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Long-time behavior of MHD shell models
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Abstract. – The long-time behavior of velocity-magnetic field alignment is numerically in-
vestigated in the framework of MHD shell model. In the stationary forced case, the correlation
parameter C displays a nontrivial behavior with long periods of high variability which alternate
with periods of almost constant C. The temporal statistics of correlation is shown to be non-
Poissonian, and the pdf of constant sign periods displays clear power law tails. The possible
relevance of the model for the geomagnetic dynamo problem is discussed.

It is generally believed that the turbulent motions of an electrically conducting fluid or
plasma can excite turbulent, fluctuating magnetic fields, the so-called turbulent dynamo.
Traditionally, the analysis of turbulent dynamo is started with the kinematic stage where the
magnetic field is supposed to be weak enough to neglect its influence on the fluid velocity field,
which is considered as a prescribed random field with time-independent statistical properties.
The response of the magnetic field to the fluid motion results in a saturation of the magnetic
field growth. In the following one can expect the establishment of a kind of statistical equi-
librium. The aim of this paper is to investigate numerically an extremely long-time behavior
of the nonlinear dynamics.

The possibility to follow the long-term evolution of the turbulent magnetic field by direct
numerical simulations is very limited, because of the required large magnetic and kinematic
Reynolds numbers (see, e.g., [1]). That is why our discussion is based on the shell model of
small-scale MHD turbulence introduced in [2], which reaches a statistically stationary state
with a spectral index depending on the level of cross-helicity and magnetic helicity.

The basic idea of any shell model of fully developed turbulence is to retain either one real or
complex mode (in our case this is Un for velocity and Bn for magnetic field) as a representative
of all corresponding modes in the shell with wave number kn < |�k| < kn+1, kn = 2n, and
to introduce a set of ODE, which mimics the original nonlinear PDE (i.e. Navier-Stokes
equations in the pure hydrodynamical case). For an introduction to shell models the readers
are referred to [3].
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Here we will use the MHD shell model introduced in [2] and rewritten for 3D turbulence
as
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Here Re is the Reynolds number, Rm = Re ·Prm is the magnetic Reynolds number, and Prm is
the magnetic Prandtl number. fn is the external forcing which acts on the velocity field only.
If Bn = 0, one obtains the so-called GOY shell model [3–5], widely used for the Navier-Stokes
equations

In the limit Re,Rm → ∞, eqs. (1), (2) conserve three quadratic quantities corresponding to
the three quadratic invariants of inviscid MHD flows: total energy E = EV +EB =

∑
n |Un|2+

|Bn|2, cross helicity HC =
∑

n Re(UnB∗
n) and magnetic helicity HB =

∑
n(−1)nk−1

n |Bn|2 [6].
To proceed further let us note that the nonlinear terms of (1), (2) identically vanish for
Un = ±Bn (Alfvénic fixed points).

By considering an initial distribution of kinetic energy with a weak magnetic energy (EB �
EV ), and setting fn = 0, one arrives at the dynamo problem in free-decaying turbulence. This
approach is a reasonable approximation, because the time of energy decay is much longer than
the characteristic time of the magnetic field growth.

The dynamics of the decaying case has been investigated in detail in [2]. Starting from
a very low level, the magnetic energy reaches about 1/10 of kinetic energy in about one
turnover time. Then there appears a relatively long period of nonlinear evolution (order of
20–40 turnover times) after which the ratio EB/EV remains constant (and of order 1). The
spectral index of magnetic and velocity fields is usually close to the classical value −5/3 with
a constant energy flux over a wide spectral range. It should be noted that the cross-helicity
HC remains close to zero during the whole decay.

An essentially different picture is observed in the forced turbulence sustained by a constant
external force f0 acting on one shell only (n = 0). Starting again with a weak magnetic field,
the system at the initial evolution stage displays the same behavior as in the free decaying
case, and a statistically stable state (with Kolmogorov scaling) seems to be established at time
t ∼ 10 [2]. However, longer simulations under similar forcing [7] revealed that after relatively
long evolution this state is replaced by another one. In contrast to the initial stage of evolution,
the magnetic field is strongly correlated (or anticorrelated) with the velocity field. The value of
cross-helicity HC is close to its maximal value (i.e. the correlation parameter, C = 2HC/E, is
close to 1 or to −1). Let us note that the states with high correlation between the magnetic and
velocity fields are well known in MHD (e.g., Alfvén waves). From the dynamical viewpoint,
high correlations imply strong depletion of the nonlinear terms in (1), (2) and thus a weak
energy flux. As a consequence, the slope of the spectral index is expected to be very steep, as
observed in numerical simulations [8].

The specific behavior of a given solution of the shell model depends on the choice of initial
conditions. The difference between two evolution tracks under slightly varied initial conditions
can be surprisingly great. To illustrate this point, fig. 1 gives the evolution of two simulations
under slightly different initial conditions. At long times we observed either an unlimited
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Fig. 1 – Time evolution of total energy E and cross-helicityHC for the MHD shell model with constant
forcing and slightly different initial conditions. In both cases we observe a strong correlation between
kinetic and magnetic variables which reduces the energy flux.

growth of magnetic and kinetic energy (as in fig. 1a), or a very long oscillatory behavior (as
shown in fig. 1b) [8]. The dependence of the observed correlated state on the forcing has been
discussed by Giuliani [9] who replaced the constant force by the Gaussian random forcing
exponentially correlated in time. The system then moves randomly between the correlated
and anticorrelated states. This behavior assures stationarity with a well defined mean energy
flux to small scales.

The long-term evolution of the MHD shell model presented in fig. 1 demonstrates a drastic
variation in the total energy of the system, suggesting a strong inflow or outflow of energy.
Since our main focus is a basically isolated system, we provide conservation of the kinetic
energy in the largest scale (n = 0) by applying a different kind of force. At each time step, we
force the value of |U0| to a given constant, while the phase is left free to follow the dynamics.

With this kind of forcing, most of the time the kinetic and the magnetic energy oscil-
late around the mean value with the small correlation parameter C (fig. 2). However, one
can observe a relatively long stage of high correlation and small energy oscillation (i.e. for
500 < t < 1500 in fig. 2).
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Fig. 2 – Time evolution of (a) total energy E and cross-helicity HC and (b) the correlation parameter
C in the “isolated” MHD shell model. The kinetic energy of the first shell |U0|2 is kept constant by
rescaling the amplitude of U0 at every time step.
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Fig. 3 – Sequence of time reversal for the correlation parameter C in the long shell model simulation.

We performed simulations of the isolated model for a very long period of time up to
t = 150000. During the evolution, the alignment C changed the sign 2832 times. The
sequence of the sign reversals is shown in fig. 3 as a sequence of black (C > 0) and white
(C < 0) strips. This type of visualization is chosen by analogy with the geomagnetic studies
where different polarities of the geomagnetic field are usually represented by white and black
strips (see, e.g., [10]).
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Fig. 4 – Temporal correlation function for the alignments. The initial exponential behavior with
characteristic time τ0 � 200 is clearly observable.
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Fig. 5 – Probability density distribution of the delays ∆t between successive alignment inversions in
fig. 3. The clear power law scaling reveals the non-Poissonian nature of the process. The dashed line
is the fit p(∆t) � ∆t−1.7

Alternation of black and white strips seems to be a random process which can be investi-
gated by statistical tools. We computed the correlation function of alignments by introducing
a stepwise function f(t) = 1 if C(t) > 0 and f(t) = −1 if C(t) ≤ 0. Figure 4 shows the time
correlation defined by

W (τ) =

∫ T−τ

0
(f(t)f(t + τ)− 〈f〉2)dt

(T − τ)〈(f(t)− 〈f〉)2〉 , (3)

where 〈f〉 represents the time average and T = 150000 is the total length of the simulation.
We can expect a priori that the estimate of W is possible up to values of τ not larger than
τ ≈ 5000 (it corresponds to T/τ ≈ 30). In practice, W becomes noisy even earlier, at τ = 1000.
A quasi-exponential decay of correlation, W (τ) ∼ exp[−τ/τ0] with characteristic time scale
τ0 = 200 is observable for τ < 500. This time scale is in crude agreement with the mean value
of the epoch of a given sign of alignment. In other words, the memory of a given epoch is
preserved in a few following epochs at most.

The intervals of steady sign of alignment vary from ∆t = 1 (determined by the numerical
resolution) up to ∆t = 8421. This high variability of ∆t is hardly compatible with a Poissonian
nature of epoch alternation. Figure 5, presenting the plot of the probability density p(∆t),
supports this statement. We observe a clear power law behavior p(∆t)  ∆t−1.7 for a wide
range of ∆t. Let us note that the non-Poissonian nature of temporal statistics in the MHD
shell model has already been observed in a different context [11].

In this letter we have investigated numerically the statistics of a very long time evolution
of the MHD shell model. In the stationary forced case the kinetic and the magnetic energy
exhibit a strong chaoticity with intermediate periods of small variability. The correlation C
between velocity and magnetic field reflects this intermittent behavior. In the period of strong
variability C fluctuates very rapidly, while it sticks close to the maximum value C = ±1 in
the low-variability periods.

It can be interesting to compare our findings on the long-term behavior of the MHD shell
model with low-order models of nonlinear dynamo. For example, the well-known Rikitake
model [12] indicates chaotic reversals of the magnetic field, but the absolute values of the
magnetic field between reversals are close. More complex models of geodynamo provide the
chaotic sequence of reversals with the chaotic evolution of magnetic energy between reversals
and the fractal distribution of reversal instants (see [10] and references therein).
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