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Acceleration and vortex filaments in turbulence

F. TOSCHI∗†, L. BIFERALE‡, G. BOFFETTA§, A. CELANI¶, B. J. DEVENISH‡††,
and A. LANOTTE∗∗

†Istituto per le Applicazioni del Calcolo, CNR, Viale del Policlinico 137, I-00161 Roma, Italy
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We report recent results from a high-resolution numerical study of fluid particles transported by a fully
developed turbulent flow. Single-particle trajectories were followed for a time range spanning more
than three decades, from less than a tenth of the Kolmogorov timescale up to one large-eddy turnover
time. We present some results concerning acceleration statistics and the statistics of trapping by vortex
filaments.

1. Introduction

Lagrangian statistics of particles advected by a turbulent velocity field, u(x, t), are important
both for their theoretical implications [1] and for applications, such as the development of
phenomenological and stochastic models for turbulent mixing [2]. Despite recent advances in
experimental techniques for measuring Lagrangian turbulent statistics [3–10], direct numerical
simulations (DNS) still offer higher accuracy albeit at a slightly lower Reynolds number
[11–15]. Here, we describe Lagrangian statistics of velocity and acceleration in terms of the
multifractal formalism. At variance with other descriptions based on equilibrium statistics (see
e.g. [16–18], critically reviewed in [19]), this approach has the advantage of being founded on
solid phenomenological grounds. Hence, we propose a derivation of the Lagrangian statistics
directly from the Eulerian statistics.

We analyse Lagrangian data obtained from a recent DNS of forced homogeneous isotropic
turbulence [20, 21] which was performed on 5123 and 10243 cubic lattices with Reynolds
numbers up to Rλ ∼ 280. The Navier–Stokes equations were integrated using fully de-aliased
pseudo-spectral methods for a total time T ≈ TL . Two million Lagrangian particles (passive
tracers) were injected into the flow once a statistically stationary velocity field had been
obtained. The positions and velocities of the particles were stored at a sampling rate of 0.07τη.
The velocity of the Lagrangian particles was calculated using linear interpolation. Acceleration
was calculated both as the derivative of the particle velocity and by direct computation from
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all three forces acting on the particle (i.e. pressure gradients, viscous forces, and large-scale
forcing): the two measurements were found to be in very good agreement. Finally, the flow
was forced by keeping the total energy constant in each of the first two wavenumber shells.
For more details on the simulation, see [20, 21].

2. Velocity and acceleration statistics

Velocity statistics along a particle trajectory can be measured by means of the Lagrangian
structure functions, Sp(τ ) = 〈(δτ v)p〉 where δτ v is the Lagrangian increment of one component
of the velocity field in a time lag τ . A simple way to link the Lagrangian velocity increment,
δτ v, to the Eulerian one, δr u, is to consider the velocity fluctuations along a particle trajectory
as the superposition of different contributions from eddies of all sizes. In a time lag τ the
contributions from eddies smaller than a given scale, r , are uncorrelated, and we may write
δτ v ∼ δr u. Assuming that typical eddy turnover time τ at a given spatial scale r can be
expressed as τr ∼ r/δr u, one obtains:

δτ v ∼ δr u τ ∼ Lh
0

v0
r1−h, (1)

where h is the local scaling exponent characterizing the Eulerian fluctuation in the multifractal
phenomenology [22]. Also, L0, v0 are the integral scale and the typical velocity, respectively.
With respect to the usual multifractal phenomenology of fully developed turbulence, the
presence of a fluctuating eddy turnover time is the only extra additional ingredient to be taken
into account in the Lagrangian reference frame.

Using equation (1), one can estimate the Lagrangian velocity structure function:

Sp(τ ) ∼ 〈
v

p
0

〉 ∫
h∈I

dh

(
τ

TL

)(hp+3−D(h))/(1−h)

, (2)

where the factor (τ/TL )(3−D(h))/(1−h) is the probability of observing an exponent h in a time
lag τ , and D(h) is the dimension of the fractal set where the exponent h is observed. The
Lagrangian scaling exponents ζL (p) can be estimated by a saddle point approximation, for
τ � TL :

ζL (p) = inf
h

(
hp + 3 − D(h)

1 − h

)
. (3)

We would like to stress that for the D(h) curve we have chosen that of the Eulerian statistics.
In other words, the prediction given in equation (3) is free of any additional parameter once
the Eulerian statistics are assumed [20, 23, 24].

In figure 1, we present the extended self similarity (ESS) [25] log–log plot of Sp(τ ) ver-
sus S2(τ ) as calculated from our DNS. The logarithmic local slopes shown in the inset dis-
play a deterioration of scaling quality for small times. We explain this strong bottleneck
for time lags, τ ∈ [τη, 10τη], in terms of trapping events inside vortical structures [20]:
a dynamical effect that may strongly affect scaling properties and which a simple multi-
fractal model cannot capture. For this reason, scaling properties are recovered only using
ESS and for large time lags, τ > 10τη. In this interval a satisfactory agreement with the
multifractal equation (3) is observed, namely from the multifractal model one can estimate
ζL (4)/ζL (2) = 1.71, ζL (6)/ζL (2) = 2.26, ζL (8)/ζL (2) = 2.72 while from our DNS we mea-
sured ζL (4)/ζL (2) = 1.7 ± 0.05, ζL (6)/ζL (2) = 2.2 ± 0.07, ζL (8)/ζL (2) = 2.75 ± 0.1.
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Figure 1. ESS plot of Lagrangian velocity structure function Sp(τ ) versus S2(τ ). Symbols refer to the DNS data
for p = 8, 6, 4 from top to bottom. Lines have slopes ζL (p)/ζL (2) given by the multifractal prediction of equation
(3) with a D(h) curve taken from the She–Lévêque prediction [26]. In the inset, we show the local slopes versus time
τ/τη , and their comparison with the respective multifractal prediction (straight lines).

A similar phenomenological argument can be used to make a prediction for the acceleration
probability density function (pdf). The acceleration can be defined as:

a ≡ δτη
v

τη

. (4)

As the Kolmogorov scale itself, η, fluctuates in the multifractal formalism: η(h, v0) ∼
(νLh

0/v0)1/(1+h), so does the Kolmogorov timescale, τη(h, v0). Using equations (1) and (4)
evaluated at η, we obtain for a given h and v0:

a(h, v0) ∼ ν(2h−1)/(1+h)v
(3)/(1+h)
0 L (−3h)/(1+h)

0 . (5)

The pdf of the acceleration can be derived by integrating equation (5) over all h and v0,
weighted with their respective probabilities, (τη(h, v0)/TL (v0))(3−D(h))/(1−h) and P(v0). We
still need to specify a form for the large-scale velocity pdf, which we assume to be Gaussian:
P(v0) = 1/

√
2πσ 2

v exp(−v2
0/2σ 2

v ), where σ 2
v = 〈v2

0〉. Integration over v0 gives:

P(a) ∼
∫

h∈I
dh a(h−5+D(h))/(3)ν(7−2h−2D(h))/(3)L D(h)+h−3

0 σ−1
v

× exp

(
−a(2(1+h))/(3)ν(2(1−2h))/(3)L2h

0

2σ 2
v

)
. (6)

In order to compare the DNS data with the multifractal prediction we normalize the acceleration
by the root mean square (rms) acceleration σa = 〈a2〉1/2 ∝ Rχ

λ . In terms of the dimensionless
acceleration, ã = a/σa , equation (6) becomes

P(ã) ∼
∫

h∈I
ã(h−5+D(h))/(3) Ry(h)

λ exp

(
−1

2
ã(2(1+h))/(3) Rz(h)

λ

)
dh, (7)



4 F. Toschi et al.

Figure 2. Log–linear plot of the acceleration pdf. The crosses represent the DNS data, the solid black line the
multifractal prediction, and the green line the K41 prediction. The statistical uncertainty in the pdf is quantified by
assuming that fluctuations grow proportional to the square root of the number of events. Inset: ã4P(ã) for the DNS
data (crosses) and the multifractal prediction.

where y(h) = χ (h − 5 + D(h))/6 + 2(2D(h) + 2h − 7)/3, z(h) = χ (1 + h)/3 + 4(2h − 1)/3
and χ = suph(2(D(h) − 4h − 1)/(1 + h)). For more details on how the numerical integration
of equation (6) is made we refer the reader to [21].

In figure 2 we compare the acceleration pdf computed from the DNS data with the multi-
fractal prediction of equation (7). The large number of Lagrangian particles used in the DNS
(∼106) allows us to detect events up to 80σa . The accuracy of the statistics is improved by
averaging over the total duration of the simulation and all spatial directions, since the flow
is stationary and isotropic at small scales. Also shown in figure 2 is the K41 prediction for
the acceleration pdf PK 41(ã) ∼ ã−5/9 exp(−ã8/9/2) which can be recovered from equation
(7) with h = 1/3, D(h) = 3 and χ = 1. As evident from figure 2, the multifractal prediction
given in equation (7) captures the shape of the acceleration pdf much better than the K41
prediction. It is remarkable that equation (7) agrees with the DNS data well into the tails of
the distribution—from the order of one standard deviation σa up to order 70σa . This result is
obtained using the She–Lévêque model for the curve D(h) [26].

3. Acceleration tails and spiralling motion

This and previous work [3–6, 20] has collected evidence that highlights the relevance to
Lagrangian turbulence of strong spiralling motions corresponding to trapping events, i.e.
passive particles trapped in small-scale vortex filaments. So we identify the strong bottleneck
effect visible in figure 1 and also the presence of extremely rare fluctuations in the pdf of the
acceleration (see figure 2). To illustrate better these strong events, we plot one of them in figure
3. As is evident, the particle—while moving slowly and smoothly—at some point becomes
trapped in a vortex filament and starts a spiralling motion characterized by huge values of
the acceleration and by a ‘quasi-monochromatic’ signal on all the velocity field components.
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Here, we suggest a way to characterize such events. This is of course a difficult task because
not all the ‘trapping events’ are so clearly detectable as that shown in figure 3.

Indeed the motion of a particle in a turbulent field will be characterized by different ac-
celerations and decelerations, not necessarily associated with spiralling motion (on average

(a)

(b)

Figure 3. (a) Trajectories with an intense value of the acceleration have been selected: as can be seen, this corresponds
to select tracers trapped into vortex filaments. Arrows and colours encode the velocity (magnitude and direction) of the
particle. Rendering is realized with OpenDX. The movie (click here for animation) shows the flow as seen by riding
this particle, before and during the trapping event. (b) We show, in natural units, the behaviour of one component of
the centripetal and of the longitudinal acceleration (for details see the text). Notice the strong sign persistence of the
centripetal acceleration with respect to that of the longitudinal.
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the mean value of the acceleration will be zero). In a spiralling motion the velocity v and
acceleration a are orthogonal. Furthermore in a circular uniform motion the angular velocity,
ω, can be related to the centripetal acceleration ac = ω2r and to the linear velocity v = ωr . We
expect that in trapping events such as the one depicted in figure 3 the centripetal acceleration
is intense and much more persistent than the longitudinal acceleration (i.e. the acceleration
in the direction of the motion). To make this statement quantitative, we have studied the
average of the centripetal acceleration, ac = a × v̂ = a × v

|v| , and longitudinal acceleration,

(a)

(b)

Figure 4. Pdf of the averaged centripetal ac (a), and longitudinal al (b) acceleration components. The acceleration
is averaged over a time window of size � = {0.1, 3, 9}τη (respectively corresponding to colours red, green, and blue).
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al = (a · v̂)v̂ , over a time window which can vary up to 9τη, � = {0.1, 3, 9}τη:

a�
c (t) ≡ 〈ac〉� = 1

�

∫ t+�

t
dt ′ac(t ′); (8)

a�
l (t) ≡ 〈al〉� = 1

�

∫ t+�

t
dt′al(t

′). (9)

(a)

(b)

Figure 5. Pdf of the characteristic time estimated from the centripetal (in red) and longitudinal (in green) accelera-
tions (in units of τη) P(τc) and P(τl ) respectively, for � = 0.1τη (a); � = 3τη (b); � = 9τη (c). (Continued)
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(c)

Figure 5. (Continued)

We expect that the pdfs of the averaged centripetal and longitudinal acceleration will behave
very differently if the window size, � is increased. In particular, the strong persistence of
the centripetal acceleration up to 10τη suggests that the centripetal pdf P(a�

c ) should remain
almost unchanged when varying �, while the longitudinal one P(a�

l ) should become less and
less intermittent. This is what we show in figure 4.

In order to investigate further the role of trapping in vortices, we can define a typical radius
of gyration rc and its typical eddy turnover time τc, as:

rc = |v|2
|a × v̂| and τc = |v|

|a × v̂| (10)

Notice that using a × v̂ corresponds to selecting the centripetal values of the acceleration and
hence augmenting the signal/noise ratio of spiralling motions with respect to the background
of turbulent motions. The previous expressions applied to a typical vortex filament give rc ∼ η

and τc ∼ τη. Similarly one may define a typical time based on the ‘longitudinal acceleration’:
τl = |v|/|(a · v̂)v̂|. Incoherent fluctuations with typical times of the order of τη should be
averaged out once we measure the mean centripetal and longitudinal accelerations averaged
over a window with � > τ in equation (10). On the other hand, the signal coming from
the coherent vortex should not be affected by the averaging procedure and keeps its value:
as a consequence, we should see events with τc ∼ τη even upon averaging. Going through
figure 5 we can observe, with increasing window size, the different behaviours of the pdfs
of the centripetal and longitudinal characteristic times, τc and τl respectively. It is interesting
to notice that the left tail of the centripetal pdf is quite robust, showing the presence of
characteristic times of the order of τc ∼ τη even after averaging over a window with � = 9τη.
On the other hand the longitudinal characteristic times of order τl ∼ τη soon disappear as
long as � ≥ τη. We interpret this as further evidence of the importance of trapping in vortex
filaments.
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4. Conclusions

We have presented results on the Lagrangian single-particle statistics from DNS of fully
developed turbulence. In particular we have shown that:

(a) in the large time lag limit, 10τη < τ < TL , velocity structure functions are well repro-
duced by a standard adaptation of the Eulerian multifractal formalism to the Lagrangian
framework;

(b) the acceleration statistics are also well captured by the multifractal prediction;
(c) for time lags of the order of the Kolmogorov timescale, τη, up to time lags 10τη, the

trapping by persistent vortex filaments may strongly affect the particle statistics.

The last statement is supported both by the scaling of the Lagrangian statistics and by a
new analysis based on the centripetal and longitudinal acceleration statistics.
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