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Abstract-We present a new approach which allows the analysis of nonlinear wave data within the 
framework of the periodic Korteweg-de Vries (KdV) equation. The method is based upon the 
periodic inverse scattering transform (IST) for KdV, a nonlinear generalization of linear Fourier 
series, in which the signal is decomposed into a linear superposition of nonlinearly interacting 
hyperelliptic functions. The KdV is assessed as a model equation in a large number of physical 
problems, including 1 + l-dimensional nonlinear hydrodynamic wave propagation. We employ here 
IST to analyse laboratory surface wave data. Some physical implications are discussed; in particular 
we emphasize how the IST spectrum provides a much simpler inte~retation of the wave motion than 
the linear Fourier transform, preserving the nonlinear mode amplitudes during the propagation of 
the waves. 

1. ~ODUCTION 

The Korteweg-de Vries equation is, as is well known, the prototypical soliton and 
integrable equation. The original discovery of multiple solitary wave interactions [1] led to 
the theoretical development of the mathematical method, known as inverse scattering 
transform (IST), which has since then been extended and applied to several other nonlinear 
equations and choices of boundary conditions [2, 31. We are here concerned with the 
propagation of water waves than are described by the KdV equation. Many aspects of this 
problem, particularly for motion dominated entirely by solitons, have already been studied 
[2, 41. Solitons, however, are phenomenologically understood as referring to a time 
asymptotic state in which individual pulses are well separated and singled out. This is the 
case in experimental studies, where often periodic or i~uasi-pe~odic boundary conditions 
are appropriate. We view the IST approach presented herein as a way to understand the 
dynamics of the nonlinear modes in complex systems of this type. The major goal of this 
paper is to show how this approach can be practically employed for the analysis of 
experimental data. 

The paper is organized as follows. In Section 2 we recall the emergence of the KdV 
equation in the context of surface waves. Section 3 gives a very brief description of the 
underlying inverse scattering transform mathematical theory; Section 4 describes the 
characte~stics of the wavetank facility and in Section 5 examples of recorded waves are 
presented, discussed and analysed. 
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2. KdV FOR SHALLOW WATER SURFACE WAVES 

The Korteweg-de Vries equation is derived in a multiscale expansion of the Euler 
equation for surface waves propagating over an horizontal bottom (see e.g. [2] for the 
details). The equation applies to the surface elevation n(x) t) of lD, unidirectional long 
gravity waves in shallow water, in a regime where small but finite aspect ratio (/Q/L)~ and 
relative height ] r#h, are of the same order of magnitude. In the case we are interested in, 
time series q(xi, t) recorded at fixed spatial locations Xi are available; the IST method 
described below will then be applied to the time-like KdV equation (TKdV) 
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in which h,, is the unperturbed water height, co = j/(gh,) and g the acceleration of gravity. 
The exchange of space and time variables, with regard to what is generally held as the 
standard form of KdV, is perfectly legitimate in the spirit of that multiscale expansion, and 
leads to the dimensional coefficients used in (1); it is consistent (at that perturbation order) 
with the substitution a, + -St/co, 3, + -coax into the traditional space-like KdV. TKdV 
solves a boundary value problem: given the temporal evolution n(xo, t) at some fixed 
spatial location x o, (1) determines the wave motion over all space ~(x, t). In the present 
experiment we consider periodically generated waves, and hence periodic boundary 
conditions in t are appropriate for the analysis which follows. 

3. SCATTERING TRANSFORM FOR THE PERIODIC KdV 

The scattering transform technique for soliton equations implies that spectral information 
can be recovered through the study of an associated eigenvalue problem. For the TKdV, 
the proper one is the one-dimensional Schrodinger equation 

Y, + [Arj(xo, t) + E]Y’ = 0 (2) 

where L = 3g/2h03 and E is the spectral parameter. We analyse the M-point equispaced 
periodic time series {T](x~, t,,J}, t, = mT/M, with T the period. The problem is 
formulated in terms of the monodromy matrix CX, which maps values of (Y, Y’,), solutions 
of (2), from t to t + T [S-S]. The matrix is computed under the piecewise-constant 
potential approximation [9] Bs - 

au(E) = fi a,, 
~0s (P,&) 

where (Y, = 
m=M -pm sin (pdf) 

The spectrum of the signal is then defined from a 

{Ek} = {E such that lTr(cu(E))] = 2) 

{pj} = {E such that CQ~(E) = 0} 
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and pm = ~ML) + El. (3) 
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The discrete eigenvalues E k of the main spectrum are paired to define open bands 
(EZj, Ezj+l)* When E2j = E2j+l the band is called degenerate. The main spectrum 
comprises in general an infinite number of non-degenerate open bands, but their amplitude 
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is rapidly decreasing as E ---, to. Any smooth q can be arbitrarily approximated by an 
N-band potential, e.g. by an IST solution with only N non-degenerate bands, with N large 
enough [lo, 111. The main spectrum is invariant in space and time; this happens exactly 
because the potential 7 in the Schrodinger equation satisfies the KdV, and it is the 
foundation of the IST approach. The auxiliary spectrum consists of hyperelliptic functions 
pj(x, t) which oscillate j times during T within the intervals [E2j, E2j+l], according to the 
equations: 
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Algorithms to efficiently compute the matrix, to precisely locate all the solutions in E 
and to integrate (5a,b) are fully described in [9] and [12]. 

The solution to the periodic KdV equation may then be written (‘first trace formula’, [6]) 
as 

N 

Av(x, t) = -El + z[2Pj(x, t) - E2j - E2j+l]* 
j=l 

Just as ordinary Fourier analysis consists of the dec~omposition of a signal into a linear 
superposition of independent sine waves, IST views q as a linear superposition of 
nonlinearly interacting, non-independent, hyperelliptic oscillation modes. The width of an 
open band here is the amplitude of a hyperelliptic oscillation mode, e.g. a ‘single 
degree-of-freedom’, ‘spectral component’ of KdV, with amplitude and frequency 

aj = E2j+l - E2j i 
2A ’ 

Yj = -. 
T 

(7) 

In the absence of interactions among the nonlinear spectral components, that is in the 
limit aj << (EZj+z - Ezj-1) for all j, or equivalently for infinitesimal r](x, t), the ,uj(x, t) 
approach ordinary trigonometric functions. Equation (6) then reduces to an ordinary 
Fourier sereis [ 131. 

In some cases one can qualitatively interpret the periodic KdV spectrum as separable 
into soliton and radiation components, although these are rigorously distinct entities only 
for infinite-line boundary conditions. This approach has also been used to perform a sort of 
nonlinear filtering of surface wave data in reference [14]. 

4. DESCRIPTION OF THE WAVETANK 

We have performed several experiments of surface wave propagation in a wavetank 
facility at the University of Florence. The wavetank is a long and narrow channel of 

turbulence programmable 
suppressor 
plates array 

moving paddle 

Fig. 1. Schematic representation of the wavetank. 
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50 m x 0.8 m x 0.8 m (Fig. l), which can be filled with water up to a desired height. One 
end wall of the tank is an electronica!ly controlled paddle that is moved for generation of 
surface waves. Oleodynamic circuitry and a position gauge for the feedback signal, enable 
exact placement and complete programmability of the movement. In front of the 
wavemaker, a fixed array of vertical plates aids in suppressing turbulence effects that may 
eventually be present. 

At the opposite end of the channel a concrete ramp with a 2% slope acts as a wave 
absorber. This experimental arrangement is used to attain near unidirectional wave motion, 
dissipating the incoming waves by shoaling and breaking. The reflected wave amplitude is 
estimated to be smaller than 2% of the one of incoming waves. In this way and by 
choosing a consistent wavemaker drive we can attain surface wave motion in the tank in 
KdV regime. 

Several wave height gauges (parallel wire resistance gauges) can be placed anywhere 
along the flume. In the present experiments we recorded the wave amplitudes rl(Xi, t) at 
x1 = 4.25, x2 = 7.01, x3 = 11.02, n4 = 15.02 and x5 = 19.01 m from the mean wavemaker 
position, in the centre of the channel. The output was sampled 20 times per second and 
converted to digital form with 1Zbit resolution for computer acquisition. Both the 
wavemaker and the signal acquisition are completely controlled by an 80386-based 
computer running specific acquisition, preliminary analysis and control software. 

Experimental uncertainties are estimated on the relevant measured quantities. The error 
analysis is shortly accounted into the appendix. 

5. WAVE TRAINS ANALYSIS 

We have generated waves of increasing nonlinearity in the channel by driving the 
wavemaker with a choice of smooth waveforms, including sine waves and low-N-band KdV 
potentials. Runs were conducted for h,, equal to 30 and 49.8 cm. and several wave 
amplitudes; in all cases considered the period of the wavemaker drive was chosen as 
T = 4 s, well into the regime of long waves for these depths. Every run began from a still 
water condition, and we recorded time series for some minutes after the start of the 
wavemaker. A typical record is displayed in Fig. 2. 

To perform the analysis, we selected subseries consisting of five wave periods starting 
100 s after the initial time, simultaneously at each gauge. This was done in order to skip 
the initial transients, to exclude longer time scale irregularities due to residual reflected 
waves and to mediate over a few periods the slightly imperfect exact repetition of the 
generated waves. The subset was subsequently prefiltered with a linear low pass of 4.0 Hz 
to eliminate electronic noise, and then the Fourier and IST spectra were computed for 
each subseries. Figure 3(a) shows two periods of the subseries analysed, along with their 
decomposition into the 4 most energetic hyperelliptic modes (Fig. 3(b)). We can see that 
the nonlinear mode amplitudes are almost constant during the wave propagation; this 
means that the scattering transform decomposition reduces the complex wave evolution 
(Fig. 3(a)) to a few degree-of-freedom dynamics (Fig. 3(b)) according the KdV propaga- 
tion. 

In Fig. 4 we compare the linear Fourier spectrum (Fig. 4(a)) with the scattering 
transform spectrum (amplitudes of hyperelliptic modes aj as in (7)) (Fig. 4(b)), for the 
same 4 most energetic modes as they are seen at each station. For both methods, error 
analysis is performed; the less standard error propagation for IST is presented in the 
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Fig. 2. Typical case raw gauge signals at the 5 probes, complete series, ho = 30 cm. 

Appendix. Changes in the linear spectrum along the channel just tell us that the waves 
propagate according a nonlinear dynamics which couples the Fourier components in a 
complex way, so that the computation of the linear amplitude spectrum gives little physical 
insight; on the other hand, the almost constant scattering transform spectrum (at least 
within the experimental error bars) validates the TKdV equation as a good dynamical 
model. 

Finally, as an additional test of the procedure, we numerically propagated signals from xi 
to x5. Figure 5(a) compares q(x5, t) against ~(xi, t) propagated as if the motion was linear, 
that is by antitransforming at x5 the Fourier transform of 7(x1, t); each spectral component 
is multiplied by a factor exp (ik(w)x), where k(w) is found by numerically inverting the 
linear dispersion relation w = v[gk tanh (k/z,)]. Figure 5(b) instead compares 7(x5) with the 
result of the numerical integration of 7(x1, t) to x5, according to a periodic TKdV scheme. 
Also for this direct test the superior performance the KdV dynamics is striking. 

A proper non-dimensional parameter for the classification of the degree of nonlinearity 
of the wave field is the Ursell number Ur = 3HgT2/4hs2, for H the peak-to-peak wave 
height. We have analysed with the above-described procedure six different cases, and 
tested the hypothesis of constant relevant N spectral amplitudes, according both to Fourier 
and IST analysis. The goodness of fit is seen from the averaged reduced 2 = 
~~l~~cl(aj(i) - i5)2/4Na2j(i), where ajci) is the amplitude of the jth component at probe i, 
cr2 .G) its squared statistical error and ai the mean value. We show in Fig. 6 2 vs. the Ursell 
nu’mber. It is apparent how the hypothesis of constant Fourier amplitudes is completely 
rejectable as soon as the Ursell number increases, while still reasonable agreement can be 
assumed for the constancy of IST amplitudes. 
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Fig. 3. IST decomposition of prefiltered data (a) original signals (continuous lines) and sum of the relevant modes 
(dotted lines); (b) individual hyperelliptic functions decomposition; .for clarity just 2 of the 5 analysed periods are 

shown, 
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Fig. 4. Amplitudes of the four most energetic modes in the subseries along the channel: dashed lines: (a) linear 
Fourier components, (b) inverse scattering transform bands. Continuous lines: average amplitude of the individual 

modes at all probes. 
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Fig. 5. Continuous line: measured signal at gauge S5; dotted line: numerical integration from probe Sl to S5 by 
(a) Fourier decomposition and linear evolution, (b) numerical integration of TKdV. 
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Fig. 6. Reduced values 2 for the two hypothesis of (0) Fourier and (+) IST constant mode amplitudes, for 6 
experimental cases, versus Ursell number. Bold symbols refer to the case documented here. 
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6. CONCLUSIONS 

We have considered hydrodynamic waves in a regime where KdV theoretically holds, 
and analysed experimental data using the inverse scattering transform technique. Quantita- 
tive results and error analysis are achieved. Nonlinear Fourier amplitudes are found to be 
conserved during the propagation of the waves, while the linear Fourier has complex 
space-time dynamics. In this sense, considering wave motion in the context of a soliton 
equation, we have adopted a mathematical method which is closer to the structure of the 
nonlinear fluid dynamics of long wave motion. We therefore view the scattering transform 
approach as a promising technique for the nonlinear analysis of data. 
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APPENDIX: ERROR ANALYSIS 

At each probe we measure ho and the instantaneous wave displacement q(tm). We estimate a measurement 
error on ho to be &(h,,) = f2 mm. q(t,) is affected by errors due to slight nonlinearity of the gauges and to 
electronic noise. The first are evaluated from a three-point-fit of the calibration procedure readouts. Electronic 
noise is seen when looking at the zero-field signals, mostly as spurious small high frequency Fourier peaks. We 
consider v(ti) as affected by a gaussian error with a variance o*(q) which is evaluated independently for each 
gauge, and is the order of +2 mm. 

An error on the x-position of the probes is estimated in +2 cm, but is relevant only when considering 
integration (both linear or KdV) from probe to probe. Other minor error sources that are less easily quantified, 
such as small dynamic displacements of the probes due to their flexibility, were ignored in this study. Quantities 
such as At (derived from a digital timebase) are considered as unaffected by errors. 

We report the basic error propagation formulae used for the treatment of our data. We have tried to apply the 
two techniques, Fourier and IST, in a consistent way, in order to compare the error bars of the two procedures 
when they are applied to periodic data. For the Fourier transform of the signal { q( t,)}, defined as 

M 

@(Vj) = + z 7J(ti)eXp(-27TiVjtm) 
m 1 

(A.11 
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where v, = j/MAt, j = 1, . ., M/2, the error on the amplitude A(vj) = Ifi results in 

1943 

64.2) 

The error analysis for IST is more involved, since the amplitudes are given implicitly. If each value q(fJ is 
varied of dq(t,,,), we have to solve 

Tr[a(E, U(tt) + dU(ti))]E=E,+df:, = +2 (A.3) 
instead of (6a) (note that the resealed signal u(t,,,) = Av(t,) is used throughout the calculation). To the first order 
this implies 

Tr[a(Ek, u(t,))] + aTr[a(zz u(tm))l dEk + g ““Ia::’ ;(rm))l du(t,) = 4-2 
t?I=l m 

Exploiting dEk, we conclude that to the first order statistically 

All terms in (AS) are computable from the data, since 
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Finally the error on aj is given by 

U2(Uj) = 
u*(E*j) + u2(E2j+l) + (E*j+l - E2,)* 81g2 
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where the errors d(E) are computed from (A.5). This latter result can be shown to tend to the one for the 
Fourier transform in the infinitesimal 17 limit, by making use of the WKB approximation for (4). 


