
PHYSICS OF FLUIDS 24, 055102 (2012)

On Lagrangian single-particle statistics
Gregory Falkovich,1,2 Haitao Xu,1,3 Alain Pumir,1,4

Eberhard Bodenschatz,1,3,5,6,a) Luca Biferale,1,7 Guido Boffetta,1,8

Alessandra S. Lanotte,1,9 and Federico Toschi1,10,11

1International Collaboration for Turbulence Research
2Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
3Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
4Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46, Université Lyon 1
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In turbulence, ideas of energy cascade and energy flux, substantiated by the exact
Kolmogorov relation, lead to the determination of scaling laws for the velocity spatial
correlation function. Here we ask whether similar ideas can be applied to temporal
correlations. We critically review the relevant theoretical and experimental results
concerning the velocity statistics of a single fluid particle in the inertial range of sta-
tistically homogeneous, stationary and isotropic turbulence. We stress that the widely
used relations for the second structure function, D2(t) ≡ 〈[v(t) − v(0)]2〉 ∝ εt , re-
lies on dimensional arguments only: no relation of D2(t) to the energy cascade is
known, neither in two- nor in three-dimensional turbulence. State of the art ex-
perimental and numerical results demonstrate that at high Reynolds numbers, the
derivative d D2(t)

dt has a finite non-zero slope starting from t ≈ 2τ η. The analysis
of the acceleration spectrum �A(ω) indicates a possible small correction with re-
spect to the dimensional expectation �A(ω) ∼ ω0 but present data are unable to
discriminate between anomalous scaling and finite Reynolds effects in the second
order moment of velocity Lagrangian statistics. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4711397]

I. INTRODUCTION

From an elementary point of view, turbulent motion provides a way to dissipate energy in fluids,
when forcing and effective dissipation act on vastly different scales. For energy to be transferred
from the pumping scale to the dissipative scale, a cascade appears. Formal expression of the energy
cascade is the exact flux law

〈(δu · r/r )3〉 = −12εr/D(D + 2) , (1)

where δu is the Eulerian velocity difference (i.e., measured at the same time at points separated by
r), ε is the mean energy dissipation/production rate and D is the space dimensionality. Equation (1)
is exact for the separation distance r is in the so-called inertial range: η � r � L, where η is the
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Kolmogorov length scale, the scale below which velocity field is smooth; L is the integral length
scale. For the Lagrangian velocity v(t) = u(R, t) with Ṙ = v, the exact relation, which is a direct
analog of the Eulerian flux law (1), is derived for the Lagrangian time derivative of the two-particle
single-time velocity difference: 〈d|v(R1, t) − v(R2, t)|2/dt〉 = −2ε for |R1 − R2| in the inertial
range. Let us remark that ε has a sign depending on whether this is a direct (ε > 0 for D = 3) or
inverse (ε < 0 for D = 2) cascade,1–3 which follows from the fact that the main contribution to
d|v(R1, t) − v(R2, t)|2/dt comes either from the force term for D = 2 or from the dissipation acting
at smaller scales for D = 3.

The flux relation suggests the Kolmogorov-Obukhov scaling for the Eulerian velocity difference

〈((δu · r/r )n〉 	 (εr )n/3 . (2)

The general scaling law Eq. (2) is probably correct in two-dimensional space (2D).4, 5 It is known to
be incorrect in three-dimensional space (3D), and even though it provides a useful phenomenology
for n not very different from 3, it is important that ε does not determine the whole single-time
statistics.

Here we ask whether the cascade idea can tell us anything about the Lagrangian statistics, i.e.,
temporal correlations of the single-particle velocity. It is tempting to relate the statistical properties
of spatial and temporal velocity increments using the relation r 	 tδu(r). Since the velocity increment
δu(r) is a strongly fluctuating quantity whose statistics may depend on the scale r, using such casual
arguments to establish relations between spatial and temporal statistics is questionable. The first
attempt at deriving such a relation was made by Landau and Obukhov who simply assumed that the
temporal change of the Lagrangian velocity is determined solely by the energy flux and suggested
the relation δv(t) = v(t ; R(0)) − v(0, R(0)) 	 (εt)1/2, which in particular suggests6

D2(t) ≡ 〈|v(t) − v(0)|2〉 	 εt, (3)

for time lags t in the Lagrangian inertial range: τ η � t � TL, where τ η = (η2/ε)1/3 is the Kolmogorov
time scale and TL = (L2/ε)1/3 = L/〈v2〉1/2 is the large eddy turn over time.

We show below that the pure scaling of Eq. (3) does not follow from theoretical considerations,
see Sec. II, and that it is not observed even at very large Reynolds numbers, see Sec. III where
experimental and numerical data are presented.

II. THEORETICAL CONSIDERATIONS

A. Time-irreversibility

As a minor remark, we first note that since ε in Eqs. (1) and (2) has a sign, Eq. (3) cannot
contain εt but must rather use the positive quantity which is the energy injection rate 〈 f · u〉, where
f (t) is the external forcing. Upon time reflection, both t and 〈 f · u〉 change sign leaving Eq. (3)
unchanged. More fundamental doubt on whether the flux can determine δv(t) follows from the fact
that the flux is a measure of irreversibility, while the single-particle Lagrangian statistics is time
reversible. To prove the latter, note that the statistical homogeneity of the Eulerian velocities implies
that the Lagrangian velocity v(t) = u(R(t), t) is statistically independent of the initial position
R(0). If, additionally, the Eulerian velocity is statistically stationary, then so is the Lagrangian
one. This follows by averaging the expectations involving v(t) over the initial position R(0) (on
which they do not depend) and by the change of variables R(0) 
→ R(t) which leaves the velocity
ensemble average invariant for incompressible flows.1, 7 Consider now the time reversal t → −t,
v → −v and v(t) − v(0) → −v(−t) + v(0), this latter quantity turns into the initial one, v(t) − v(0),
after the time shift, which leaves the statistics invariant. This argument can be readily generalized
to any correlation function explicitly invariant under galilean transformation, and involving only
one Lagrangian point. Such correlation functions are expressible in terms of products of velocity
differences of the velocity v at different times, and are invariant under t → −t. In contrast, the
example involving two Lagrangian points cited in the introduction1–3 shows that measurements with
more than one Lagrangian point permit to distinguish time irreversibility in the system.
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B. Can velocity differences grow diffusively?

Equation (3) suggests a diffusive growth of velocity difference. Indeed, diffusion is expected
when t exceeds the correlation time of the Lagrangian acceleration a(t) = dv/dt . One consequence
would be that the probability density function (PDF) of single-particle Lagrangian velocity difference
P(δv, t) tends asymptotically to a Gaussian with increasing t, a result true for general random
flows, not only for turbulence (with an energy cascade). The diffusivity limt→∞ |δv|2/t generally
has nothing to do with the energy flux even though it has the same dimensionality. In developed
turbulence, the acceleration is known to be correlated on the large (integral) timescale TL (see also
Eq. (5) and related discussion below). Since Eq. (3) is intended for time delays in the inertial
interval, which is less than the acceleration correlation time, the PDF is then unlikely to have a
self-similar form P(δv, t) ∝ F(|δv|2/εt). Indeed, higher moments Dn(t) all have an anomalous
scaling.8–10 Especially, the data suggest that the exponents saturate at ∼2, i.e., 〈|δv|n〉 ∝ t2 for
n → ∞, which would be the probability that two independent events happen during time interval
t.10 One can even imagine those two events being particle entering and exiting a vortex.9 We cannot
think of any theoretical reason why the second moment should be special and have Kolmogorov
scaling (as the third Eulerian moment does). Moreover, recall the reasoning that the second Eulerian
velocity structure function in 3D does not have Kolmogorov scaling since a two-vector object already
contains geometry.1 The same may be true for the second Lagrangian moment because it is really a
two-particle object (since we consider statistics at the distances or time delays in the inertial interval).

C. Energy considerations

What experiments and numerics show, see Sec. III, is that 〈|δv|2〉/εt = C(t) does not have a
plateau but rather has a peak whose maximum slowly grows with the Reynolds number and whose
width does not change much, see Figures 1 and 2. While the observed maximal values of C(t) at the
presently available Reynolds numbers are 6 − 7 in 3D, they are very large (up to O(102)) in 2D.
These two observations: absence of a clear scaling and unexpectedly large value of this ratio, may
in fact be intimately related. Indeed, if the relation in Eq. (3) made sense at least as an estimate all
the way until t 	 TL, one can estimate the mean energy as v2 	 CεTL . For 3D case, TL 	 L/v and
we get v3 	 CεL , which may be acceptable even with C 	 6. However, 2D numerics are done with
a uniform friction term −αv added to the Navier-Stokes equation; the turn over time of the largest
vortex is of order 1/α so that decreasing α one increases the extent of the inverse cascade. The exact
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FIG. 1. Compensated second order Lagrangian structure function D2(t)/(εt) obtained from 3D direct numerical
simulations,9, 11 labelled as “DNS,” and particle tracking experiments,10, 12 labelled as “EXP.”
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FIG. 2. Second order Lagrangian structure function D2(t) = 〈|v(t) − v(0)|2〉 for 2D simulation from L/lf = 128 (α = 0.02,
red continuous’) to L/lf = 16.9 (α = 0.08, pink dot-dashed) compensated with εt. The Kolmogorov time τη is defined in
terms of the enstrophy flux ξ as τη = ξ−1/3. Inset: D2(t) compensated with mean square velocity 〈v2〉 as a function of αt.

conservation law in 2D, 〈v2〉 = ε/(2α), means that Eq. (3) or similar law of growth cannot be valid
all the way till t 	 1/α. This suggests that the Lagrangian correlation time is anomalously small,
TL 	 1/(Cα) � 1/α, i.e., Lagrangian velocities decorrelate much faster than the large scale turn
over time 1/α and that this time has little to do with the dynamical times induced by the flux in the
cascade. The inset of Figure 2 shows that indeed D2(t) saturates at times much shorter than 1/α.

D. Fluctuation-dissipation theorem

Another perspective on the Lagrangian pair correlation function can be given by the fluctuation-
dissipation theorem (FDT). Indeed, Lagrangian description of ideal flows is a canonical Hamiltonian
description with Bernoulli invariant,

∫
(v2/2 + p)d r , as Hamiltonian.13 FDT states that at thermal

equilibrium the detailed balance means that the time derivative of the pair correlation function of the
coordinate is equal to the response function of the coordinate to the force. Since the “coordinate”
conjugated to the force f is v then FDT would mean that the time derivative d〈vi (0)v j (t)〉/dt is
equal to the response function Ri j (t) = 〈δvi (t)/δ f j (0)〉. This response function can be found for a
forcing delta-correlated in time, 〈fi(0)fj(t)〉 = εPijδ(t), we have Rij = εδijH(t)/2, where H(t) is the
Heaviside function. In other words, if Eq. (3) were true with a proportionality factor unity, that
would mean the detailed balance and FDT for a single-particle statistics, with ε playing the role
of temperature. This would suggest that the energy dissipation rate, ε, quantifies both the degree
of irreversibility of two-particle statistics and play the role of temperature in the reversible single-
particle statistics, which seems surprising. Indeed, there is no reason to believe that FDT holds. In
turbulence, each fluid particle is under the action of the pressure field created by all other particles:
dv j (t)/dt = −∇ j p + f j , and it is entirely plausible that this coupling leads to a violation of FDT,
which would manifest itself in the Lagrangian correlation function 〈vi (0)∇ j p(t)〉. Notice that in this
argument we do not distinguish 2D and 3D; while the forcing has different spatial correlations in
these two cases (short- and long-correlated, respectively), what matters for the single particle is the
temporal correlations of the force, which may be similar.

III. CONSISTENCY WITH OBSERVATIONS FROM DATA

A. Acceleration auto-correlation

Both from fundamental FDT perspective and in order to check the linear relation between D2

and t, Eq. (3), or equivalently, the existence of a plateau in the variable D2(t)/t from experimental
or numerical data, it is useful to relate the structure function D2 to the acceleration auto-correlation
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function. The kinematic relation

d

dt
〈[v(t) − v(0)]2〉 = 2〈a(t) · [v(t) − v(0)]〉

= 2
∫ t

0
〈a(0) · a(t ′)〉dt ′ (4)

implies that a scaling of 〈[v(t) − v(0)]2〉 = Cεt requires that the Lagrangian acceleration auto-
correlation 〈a(0) · a(τ )〉 is zero in the scaling range while the integral

∫ t
0 〈a(0) · a(τ )〉dτ gives the

constant Cε/2. However, it is well known that in a statistically stationary flow fluid, the Lagrangian
acceleration autocorrelation has to satisfy the constraint14

∫ ∞

0
〈a(0) · a(t)〉dt = 0 , (5)

which implies that the right-hand side in Eq. (4) is unlikely to be constant, thus pointing to limitations
of the linear relation D2(t) ∝ εt. In fact, the available experimental15 and numerical16, 17 data show that
the acceleration autocorrelation first decreases monotonically, crosses zero at 2τη , then slowly relaxes
back to zero at large time lags. The scaling range of 〈[v(t) − v(0)]2〉 is usually identified at the peak of
〈a(t) · [v(t) − v(0)]〉, which is associated with the zero-cross time of the acceleration autocorrelation,
i.e., at 2τ η. As shown in Fig. 3, experimental and numerical data do not support a plateau of
d
dt 〈(v(t) − v(0))2〉 around its peak value, a fact directly related to the shape of the acceleration
autocorrelation.

B. Acceleration spectra

The practical difficulty in observing any “inertial range” scaling property from the function
〈|v(t) − v(0)|2〉, related to the small range of scales TL/τ η ≈ 0.08 × Rλ has been already noticed
several times.18, 19 Even so, one may wonder why it turns out to be so difficult to extract any strong
evidence for any scaling directly from the structure function. In comparison, the data obtained in
the Fourier domain, in particular, concerning the spectrum of acceleration, �A(ω), suggest a scaling
range compatible with �A(ω) ∼ ω0 for 1/TL � ω � 1/τ η,19, 20 possibly up to small corrections
which we will discuss later. The observation of a spectrum �A(ω) ∼ ω0 is generally consistent
with the narrowly peaked acceleration correlation function.17 Viewed over a scale t ∼ TL, this
spike becomes infinitely thin as the ratio TL/τ η → ∞. On the other hand, the spectrum behaves,
for ωTL → 0, as �A(ω) ∼ (ωTL)2, in agreement with the fact that the correlation function of
velocity decreases essentially exponentially:8 〈v(0) · v(t)〉 ∼ exp(−t/TL ), except for finite values
of the “inner variable” t/τ η.19 This is consistent with our own observation, see Fig. 3(b), that as
the Reynolds number increases, the correlation function 〈a(t) · δv(t)〉 becomes increasingly cusped,
exhibiting a slope discontinuity, when plotted as a function of the outer variable, t/TL. In fact, the
existence of a plateau of 〈a(t) · (v(t) − v(0))〉, equivalent to the linear relation Eq. (3), may seem a
bit contrived, since the outer variable does not show any trace of a plateau at all. While this fact does
not in itself completely preclude the existence a scaling range, it indeed restricts its application to an
even smaller range of time scales than the already quite restricted range τη � t � TL. Thus, aside
from its uncertain status as a manifestation of Kolmogorov theory, the existence of a linear scaling
of the structure function, Eq. (3), is in practice very difficult to measure, due to the functional form
of the acceleration correlation function. The stochastic model developed in Refs. 19 and 21 shows
that a decade of plausibly constant value of 〈a(t) · (v(t) − v(0))〉 requires a Reynolds number of
Rλ ∼ 104, which is the highest Reynolds number that can be achieved in laboratory experiments in
the foreseeable future.

Possible evidence for a deviation from the linear behavior of Eq. (3) are provided by the
spectrum �A(ω). The recently published data19 show a weak deviation from the ω0 scaling, and may
be plausibly fitted with a small exponent,

�A(ω) ≈ A0ε(ωTL )μ (6)
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FIG. 3. Derivative of the second order velocity structure function, d
dt 〈[v(t) − v(0)]2〉 = 2〈a(t) · [v(t) − v(0)]〉 plotted versus

τ /τη in (a) and τ /TL in (b). Data are derived from D2(t) as plotted in Fig. 1.

for 1/TL � ω � 1/τ η, with μ ≈ 0.12 − 0.14. The very good collapse of the spectra in Fig. 5(a) of
Ref. 19, suggests that the value of A0 is effectively independent of the Reynolds number, at least
in the range covered in their studies. We first remark that this weak deviation from a flat spectrum
would result in a small modification to the linear scaling of Eq. (3),

〈|v(t) − v(0)|2〉 	 t1−μ . (7)

We also note that for consistency the integral of the spectrum has to be equal to the acceleration
variance

〈a2〉 =
∫ ∞

0
�A(ω)dω. (8)

Downloaded 01 Jun 2012 to 192.167.161.20. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



055102-7 Falkovich et al. Phys. Fluids 24, 055102 (2012)

In the limit TL/τ η → ∞, the integral in Eq. (8), using the functional form Eq. (6), yields

〈a2〉 ≈ A0
ε

τη

(TL

τη

)μ

= A0
ε3/2

ν1/2

(TL

τη

)μ

. (9)

Interestingly, Eq. (9) suggests that the ratio 〈a2〉/(ε3/2ν−1/2) grows with Rλ.19, 22, 23 Alternatively, we
note that a drift of the upper limit of the energetic band of frequency, as proposed in Ref. 19, may also
explain the Reynolds dependency of the acceleration variance. This demonstrates that the available
data, obtained at the highest available Reynolds number, do not unambiguously support the widely
accepted scaling relation Eq. (3). As pointed out already, a systematic study of the acceleration
spectrum appears much more promising than a direct study of the structure function.

IV. DISCUSSION AND PERSPECTIVE

Let us also remark that interpolation schemes encompassing viscous, inertial, and large-scales
properties have been used to study both Eulerian24, 25 and Lagrangian quantities.26 Although these
are convenient tools to describe the scaling properties of D2(t),27 they do not provide new physical
information as the scaling relations are prescribed while constructing the interpolation formulae.

For the reasons described above, it is clear that the study of the single-particle Lagrangian
statistics needs some benchmark that is different from Eq. (3). The uncertain status of Eq. (3)
implies that the use of extended self-similarity28 to study the moments of δv with 〈|δv|2〉 as a
normalization is questionable, contrary to the spatial case, where the exact relation Eq. (1) holds.
Comparison between energy cascades in 2D (Ref. 29) and 3D, enstrophy cascade, elastic turbulence,
and other cases is of much interest. It would also be interesting to study multiple multi-time, multi-
point correlation functions30, 31 and see how Lagrangian and Eulerian correlations are related,32 both
in the case of two-dimensional turbulence,29 where available evidence does not suggest any Eulerian
intermittency, and of three-dimensional turbulence.

One of the hallmarks of fluid turbulence is the breakdown of time reversibility whose measure
is the flux. The flux also determines the level of turbulence and thus must influence the Lagrangian
statistics as well. Since the single-particle Lagrangian statistics is time-reversible, it is yet unclear
how exactly moments 〈(v(t) − v(0))n〉 depend on ε and whether there is a clear scaling with t.
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