both for the validity of (1) and the actual statistics seen by the particle. Both points will
be discussed in the final section. As for now we will just consider this condition in the
framework of our model, assuming that the corrections are small as long as the particle size
is of the same order as η.

If (as in our case) one considers a set of experiments all using water and with comparable
integral scales, an increase in Re corresponds to a smaller viscous scale, thus decreasing
the minimum particle size required to reconstruct acceleration. As an example of this,
we considered the case of particles with h = 0.2 mm. As evident from Figure 4 using
Equation (4) on statistics obtained with such particles would lead to an overestimate of
larger accelerations at Reλ = 200 (triangles in Figure 4a) while they would be acceptable
candidates at Reλ = 400 (triangles in Figure 4(b)). However, the largest acceleration that
can be measured by means of (2) is g. For experiments at higher Re where very large
accelerations are present, this introduces a cut-off in the estimated accelerations. As evident
from the results at Reλ = 400, the core of the PDF is approximately correct, even if
values above 0.5 ÷ 0.7g are under-represented. We stress that the simulations exhibited
accelerations up to 80arms (not shown for graphical reasons), while g ≈ 6.3arms if rescaled
over the experimental parameters. Analysis of the variance of acceleration performed for
Reλ = 200 (inset of Figure 4(a)) reveals that the second moment of the distribution is
correctly recovered asymptotically in h/η. The same cannot be verified at Reλ = 400, since
the cut-off at g prevents convergence of the second moment of estimated accelerations.

In order to further investigate the errors on the estimate of the acceleration, we consider
the joint distribution P (ai, gpi) (with i = x, y) of each acceleration component and its
estimate. As shown in Figure 5 such distributions confirm a tendency of smaller particles to
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30 F. De Lillo et al.

Figure 5. Joint PDF of acceleration and estimated acceleration for Reλ = 200 (a,b) and Reλ =
400 (c,d). Each panel refers to a different value of the displacement, 0.2 mm (a,c) and 0.5 mm (b,d).
Contour levels are set a factor 10 apart starting from 10−1 (at the centre) down. The straight line marks
gpx = ax for reference. While the tendency is generally that of overestimating large accelerations
(appearing as a clockwise tilt of the level sets), stronger ‘clockwise’ lobes appears for the larger
displacement at Reλ (d), compatible with the lower tails in the corresponding PDF of Figure 4. Note
that the strong deformation of the PDF in (c) and (d) is due to the cut-off gpx .

overestimate accelerations. Only for Reλ = 400 the largest particles underestimate acceler-
ations, as can be seen by the low tails of the corresponding PDF in Figure 4 and by a slight
asymmetry of P (ax, gpx) towards quadrants in which |gpx | < |ax |. The strongly intermit-
tent nature of both acceleration and vorticity suggests to investigate in more detail how
accurately accelerations of different magnitude can be estimated via (4). The conditional
average 〈|1 − gpx/ax |; ax〉 is shown in Figure 6 for both values of Reλ. Let us first consider
the curves at Reλ = 200. It is evident that larger particles (i.e. with faster reorientation time)
provide better estimates: the largest particles, with h = 0.5 mm give a minimum relative
error of around 0.2. Through most of the observed range, the relative error is smaller for
larger accelerations, because the effect of vorticity decreases accordingly. Indeed, the same
figure also compares the relative error with v0(ω × p), showing that, for all but the largest
accelerations, the error in the estimate comes from the vorticity term in (2), consistently
with the assumption of fast orientation. For accelerations larger than ∼0.1g, the effect of
finite gravity causes deviations from this behaviour and eventually an increase of the relative
error, as expected. This effect is less evident for smaller particles, most likely because they
tend to overestimate the acceleration while the finite gravity effect leads to an underestimate
so that there is a compensation between the two opposite effects. The right panel shows
that the effect of finite gravity is much larger for Reλ = 400, as expected. However, one
should note that the vorticity term would give with the same particles a smaller error in this
second case than for Reλ = 200. Indeed, by estimating the error due to vorticity as v0/uη

one would get a value about 1.9 smaller for the higher Reλ, compatible within 10% with the
numerical results around a ∼ arms. We stress that this observation is not valid in general:
it is a consequence of the fact that, in our case, the flow at higher Re has a larger effective
integral scale and a larger uη.
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Figure 6. Relative error on the estimate of one component of acceleration by (4). The average
〈|1 − gpx/ax |; ax〉 conditioned on the local value of ax (symbols) is compared with the contribution
due to the vorticity term in (2) 〈v0|ωypz − ωzpy |; ax〉 (lines). For Reλ = 200 (left), the latter clearly
constitutes the main contribution to the error. At Reλ = 400 (right), the estimate of larger accelerations
is clearly affected by the finite value of g. Data refer to h = 0.2 mm (triangles, solid line) and
h = 0.5 mm (squares, dotted line).

4. Conclusion and discussion

Summarising our numerical results, it appears that the orientation of biased particles could
be a viable proxy for fluid acceleration, at least at moderate Re. It is clearly important to
establish a way to estimate the proper particle size based on the parameters of the turbulent
flow to be examined.

Although particle size does not directly enter the model equations, the offset h clearly
sets a lower bound on particle radius. This point must be carefully considered. Particles
should be sufficiently biased to ensure dominance of acceleration over rotation due to
vorticity, but too large particles would not obey the assumptions leading to (1) and (2).

On the other hand, experimental limitations should be considered. In order to use (4) to
directly measure fluid acceleration one has to measure the tilt angle of a geotropic particle
transported by the flow. One possibility is to use small spherical particles with the upper
and lower hemisphere of different colors as in the example of Figure 1, a simpler version
of the technique used in [4]. By measuring the angle θ of the particle ‘equator’with respect
to the horizontal plane one has px = sin θ .

A precise determination of θ requires sufficient resolution of the particle pattern and
therefore not too small particles. On the other hand, because the measure is instantaneous,
there is no need to follow the particles. Therefore, the camera could be placed to zoom a
small region of the fluid only, and to acquire data when a particle comes in that region.

Let us finally comment about possible corrections to the described behaviour, for the
two cases of particles too small or too large. If the offset h is too small, the vorticity term in
(2) is no longer negligible. As a consequence, reconstruction of acceleration would require
independent information on vorticity, so that a more complex method would be required.
Furthermore, fast orientation is at the basis of (4) which allows one to avoid particle
tracking, and would be important to follow high frequency fluctuations accurately. In the
case of too large particles, the creeping flow assumption would be inaccurate. Nonetheless,
the tilting angle would still provide information on the fluid acceleration but Equation (2)
has to be modified to take inertial terms into account.

A further aspect that should be taken into account is finite size effects on particle
trajectory. In general, one expects that particles larger than the Kolmogorov scale deviate
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32 F. De Lillo et al.

from fluid trajectories. However, there is evidence that acceleration statistics are not strongly
influenced by particle size [12,13,15]. Numerical and experimental results suggest that
addition of the so-called Faxen terms in the equation for particle trajectory can account
for the main deviations, providing a method to estimate the related errors [12,13]. Such
corrections should become relevant when the radius of the particle is larger than η

√
Reλ,

which for experiments comparable to the ones we considered would give O(10)η [12], thus
allowing for some range of sizes to explore.

Given the above constraints, we can conclude that the proposed method would be
reasonably accurate for typical experimental settings at moderate Reynolds numbers or
when large Reynolds number are achieved thanks to a large integral scale. In spite of the
above discussed limitations, we think that the idea of exploiting biased particles to measure
acceleration without tracking may be interesting especially if technology can be pushed to
the possibility to measure the tilting angle of many particles at the same time, allowing for
the reconstruction of the spatial field of accelerations.

Acknowledgement
The authors acknowledge support by the COST Action MP0806 and MIUR PRIN-2009PYYZM5

References
[1] F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbulence, Annu. Rev.

Fluid Mech. 41 (2009), pp. 375–404.
[2] A. Arneodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B.

Castaing, M. Cencini, L. Chevillard, R.T. Fisher, R. Grauer, H. Homann, D. Lamb, A.S. Lanotte,
E. Leveque, B. Luthi, J. Mann, N. Mordant, W.C. Muller, S. Ott, N.T. Ouellette, J-F. Pinton,
S.B. Pope, S.G. Roux, F. Toschi, H. Xu, and P.K. Yeung, Universal intermittent properties of
particle trajectories in highly turbulent flows, Phys. Rev. Lett. 100 (2008), p. 254504.

[3] L. Biferale, G. Boffetta, A. Celani, B. Devenish, A. Lanotte, and F. Toschi, Multifractal statistics
of Lagrangian velocity and acceleration in turbulence, Phys. Rev. Lett. 93 (2004), 64502.

[4] R. Zimmermann, Y. Gasteuil, M. Bourgoin, R. Volk, A. Pumir, and J.F. Pinton, Rotational
intermittency and turbulence induced lift experienced by large particles in a turbulent flow,
Phys. Rev. Lett. 106 (2011), p. 154501.

[5] R. Zimmermann, Y. Gasteuil, M. Bourgoin, R. Volk, A. Pumir, and J.F. Pinton, Tracking the
dynamics of translation and absolute orientation of a sphere in a turbulent flow, Rev. Sci.
Instrum. 82 (2011), p. 033906.

[6] R. Zimmermann, L. Fiabane, Y. Gasteuil, R. Volk, and J. Pinton, Measuring Lagrangian accel-
erations using an instrumented particle, preprint(2012). Available at arXiv, arXiv:1206.1617.

[7] S. Klein, M. Gibert, A. Bérut, and E. Bodenschatz, Simultaneous 3D measurement of the
translation and rotation of finite size particles and the flow field in a fully developed turbulent
water flow, Meas. Sci. Technol. 24 (2013), p. 024006.

[8] D. Vincenzi, Orientation of non-spherical particles in an axisymmetric random flow, J. Fluid
Mech. 719 (2013), pp. 465–487.

[9] S. Parsa, E. Calzavarini, F. Toschi, and G. Voth, Rotation rate of rods in turbulent fluid flow,
Phys. Rev. Lett. 109 (2012), p. 134501.

[10] T.J. Pedley and J.O. Kessler, Hydrodynamic phenomena in suspensions of swimming microor-
ganisms, Annu. Rev. Fluid Mech. 24 (1992), pp. 313–358.

[11] M.R. Maxey and J.J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow,
Phys. Fluids 26 (1983), p. 883.

[12] E. Calzavarini, R. Volk, M. Bourgoin, E. Leveque, J. Pinton, and F. Toschi, Acceleration statistics
of finite-sized particles in turbulent flow: The role of Faxén forces, J. Fluid Mech. 630 (2009),
p. 179.

[13] H. Homann and J. Bec, Finite-size effects in the dynamics of neutrally buoyant particles in
turbulent flow, J. Fluid Mech. 651 (2010), p. 81.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i T

or
in

o]
 a

t 0
3:

36
 2

5 
O

ct
ob

er
 2

01
3 



Journal of Turbulence 33

[14] G. Voth, A. la Porta, A. Crawford, J. Alexander, and E. Bodenschatz, Measurement of particle
accelerations in fully developed turbulence, J. Fluid Mech. 469 (2002), pp. 121–160.

[15] N.M. Qureshi, M. Bourgoin, C. Baudet, A. Cartellier, and Y. Gagne, Turbulent transport of
material particles: An experimental study of finite size effects, Phys. Rev. Lett. 99 (2007),
p. 184502.

[16] A. La Porta, G. Voth, A. Crawford, J. Alexander, and E. Bodenschatz, Fluid particle accelera-
tions in fully developed turbulence, Nature 409 (2001), pp. 1017–1019.

[17] F. Toschi, L. Biferale, M. Cencini, E. Calzavarini, A. Lanotte, and J. Bec, Heavy parti-
cles in turbulent flows RM-2007-GRAD-2048.St0. iCFDdatabase. Dataset., 2011. Available
at http://dx.doi.org/10.4121/uuid:a64319d5-1735-4bf1-944b-8e9187e4b9d6.

[18] L. Biferale, G. Boffetta, A. Celani, A. Lanotte, and F. Toschi, Particle trapping in three-
dimensional fully developed turbulence, Phys. Fluids 17 (2005), p. 021701.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i T

or
in

o]
 a

t 0
3:

36
 2

5 
O

ct
ob

er
 2

01
3 




