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The statistical properties of turbulencediffer in an essentialway from
those of systems in or near thermal equilibriumbecause of the flux of
energy between vastly different scales at which energy is supplied
and atwhich it is dissipated.We elucidate this difference by studying
experimentally and numerically the fluctuations of the energy of
a small fluid particle moving in a turbulent fluid. We demonstrate
how the fundamental property of detailed balance is broken, so that
the probabilities of forward and backward transitions are not equal
for turbulence. In physical terms, we found that in a large set of flow
configurations, fluid elements decelerate faster than accelerate,
a feature known all too well from driving in dense traffic. The
statistical signature of rare “flight–crash” events, associatedwith fast
particledeceleration,providesawaytoquantify irreversibility ina tur-
bulent flow. Namely, we find that the third moment of the power
fluctuations along a trajectory, nondimensionalized by the energy
flux, displays a remarkable power law as a function of the Reynolds
number, both in two and in three spatial dimensions. This establishes
a relation between the irreversibility of the system and the range of
active scales. We speculate that the breakdown of the detailed bal-
ance characterized here is a general feature of other systems very far
from equilibrium, displaying a wide range of spatial scales.
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In systems at thermal equilibrium, the probabilities of forward
and backward transitions between any two states are equal,

a property known as “detailed balance.” This fundamental prop-
erty expresses time reversibility of equilibrium statistics (1). In
the important class of nonequilibrium problems, where the dy-
namics of the system is coupled with a heat bath, the notion of
detailed balance can be extended and fluctuation theorems
successfully describe the behavior (2, 3). This class contains many
experimental situations (4) where quantitative information on
irreversibility was obtained (3). When a system driven by thermal
noise is characterized by a probability current, the fluctuation–
dissipation theorem and detailed balance was found to apply in
a comoving reference frame (5).
In comparison, very little is known concerning the statistical

properties of a small part embedded in a fluctuating, turbulent
background. The fundamental notion of detailed balance is not
expected to apply in such systems. Here we ask, what does the
time irreversibility inherent to the large system imply for the
statistical properties of small parts in the system and how do we
measure the degree of irreversibility (6, 7) (or equivalently, how
far is the system away from equilibrium) by monitoring a small
part in the system? We focus here on fluid turbulence, a para-
digm for ultimate far-from-equilibrium states, where irrevers-
ibility of fluctuations is a fundamental property (8, 9). We show
that the simplest and most fundamental scalar quantity, namely,
the kinetic energy of a fluid particle, enables a clear identifica-
tion and quantification of the irreversibility of the turbulent flow.

The characteristic properties of turbulence rest on the vastly
different scales: from the scale lF , where the flow is forced and in-
ertia dominates, to the scale lD, where dissipation takes over. For
a balance between forcing and dissipation in a statistically steady
flow, energy is transferred through scales at an average rate «,
a phenomenon called “energy cascade.” In 3D flows, where lF � lD
(9, 10), energy cascades from large to small scales. In contrast, en-
ergy transfers from small to large scales in 2D flows, where lF � lD
(11, 12). The energy flux is ultimately the source of statistical irre-
versibility. It is important to understand that the fluctuations in
turbulence are fundamentally different from those about thermal
equilibrium (8). The energy flux through scales, «, however, cannot
in itself be a measure of irreversibility in the system because « is
a dimensional quantity, so it can be made arbitrarily large by
changing the units even if the system is very close to equilibrium.
Moreover, it can be expressed as amoment of velocity differences at
a single time (10, 13) without any reference to the evolution of
the flow.
As we demonstrate below, the irreversibility induced by the

energy flux through spatial scales can be revealed and quantified
by following the change of the kinetic energy of small fluid ele-
ments (particles). The kinetic energy per unit mass of the fluid
is simply EðtÞ= ð1=2ÞV 2ðtÞ, where VðtÞ is the velocity of a given
fluid element. It should be stressed that detecting irreversibility
from the motion of a single particle requires going beyond ve-
locity structure functions, defined as the moments of velocity
differences along trajectories, VðtÞ−Vð0Þ, whose statistical prop-
erties are invariant under the t→ − t transformation (14).
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The recent advances in our ability to reliably measure the
trajectories of small tracer particles in well-controlled laboratory
flows (15–18), as well as to simulate accurately the motion of
particle tracers using the Navier–Stokes equation (16) allow us to
investigate these fundamental issues. In this work, we restrict
ourselves to statistically stationary and homogeneous flows. The
results shown here were obtained from a variety of flow config-
urations in 2D and 3D, including both laboratory experiments
and direct numerical simulations of the Navier–Stokes equa-
tions. The datasets contain a large number of trajectories, with at
least 108 data points in total, both in 2D and 3D (see Materials
and Methods and SI Text for details).

Results
“Flight–Crash” Events. The phenomenon discussed here is illus-
trated in Fig. 1A andB, which show the evolution ofEðtÞ along the
trajectory of a fluid particle in a 3D laboratory water flow (17, 18).
It illustrates that to build up large kinetic energy requires a longer
time than to dissipate the same amount. This points to the oc-
currence of flight–crash like events, whereby a particle flies with
a large velocity, before suddenly losing energy. This feature, which
we also observed in numerical simulation of turbulent flows, is
reminiscent of what occurs in very different systems, such as cars
in traffic (19) or even fluctuations of stock values (20).

Statistics of Energy Difference. The statistics of the energy incre-
ments, W ðτÞ=Eðt+ τÞ−EðtÞ, are sensitive to the flight-crash
events. We stress that the moments of W ðτÞ cannot be expressed
in terms of Lagrangian velocity structure functions, and notice
that the kinetic energy EðtÞ is not Galilean invariant, which we
further discuss in SI Text. The asymmetry revealed by Fig. 1 implies
that the distribution ofW ðτÞ is skewed: Odd moments are expected
to be negative for τ> 0. For stationary, homogeneous flows, the first
moment vanishes, hW ðτÞi= 0. The first nonvanishing odd moment,
−hW 3ðτÞi, measured from both experiments and numerical simu-
lations (18) of 3D turbulence is shown in Fig. 2A. In all these flows,
−hW 3ðτÞi grows as τ3 at short times, then slower at intermediate
times, and remains positive over the entire range of turbulence dy-
namical time scales. [Negative skewness of u2x ðtÞ− u2x ð0Þ, where ux is
one velocity component of a tracer particle in a 3D turbulence flow,

was also reported by Mordant (21).] Fig. 2B shows that the third
moment of W ðτÞ in 2D is similar to those in 3D (Fig. 2A), i.e., it is
independent of the difference in the direction of the energy flux in
2D and 3D. This demonstrates again that the energy flux « by itself is
not an appropriate measure of irreversibility and suggests the use of
the dimensionless rate of change of the kinetic energy instead. A
systematic statistical characterization of W ðτÞ can be formulated
from its probability distribution function (PDF). Fig. 2C shows the
PDF of W ðτÞ for several values of τ in the range τK ≤ τ≤T, where
τK and T are the characteristic times at the dissipation scale lD and
the forcing scale lF , respectively. The PDF of W ðτÞ, normalized by
its variance, exhibits wide tails, the more so as the value of τ is
smaller. This feature is possibly related to intermittency, a charac-
teristic phenomenon in turbulent fluids.
Could we understand the skewness of W ðτÞ in the framework

of fluctuation theorems that have been established theoretically
(22, 23), and verified experimentally (4)? For small systems in
contact with thermostats, fluctuation theorems state that the
probabilities of energy gaining and energy loss are related (2) by

ln
�
Pð−W Þ
PðW Þ

�
∝W ; [1]

which, at a first glance, is also suggested by the shape of the tails
of PDFs in Fig. 2C. Our measurements of ln½Pð−W Þ=PðW Þ� at
different values of time-lag τ, shown in Fig. 2D, however, shows
a more complicated dependence onW than the simple linear law 1.
This suggests that fluctuation theorems do not apply directly to
tracer particles in turbulence. This we attribute to the properties
of the forces acting on fluid particles, which are very different from
the forces in usual thermodynamic systems (8).

Statistics of Power Fluctuations: Quantifying Detailed Balance Violations.
As we demonstrate that the results obtained in the general context
of stochastic thermodynamics do not apply to a small fluid element
carried by the fluid, the asymmetry observed for the distribution of
the energy differences along a trajectory (Fig. 2C) points to a more
fundamental aspect, namely the breakdown of time reversibility in
the system. In fact, as we show in the following, the third moment of
W ðτÞ allows us to quantify the irreversibility, and to relate it to the
range of scales in the system.
Let us consider the rate of change of the kinetic energy fol-

lowing a tracer particle, i.e., the power p= limτ→0½W ðτÞ=τ�=
dE=dt=V · a, with a= dV=dt being the fluid acceleration. At
thermal equilibrium, time reversibility is equivalent to detailed
balance in the sense that the probability of energy gain ðp> 0Þ is
the same as the probability of energy loss ðp< 0Þ for any particle
with any velocity. Asymmetric (skewed) PDFs of p, as shown in
Fig. 3 A and B, are therefore a signature that detailed balance is
violated. [We note that the statistics of the power p may be af-
fected by specific, nonuniversal aspects of the forcing, especially
in 2D, in which the external forcing acts at small scales and is
fast-changing (SI Text).] This violation can then be quantified by
odd moments of the fluctuations of p, which change sign when
reversing t→ − t, thus enabling to detect whether the movie of
turbulence is playing backwards or forwards (9). Similar to W ðτÞ,
the first moment of p vanishes for stationary and homogeneous
flows. The third moment, which can be measured reliably, is
sufficient to quantify the violation of detailed balance.
As already explained, a proper measure must be dimension-

less. A natural choice is the dimensionless power p=«, whose
third moment, Ir, defined as

Ir=−
�
p3
��

«3; [2]

allows us to measure irreversibility. Fig. 3 C and D show that Ir
increases with the Reynolds number in both 2D and 3D, hence

BA

Fig. 1. Asymmetry of the statistics of energy differences. (A) The trajectory of
a fluid particle in a 3D laboratory flow at Rλ = 690. The color coding refers to the
instantaneous power pðtÞ=dE=dt = aðtÞ ·VðtÞ acting on the fluid particle,
showing that energy builds up slowly and dissipates quickly. The particle enters
the observation volume from above and leaves from below. The scale bar is
expressed in terms of the Kolmogorov scale η, which is the dissipation scale of
this flow, lD = η= 30  μm. (B) The evolution of the kinetic energy EðtÞ of the same
particle as a function of time, in units of the Kolmogorov time τK , the fastest
time scale of the flow, characterizing the dynamics at scale lD. B,Upper is for the
entire trajectory, while Lowermagnifies the period with strong energy change,
i.e., high power fluctuations (same color coding as inA). The particle experiences
higher values of negative p, compared with positive p, indicating that the par-
ticle loses kinetic energy more rapidly than gaining energy.
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with the separation of scales between forcing and dissipation. In
3D, it grows approximately as Ir∝R2

λ , where Rλ ∝ ðlF=lDÞ2=3 is the
Taylor-scale Reynolds number for 3D turbulence. For 2D turbu-
lence in the energy cascade regime, i.e., lF � lD, we characterize
the scale separation by the friction-based Reynolds number
Rα ∝ ðlD=lFÞ2=3 (SI Text). The data from both experiments and
numerics shown in Fig. 3D demonstrate that irreversibility grows
also with this Reynolds number approximately as Ir∝R2

α. The
second moment, hp2i=«2, grows with the Reynolds numbers as
R4=3
α and R4=3

λ , as shown in Fig. 3 E and F. As a consequence, the
skewness of the power fluctuations, defined as s= hp3i=hp2i3=2, is
approximately constant over the range of Reynolds numbers in-
vestigated in both 2D and 3D.
Thus, remarkably, the measure of irreversibility, Ir, directly

accessible in laboratory flows, depends on the Reynolds number
to a simple power, independent of the specificity of the forcing,
and even more surprisingly, of the directions of the energy flux.
We note that the dependence of the moments hðp=«Þni as

R2n=3
λ or R2n=3

α for n= 2 and 3 does not extend to higher values of
n, consistent with the observation that the PDFs of p=« are not
self-similar, and depend on the Reynolds number (SI Text).

Scaling of Power and Flight–Crash Events
The results documented in Figs. 2 and 3 establish a clear relation
between the moments of the power, hence of the energy differ-
ences, and the Reynolds number. The aim of this section is to
provide simple phenomenological arguments to interpret the
dependence found in Fig. 3, which is observed both in 2D and 3D
and seems universal.

First, let us note that the Lagrangian velocity difference does not
have self-similar statistics, so it is reasonable to assume that there
are events with different scaling exponents γ for the velocity change,
δV ðτÞ∝ τγ . Different γ contribute different velocity moments.
Landau–Obukhov phenomenology (14) suggests δV ðτÞ ’ ð«τÞ1=2,
which physically corresponds to velocity diffusion under the ac-
tion of random short-correlated forces. If particle acceleration
(energy increase) would proceed in this way, one would expect
hp2i∝ ha2i∝Rλ. Our results of hp2i∝ R4=3

λ on power moments, as
shown in Fig. 3, thus make it reasonable to assume that another
type of events exists, where a fast particle takes flight and then
sharply decelerates (by pressure gradient and/or viscous friction) to
acquire the velocity of its neighbors. During such a flight, the par-
ticle travels a distance ∼Vτ and the velocity difference across
such distance can be estimated by the Kolmogorov estimate
δV ðτÞ ’ ð«V τÞ1=3. This estimate rests on the assumption that the
Eulerian field remains essentially frozen during the time τ. Note that
this velocity change is much larger than the one suggested by
Landau–Obukhov, ð«V τÞ1=3=ð«τÞ1=2 = ðT=τÞ1=6, thus such events
must be rare. Therefore, it is unlikely that these rare flight–crash
events dominate the Lagrangian structure functions h½δV ðτÞ�ni,
especially for small values of n. As we now demonstrate, however,
the scaling of the power suggests that such events provide the
main contribution to the moments of the energy changes and
power, which are determined by the correlation between V and
δV. The flight and crash picture suggests for times in the in-
ertial interval

A B

C D

Fig. 2. (A) The third moment of energy increments WðτÞ= Eðt + τÞ− EðtÞ as a function of τ in 3D turbulence for different Reynolds numbers from both
experiments (EXP) and direct numerical simulations (DNS). The quantity −hWðτÞ3i grows like τ3 at short times. The curves obtained at different Reynolds
numbers collapse once scaled using [3] (Inset). (B) The third moment ofWðτÞ from 2D turbulence experiments. Features similar to 3D turbulence are observed,
i.e., hW3ðτÞi is negative and nearly saturates when τ=τf ∼ 1, where τf ∼ ðl2F=«Þ1=3 is the characteristic time corresponding to scale lF (SI Text). (C) PDFs of WðτÞ at
different values of τ, in the τK ≤ τ≤ T range, corresponding to 3D experimental flow at Rλ =350. The values of WðτÞ are normalized by their rms values. For
clarity, the PDFs have been shifted by a factor of 10 from each other. The PDF tails can be plausibly represented by exponentials. (D) The logarithm of the
ratios of the probability of −W and W as a function of W ðW > 0Þ at different values of τ. The linear prediction of [1], which has been shown to apply in many
systems in presence of several thermostats, does not simply apply for turbulence.
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W ðτÞ≈V · δV ∼V 4=3ð«τÞ1=3: [3]

This scaling for the energy change means that the Lagrangian
quantity proportional to « is the third-order structure function of
the energy difference, hW 3ðτÞi∝U3

rmsð«UrmsτÞ. This suggests that
the smooth scaling hW 3ðτÞi∝ τ3 at τ � τK turns into hW 3ðτÞi∝ «τ
at τ � τK . Accordingly, we normalize the third moment of W by
U4

rms«τ, as shown in Fig. 2A, Inset. The very good collapse of the
data in 3D gives support for the flight-crash picture discussed here.
Using the same scaling in 2D leads to a very good collapse of the
curves for very small τ. The difference between Fig. 2 A and B at
longer times may be a manifestation of the very different physics
occurring in 2D and 3D flows. The finite-time average power
W ðτÞ=τ behaves as VδV=τ∼V ðV«τÞ1=3=τ∼ «ðT=τÞ2=3. It increases
when τ decreases and saturates at τ ’ τK , sinceW ðτÞ∝ τ for τK τK .
The moments of the instantaneous power can therefore be deduced
from [3] using the saturation value p≈W ðτKÞ=τK ∼ «ðT=τK Þ2=3,
which leads to hp3i∝ «3ðT=τK Þ2 ∝ «3R2

λ and hp2i∝ «2R4=3
λ as ob-

served in Fig. 3. The scaling provided by [3] also explains the

systematic dependence of hW 3ðτÞi=hEi3 as a function of the Rey-
nolds number (SI Text).

Discussion
Turbulence is characterized by large fluctuations. Notoriously,
the local energy dissipation rate shows strong spatial fluctua-
tions, which are known to play a key role in the origin of in-
termittency, or fluctuations of other quantities of the turbulent
flow (10). Much work has been devoted to the modeling of
fluctuations of the local dissipation rate and of its coarse-grained
generalization, especially in relation to devising approximate
numerical schemes (13). Here we are interested in the related
but different question of the exchange between a very small
subsystem, a fluid particle, and the surrounding turbulent flow, in
the spirit of work done for small systems in contact with ther-
mostats (3). The comparison of our results with those described
by stochastic thermodynamics, therefore, reveals the general
features of systems very far from thermal equilibrium.
The main achievement of this work has been to document and

quantify the intrinsic irreversibility of turbulent flows. This led us

A B

C D

E F

Fig. 3. (A) The PDFs of p=« at three different Reynolds numbers Rλ = 170, 430, and 690 for 3D turbulence. For comparison, the PDFs of negative power ðp< 0Þ,
shown by the dashed lines, are reflected around the vertical axis. The characteristic power is much larger than « and increases with the Reynolds number.
Moreover, large negative values of p are more frequent than large positive values, indicating that most of the violent energy exchange events that a fluid
particle experiences are energy-loss events rather than energy gaining. Data at Rλ = 170 and 430 are from DNSs and data at Rλ = 690 are from experiments. (B)
PDFs of p=« from 2D turbulence simulations at Rα = 26, 51, and 102. Similar behavior as for 3D turbulence is observed. (C–F) Statistical properties of the
instantaneous power p acting on fluid particles. (C) Variation of −hp3i=«3 vs. Rλ for 3D turbulence. Its increase is close to R2

λ . (D) Variation of −hp3i=«3 vs. Rα for
2D turbulence, which increases approximately as R2

α. (E and F) Variation of hp3i=«3 for 3D and 2D turbulence, respectively. The variance increases rapidly with
Reynolds numbers, close to R4=3

λ or R4=3
α for 3D and 2D turbulence. This results in a skewness nearly independent of the Reynolds number: hp3i=hp2i3=2 ≈−0:5 in

3D and ≈−0:20 in 2D.
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to define a quantity Ir, which increases as a power law when the
Reynolds number increases, i.e., when the flow becomes more
turbulent. Remarkably, this way of characterizing turbulent flows
is insensitive to the direction of energy flux through spatial scales.
The observation of asymmetry in the time dependence of the

kinetic energy of particle in a turbulent flows should be con-
trasted with the spatial asymmetry, observed in particular in the
case of a passive scalar with an imposed gradient (24). In this
case, the asymmetric, ramp-and-cliff structure results from a
large scale forcing (the gradient), and persists all the way to very
small scales. A weaker analogy has been documented in shear
flows (25, 26). The phenomenon documented here is very dif-
ferent, as the temporal asymmetry is found both for direct and
inverse cascades. It would be interesting to understand whether
the possible connection between hW 3ðτÞi and the third-order
Eulerian structure function point to any particular flow struc-
tures (27). We merely notice here that the sizes shown in Fig. 1A
make any apparent relation with vortex tubes, observed many
times before (15), unlikely.
Our results stress the main difference between the well-stud-

ied case of systems in contact with thermostats, and those in-
volving a cascade through scales such as turbulence. In this
context, our approach could shed new light on a variety of dif-
ferent problems, such as plasma turbulence (28), quantum tur-
bulence (29), magnetohydrodynamics (30), and more generally, on
any system that is irreversible and has a separation of scales. The
investigation of such systems in the spirit of the present work is
likely to lead to new concepts in the physics of the nonequilibrium.

Materials and Methods
Wedescribe briefly the different turbulent flows that we analyzed in both 3D
and 2D and in both physical experiments and numerical simulations. More
details can be found in SI Text.

Experimental Setups. The turbulent flows that we generated in laboratory
experiments include the 3D von Kármán flows, 2D turbulence driven either
electromagnetically or by surface ripples (Faraday waves).
von Kármán flows in 3D. The 3D experiments were performed in a so-called von
Kármán mixer, which generates high-Reynolds-number turbulent water flow
between two counterrotating disks (15, 17). We measured 3D trajectories of
tracer particles seeded in the flow using optical Lagrangian particle tracking
(17, 18). The Reynolds number of the turbulence was in the 350≤Rλ ≤ 690
range. The effects induced by the weak inhomogeneity of the flow at the
center of the apparatus, where the measurements were carried out, can be
shown to be small (SI Text).
Two-dimensional turbulence experiments. Energy is injected into flows by driving
horizontal vortices whose scale is much smaller than the size of the container.

In electromagnetically driven turbulence such vortices are driven by the
Lorenz force produced by the spatially varying vertical magnetic field and the
electric current flowing across the fluid cell in electrolyte. In the Farady-wave-
driven turbulence the vorticity is generated at the scale approximately at half
of the wave period (31). The injected energy is then spread by the inverse
energy cascade over a broad range of scales to form the Kolmogorov–
Kraichnan spectrum. The 2D particle trajectories are tracked for a long time,
up to 100 Lagrangian integral times (32).

Direct Numerical Simulations. The numerical work is based on simulating the
Navier–Stokes equations,

∂tu+u ·∇u=−∇P + ν∇2u+ f− αu; [4]

where uðx,tÞ is the fluid velocity at location x and at time t. The velocity field
is incompressible ∇ ·u=0, a constraint which is imposed with the help of the
pressure field P. The flow is forced by using an external field f, which varies
at a characteristic scale lF . The viscous term ν∇2u acts to dissipate energy. For
2D flows, a linear friction is introduced through the −αu term (α= 0 in 3D), to
prevent the accumulation of energy at scales larger than lD =α−3=2«1=2.

The Lagrangian information is then obtained by integrating in time the
equation of motion of fluid tracers

dX
dt

=VðtÞ=uðX,tÞ, [5]

in which the tracer velocity VðtÞ is the same as the fluid velocity u at position
X and time t.

In all cases a statistically stationary flow was maintained by balancing the
forcing and the dissipation terms. All the simulations discussed here were
carried out in a periodic domain using standard pseudospectral methods.

In 3D, the simulations reported here used up to 3843 modes. The flow was
forced at a scale lF comparable to the size of the domain, while energy was
dissipated at the Kolmogorov scale η, η= lD = ðν3=«Þ1=4, which was the smallest
scale resolved in the simulation. The turbulence Reynolds numbers were
Rλ = 115 and 170. Additionally, we used the flow field at Rλ = 430 made
available from the Johns Hopkins University database (33).

The simulations of 2D flows reported here were carried out with up to
8,1922 modes. Forcing acted at a small scale lF only, and energy was damped
by friction that acts at a scale lD, comparable to the size of the system.
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1. Energy Flux in Turbulence
We first briefly review some elementary concepts of energy flux in
fluid turbulence. As explained in the introductory section of the
main text, energy is injected into a turbulent flow at a scale lF
that is very different from the scale at which it is dissipated, lD.
The scale ratio lF=lD is large in 3D, lF=lD � 1, while it is small in
2D, lF=lD � 1. This property can be derived directly from the
Navier–Stokes equations,

∂u
∂t

+u ·∇u=−∇P+ ν∇2u; [S1]

where uðx; tÞ is the velocity field, Pðx; tÞ is the pressure field (di-
vided by the constant density), and ν is the kinematic viscosity.
In this work, we consider statistically stationary and homogeneous

turbulent flows. In this case, an identity, known as Kolmogorov’s 4=5
law (1), holds for scales intermediate between lD and lF (the inertial
range of scales of turbulence)

D�
δru

�3E= γD«r; [S2]

where δru is the longitudinal component of the velocity differ-
ence, δru= ½uðx+ rÞ−uðxÞ� · r=r ðr= jrjÞ, « is the dissipation rate
of energy, and the coefficient of proportionality γD depends on
the spatial dimension D, γ3 =−4=5 in 3D and γ2 = 3=2 in 2D.
Whether energy flows towards larger or smaller scales depends

on the sign of γD in this exact scaling relation, which is at the root
of the deep difference in the nature of the energy flux in 2D and
3D turbulence. To see this, one derives from the Navier–Stokes
equations an exact relation for the energy contained in a shell
of wave numbers by decomposing the energy into Fourier series,
and then integrating the components of the Fourier modes
whose wave vectors are smaller than a maximum value K (1).
The results can be interpreted as an energy budget per scale, in
which the term originating from the nonlinear term in the
Navier–Stokes equations, ðu ·∇Þu, is responsible for the flux of
energy in the wave-number space. The sign of the flux is given by
the sign of the coefficient γD in Eq. S2. Specifically, in 3D, γ3 < 0
and the energy flux is towards large wave vectors or equivalently
towards small scales. This leads to a direct cascade of energy. On
the contrary, in 2D, γ2 > 0, the energy flux is towards small wave
vectors, or large scales, which leads to an inverse cascade. This
fundamental distinction makes 2D and 3D turbulence properties
very different. This is the reason why we have systematically
investigated flows in both spatial dimensions.
In the inertial range, the characteristic time τr at a scale r, can

be obtained from energy transfer considerations as τr = ðr2=«Þ1=3
(up to a numerical constant) (1). In 3D, the time scale at the
large (forcing) scale, lF , is simply denoted as T = ðl2F=«Þ1=3. The
smallest length scale of the flow, the Kolmogorov length is given
by lD = ðν3=«Þ1=4, and the associated small time scale is known as
the Kolmogorov time scale, τK = ðl2D=«Þ1=3 = ðν=«Þ1=2. In 2D, the
characteristic time at the forcing scale is τf = ðl2F=«Þ1=3, whereas
the time scale at the large scale, above which friction prevails, is
T = ðl2D=«Þ1=3. We note that the ratio between the characteristic
time scales at the largest and smallest scales of the flow effec-
tively correspond to the definition of the Reynolds number of
the flow: Rλ ∝T=τK in 3D and Rα ∝T=τf in 2D (see section 8
below for more detail).

In the following sections we discuss the experimental (section
2) and numerical (section 3) methods in 3D. The numerical
simulation of 2D turbulence is described in section 4. We have
performed two different types of experiments in 2D, both of which
produce inverse cascade regimes, but are forced using very dif-
ferent protocols (section 5. Finally, section 6 provides more in-
formation on the asymmetry of the energy increments, whereas
section 7 discusses the effects of forcing in relation with the results
discussed briefly in Results. Finally, we discuss in section 8 the
similarities between the Reynolds numbers that we defined for
describing 2D and 3D turbulence.

2. Three-Dimensional Turbulence Experiments
In this section we describe the turbulent flow generating appa-
ratus, the measurement technique, and the data processing used
to obtain the velocities and accelerations following Lagrangian
trajectories in 3D turbulence. Data from the same experiments
have been used in other studies and have been reported, e.g., as
in the supplementary information of ref. 2. We include here the
detailed description for completeness.

2.1. The von Kármán Swirling Flow. The experiments were carried
out in a von Kármán swirling water flow between two counter-
rotating baffled disks. The apparatus has been described in detail
in ref. 3. The flow is confined in a cylindrical plexiglas tank with
an inner diameter of 48.3 cm and a volume of 120 L. The pro-
pellers are 20 cm in diameter, each with 12 vertical vanes 4.3 cm
in height. The axial distance between the propellers is 33 cm. On
each end of the tank, eight vanes are installed on the tank wall to
suppress large-scale rotation (see figures 11 and 12 in ref. 3). The
propellers are driven by two independently controlled direct
current (DC) motors, each with 0.9-kW nominal power output.
The rotation frequencies of the propellers are measured by pho-
toelectrical sensors, which are then fed back to regulate the voltage
applied on the DC motors to maintain the rotation of the pro-
pellers at desired frequencies. The long-time averaged frequencies
of the two propellers are within 0.01% of the set value and the
instantaneous fluctuations of each of the propellers are less than
1%. In the steady state, the mean flow in the apparatus may be
decomposed into the shearing motion due to the rotation of the
propellers and the pumping motion due to the centrifugal force
(figure 11 in ref. 3). In the center of the tank, far from the pro-
pellers and the tank wall, the fluctuation velocity is much greater
than the mean velocity. Our measurements were conducted in a
cubic region of size approximately 2 cm in the center of the appa-
ratus, where the local mean velocity is less than 20% of the local
fluctuation velocity. In addition, the variation of the local level of
fluctuations over this volume is less than 10%. Therefore, we con-
sider turbulence in this region to be approximately homogeneous.
Due to the axisymmetric forcing, the von Kármán flow is anisotropic
at large scales. This anisotropy persists even at the highest Reynolds
number that we have measured (3). However, since the quantities
that we are considering here are traces of second-rank tensors, such
as the instantaneous power p≡ u · a=

P3
i=1uiai, the anisotropy of

the flow affects our results only weakly. Note that in the center of
the apparatus, where we performed our measurements, the par-
ticles lose kinetic energy on average, i.e., hpi≈−«. This loss of en-
ergy is compensated by the flux of energy from the boundary (where
the flow is set into motion) to the center region of the apparatus (4).
Thus, the flow is not strictly homogeneous. The effect of this weak
inhomogeneity on the third moments of the power fluctuations,
defined by [2] of the main text, will be discussed in section 7.2.
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2.2. Particle Tracking Measurement. The Lagrangian trajectories of
the fluid were obtained by optically following tracer particles
seeded in the flow. The tracer particles were polystyrene spheres
with diameters of 26 μm and densities of 1.06 g/cm3. Previous
studies have shown that in our apparatus, these particles follow
the water flow faithfully at Reynolds number up to Rλ ∼ 103 (see,
e.g., ref. 3). These tracer particles were illuminated by pulsed
frequency-doubled neodymium-doped yttrium aluminum garnet
lasers, with intensity up to 130 W. Their motion was then re-
corded by three high-speed complementary metal oxide semi-
conductor (CMOS) cameras from different viewing angles.
Finally, the images were processed to obtain particle trajectories
in 3D space and in time (5). Fluctuations of the laser light in-
tensity and noise in the measurement system resulted in occa-
sional interruptions of the particle trajectories. Using information
in the position–velocity space allowed us to connect the segments
belonging to the same trajectory (6). In this paper, we report on
the statistics from measurements with Taylor microscale Reynolds
number in the 350≤Rλ ≤ 815 range (see also ref. 7). In order to
resolve the fastest changes of the turbulence, we chose our frame
rates to have at least 15 measurements per Kolmogorov time τK .
Using a Gaussian fitting method to locate particle center, we
could achieve a spatial resolution of approximately 0.1 pixels (5),
from which we could differentiate to obtain fluid acceleration with
high accuracy. Table S1 in the supplementary information of ref. 2
summarized the parameters of the measurement system used in
the experiments.

2.3. Data Processing. To obtain fluid particle velocities and accel-
erations, we first filtered the measured positions using a Gaussian
filter and then differentiated the smoothed trajectories. The
smoothing and differentiation were combined into one convolution
using a kernel that is the derivative of the Gaussian filter (8). It
should be pointed out that, because many tracer particles were
tracked simultaneously, our measurements gave us also access to
Eulerian information, such as the Eulerian structure functions. In
particular, we computed the second-order velocity structure func-
tions, from which we determined the turbulent energy dissipation
rate «. For example, measurements of DLLðrÞ≡ h½ðuðx+ r; tÞ−
uðx; tÞÞ · r=r�2i and the inertial range scalingDLLðrÞ=C2ð«rÞ2=3 led
to «= ½DLLðrÞ=C2�3=2=r. Furthermore, we used another exact in-
ertial range relation, h½uðx+ r; tÞ− uðx; tÞ� · ½aðx+ r; tÞ− aðx; tÞ�i=
−2«, to determine « (see ref. 2 and references therein). These
different methods of determination of « gave values within ± 10%.
We used the averaged value of the energy dissipation rate to
compute other derived parameters such as the Taylor microscale
Reynolds number Rλ.

3. Three-Dimensional Numerical Simulations
The results of direct numerical simulation (DNS) of 3D turbulent
flows presented in this work came either from simulations at
a relatively low Reynolds number, obtained directly using a
pseudospectral code, or from the database developed at Johns
Hopkins University (9).

3.1. The DNS at Rλ = 115 and Rλ = 170. The simulation code solved
the 3D Navier–Stokes equations, Eq. S1, in a periodic cubic box
of size 2π, using pseudospectral methods with up to 3843 modes.
The flow was maintained statistically stationary by keeping
a fixed energy in the low wave-number modes, jkj≤ 1:5, which
evolve according to truncated Euler equations. The resulting
flow had zero mean velocity, and the velocity fluctuations were
shown to be statistically homogeneous and isotropic (10).
We took care that the smallest scale of the flow, the Kolmo-

gorov length scale, η, defined by η= ðν3=«Þ1=4, was adequately
resolved. In practice, the product kmax · η was larger than ∼ 1:4.
The results discussed in Results correspond to flow Reynolds

numbers, based on the Taylor scale λ, Rλ = λu′=ν= 115 and 170,
with 1923 and 3843 modes, respectively.
The trajectories of tracer particles were determined by in-

tegrating directly the equation of motion of tracer particles,

dX
dt

=VðtÞ=u
�
X; t

�
: [S3]

We used the algorithm originally described in ref. 11. The accel-
eration was obtained by differentiating the velocity following the
fluid particle.
The data for Rλ = 115 were obtained by following 130,000

particles for approximately 18 eddy turnover times, with a sam-
pling time of ∼ 1=70 of the eddy turnover time. In comparison,
the statistics for the run at Rλ = 170 were determined by fol-
lowing 106 particles over one eddy turnover time. The sampling
time corresponds to 1=100 of the eddy turnover time.

3.2. The DNS at Rλ = 430 from the Johns Hopkins Turbulence Database.
To obtain information on flows at larger Reynolds numbers, we used
the turbulence database developed at Johns Hopkins University (9).
The data has been obtained by simulating the Navier–Stokes
equations with 1,0243 modes. The corresponding flow Reynolds
number is Rλ = 430, with a resolution such that kmax · η= 1:38. The
velocity field and its derivatives are available over one full eddy
turnover time (9).
From the database we obtained 16 snapshots of the velocity

field, each consisting of 128× 256× 512 spatial points. The 16
snapshots were equally separated over the one full eddy turnover
time. The total number of statistics obtained is then 2:7× 108 for
instantaneous quantities.
In order to determine the correlation between velocity and

acceleration discussed in Results, we used the following expres-
sion for the acceleration of tracer particles (note that the pres-
sure is already divided by density):

dV
dt

= a=−∇P+ f + ν∇2u: [S4]

We determined the pressure gradient, forcing, and viscous terms
using the functions provided from the database (9). From Eq. S4,
the instantaneous power is expressed as

p≡V ·
dV
dt

=u · a=−u ·∇P+u · f + νu ·∇2u: [S5]

Note that in DNS, under the condition of perfectly steady
states, the average instantaneous power following particles should
be zero. In all simulations, the small fluctuations of the total
kinetic energy inside the computational domain induced a small
unbalance between the energy injected and the energy dissipated.
As a result, the average instantaneous power was nonzero even
after averaging over a few large-eddy turnover times. However,
this residual average power is small compared to the turbulence
energy dissipation rate, i.e., hpi=«≈ 0, much smaller than what is
found in the experiments.

4. Two-Dimensional Numerical Simulations
We performed numerical simulations of the Navier–Stokes equa-
tion for a 2D incompressible velocity field, u= ðu; vÞ,

∂u
∂t

+ u ·∇u=−∇P+ ν∇2u− αu+ f ; [S6]

in which a linear friction term, −αu, was added to the Navier–
Stokes equation to remove energy and to prevent energy pile up
at large scales. In the absence of dissipation and of forcing, Eq. S6
conserves both the mean kinetic energy hEi= ð1=2Þhu2 + v2i and
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the mean enstrophy hZi= ð1=2Þhω2i, where ω=∇× u is the vor-
ticity (12). The forcing term f injects energy and enstrophy in the
system at rates «I and ηI , respectively, and their ratio is related to
the characteristic scale of forcing lF = ð«I=ηIÞ1=2.
According to the Kraichnan theory of 2D turbulence (12, 13),

the energy injected in the system at scale lF goes to larger scales
at a rate «α, developing the inverse cascade (with a Kolmogorov–
Kraichnan spectrum), while enstrophy flows to smaller scales at
a rate ην, generating the direct cascade. The inverse cascade
stops at the scale lα, determined by friction: lα ’ α−3=2«1=2α . The
viscous scale, at which the direct enstrophy cascade is stopped, is
lν ’ ν1=2η−1=6ν . In the inertial range of scales, between lα and lF ,
the inverse energy cascade develops, whereas between lF and lν,
we have the direct cascade of enstrophy. For the purpose of this
work, lα acts as the dissipation scale: lD = lα.
In the asymptotic limit of vanishing α and ν (i.e. lν → 0 and

lα →∞) all the energy flows to large scales, «α = «I , and the ens-
trophy to small scales, ην = ηI . For finite values of the dissipative
parameters, a residual fraction of energy, «ν, is dissipated by the
viscous term in Eq. S6 and similarly, a fraction of enstrophy, ηα, is
dissipated by the friction term. Stationarity requires «I = «α + «ν
and ηI = ηα + ην. Simple balance of energy and enstrophy fluxes
gives «ν=«α ∝ ν (12), which is indeed observed in numerical simu-
lations (14). A similar relation can be obtained for enstrophy fluxes.
For comparison with the 3D results, it is useful to introduce an

equivalent of Taylor microscale Reynolds number for the inverse
cascade, based on the extension of the inverse-cascade part of the
inertial range as

Rα ≡ ðlα=lFÞ2=3 = ð«α=«IÞ1=2η1=3I

.
α: [S7]

With this definition, Rα does not depend on the viscosity. This
short discussion suggests that finite Reynolds effects in 2D tur-
bulence can be more subtle than in 3D as one should take the
two limits ν→ 0 and α→ 0 simultaneously in order to recover the
asymptotic theoretical predictions.
We have numerically integrated Eq. S6 by means of a standard,

fully de-aliased, pseudospectral code on a double periodic square
domain of N2 grid points, for a set of parameters given in Table
S1. The forcing term was Gaussian with a correlation function
hfðx; tÞ · fðx′; t′Þi=Fðr=lFÞδðt− t′Þ with r= jx− x′j and we choose
FðxÞ=F0 expð−x2=2Þ. The δ-correlation in time ensured the exact
control of the energy injection rate. After the system reached
stationary states, we computed separately all the terms on the
right-hand side of Eq. S6, which gave the different contributions
to the instantaneous power

pðx; tÞ=V ·
dV
dt

=u · a=u ·
�
−∇P+ ν∇2u− αu+ f

�
[S8]

and we collected the statistics for several large-scale eddy turn-
over times.
In Fig. S1 we plot the energy spectra for the different runs in

stationary conditions. The extension of the inverse cascade range
with the Kolmogorov spectrum EðkÞ∼ k−5=3 increases with the
decreasing of friction coefficient α, in agreement with Eq. S7.

5. Two-Dimensional Turbulence Experiments
2D turbulence was studied experimentally using two methods of
turbulence generation: electromagnetically driven turbulence in
layers of electrolyte and Faraday-wave-driven turbulence in
vertically vibrated containers.
Electromagnetically driven turbulence (15) was produced in

layers of electrolytes [here we used a Na2SO4 water solution,
with specific gravityðSGÞ of 1.03] by running electric current j
across the fluid cell. A matrix of magnetic dipoles placed un-
derneath the cell produced spatially varying magnetic field B,

shown as red (upward ↑) and blue (downward ↓) regions in Fig.
S2. In these experiments 900 magnets were used (30× 30 matrix,
10 mm between adjacent magnets). The Lorenz j×B force
produced 900 vortices, which determines the forcing wave
number, kf ≈ 630 m−1. To reduce the bottom drag and to avoid
the influence of the bottom boundary layer, the electrolyte layer
was placed on top of a heavier ðSG= 1:8Þ, nonconducting fluid
(FC-3283, produced by 3M), which is immiscible with water.
Tracer particles (50 μm, polyamid, SG= 1:03) were suspended

in the top layer and were illuminated using a 2-mm thick laser
sheet parallel to the free surface. Particle motion was filmed
using an Andor Neo scientific CMOS (sCMOS) camera.
We changed the spectral energy flux injected into the flow by

varying the electric current. At low currents, spectral energy was
localized in a relatively narrow wave number range around the
forcing wave number. As the current was increased, forcing scale
vortices merged, forming larger and larger eddies until the kinetic
energy spectrum broadened and formed Kolmogorov–Kraichnan
spectrum EðkÞ=C«2=3k−5=3.
The experimental setup for the Faraday-wave-driven turbu-

lence is shown in figure 1 of ref. 16. The horizontal motion of
particles on the surface of vertically vibrated liquids shows sta-
tistical properties consistent with fluid motion in 2D turbulence
(16). Here we performed experiments in a circular container
(178 mm in diameter, 30 mm deep). The container was filled with
a liquid to a depth larger than the wavelength of the perturbations
at the surface. The monochromatic forcing was varied in the range
of frequencies f0 = 30–100 Hz. The dominant frequencies of the
excited surface ripples were a factor of 2 lower, at the frequency of
the first subharmonic of the excitation frequency, f = f0=2. A dif-
fusing light imaging technique was used to visualize the surface
ripples along with floating particles added on it. A light-emitting
diode panel was placed between the transparent bottom of the
container and the shaker’s top plate to illuminate the flow. High-
resolution movies (800× 800 pixels) were recorded in the range of
80–120 frames per second, using an Andor Neo sCMOS camera.
Typically 2,000 particles were tracked simultaneously for over 300
frames using a particle-tracking algorithm.
The spectra of the horizontal velocity fluctuations measured

at f0 = 60 Hz at three vertical acceleration levels (a=g= 0:7, a=g=
1:2, and a=g= 1:6) have been shown in figure 3b of ref. 16, where
a is the amplitude of the vertical acceleration and g= 9:81 m=s2
is the gravity of the earth. These accelerations correspond to
supercriticalities e= ða− athÞ=ath in the 0:16≤ e≤ 1:6 range,
where ath = 0:6× g is the threshold of the parametric wave exci-
tation. These spectra are close to the Kolmogorov–Kraichnan
theory power law of EðkÞ=C«2=3k−5=3 at k≤ 1; 500 m−1. At higher
wave numbers, k> 1; 550 m−1, spectra are typically steeper than
the k−3-expected direct enstrophy cascade, probably due to the
strong viscous dissipation. At lower forcing frequencies, a clear k−3
is observed at k> kf .
The Reynolds number in 2D experiments was defined as in the

2D numerical simulations: Rα = ðlD=lFÞ2=3 = «1=2α−3=2=l2=3F . In the
experiments, the forcing scale lF was fixed. The increase in Rα

was achieved by enhancing «, hence lD. This is in contrast to
numerical simulations where the increase in lD, hence in scale
separation Rα, resulted from the decrease in the linear dissipa-
tion α. It should be noted that in laboratory experiments the
extent of the inertial interval at large scales was restricted by the
size of the circular fluid container, which limited the range of Rα

achievable.
For Faraday-wave-driven turbulence, the range of turbulence

kinetic energy achievable at a given driving frequency f0 can be
dramatically varied by adjusting the vertical acceleration a. As
shown in figure 3c of ref. 16, at f0 = 60 Hz, the energy was in-
creased by over 2 orders of magnitude as a varied from slightly
higher than the threshold of parametric excitation (0:6× g in this
case) to just below the threshold of droplet formation ð2:4× gÞ.
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6. Time Asymmetry of Energy Increments
6.1. Galilean Invariance. In this work, we are interested in the
change of kinetic energy EðtÞ= ð1=2ÞVðtÞ ·VðtÞ following a single
fluid particle in turbulence. In particular, we study the energy
increment over a time lag τ: W ðτÞ=Eðt+ τÞ−EðtÞ and the in-
stantaneous rate of kinetic energy change, pðtÞ= dE=dt=
dW=dτ= a ·V. For a given turbulent flow field uðx; tÞ, the kinetic
energy associated with the absolute motion of a fluid particle is
not a Galilean invariant variable. Because of the lack of Galilean
invariance, we explicitly choose to work here with the kinetic
energy of velocity fluctuations, V, defined as V=u− hui, where
hui is the mean velocity, which is a constant in homogeneous
flows. The fluctuation velocity V can be viewed as seen by an
observer who follows N fluid particles at the same time. Then the
best choice for the observer is to move at the averaged velocity
ð1=NÞPN

i u
ðiÞ, which approaches the mean velocity when the

number N increases. Our analyses are within the frame of ref-
erence that moves with the mean velocity. In this sense, even the
fluctuation velocity following a single particle, VðtÞ, contains
information on more than one particle. Note that for all the
flows we investigated, the mean flow vanishes, hui≊ 0. Our dis-
cussion here is merely to suggest how to extend our work to the
cases with nonvanishing mean flows. We emphasize that in any
case, our analysis involves only single-particle statistics. We are
not considering multiparticle statistics in this work.

6.2. Probability Distribution Function of Energy Increments. As we
stated earlier, we restrict ourselves to statistically stationary and
homogeneous flows. For such flows, the first moments of both
W ðτÞ and p vanish: hW ðτÞi= 0 and hpi= 0. Time asymmetry is
therefore reflected in the probability distribution functions
(PDFs) of W and p around 0.
Fig. 2 A–C showed that the PDFs of the differences in the

kinetic energy along trajectories, W ðτÞ, are skewed, i.e., not
symmetric around W = 0. We document here in detail how this
asymmetry varies as a function of the time-lag τ. Fig. S3 shows
the PDFs of W ðτÞ for several values of τ, ranging from the dis-
sipative scale (τ= 0:3τK , bottom curve in Fig. S3) to the integral
scale (τ= 9:6τK ≈T, top curve in Fig. S3). The data corresponds
to a Reynolds number, Rλ = 115. For the sake of clarity, the
curves have been shifted by a factor of 10 with respect to one
another. The dashed lines correspond to negative values of W,
reflected with respect to the y axis, while the continuous lines
show the PDF for positive values of W. Fig. S3 shows that the
difference between the dashed curves and the continuous line
remains roughly constant, consistent with the observation in Fig.
2A. While the asymmetry remains constant, a systematic change
of shape is observed when the ratio τ=τK increases. Namely, the
tails of the PDF become straight, suggesting an exponential
distribution of W at large values of jW j (see in particular the
upper curves of Fig. S3).
The exponential tails of the distribution ofW can be qualitatively

justified when τ=τK J 1, by using the fact that (i) individual ve-
locity distributions are almost Gaussian and (ii) the two velocities
at time t and t+ τ become almost independent. However, the
observation that the difference between the distributions for
W < 0 and W > 0, as measured by the third moment of the dis-
tribution, remains roughly constant up to values of τ comparable
to T, which demonstrates that even over a long time fluid particles
are sensitive to the asymmetry induced by time irreversibility.

6.3. Asymmetry Between Energy Gains and Losses. Fig. S4 shows the
comparison of the PDFs of instantaneous power p=V · a, weighed
with jpj3, for configuration where the energy of the particle in-
creases ðp> 0Þ and for configurations where the energy of the
particles diminishes ðp< 0Þ. It is clear that for large values of jpj,
the configurations where p< 0 have a higher probability. The

plot also shows that at least for hp3i, our results are statistically
converged.
Results shown in Fig. S4 clearly demonstrate that the distri-

bution is not self-similar, i.e., the PDF of ðp=«ÞR−2=3
λ depends on

Reynolds number. Yet, remarkably, the third moment of p=«
does scale as the second moment in the power 3=2, i.e., as R2

λ
(Fig. 3). This phenomenon is reminiscent of the intermittency
effect on velocity increments: While lower-order moments seem
to follow rather well the predictions of the K41 theory, the de-
viations become more and more significant for higher-order
moments. However, the accuracy of our data does not allow us
to draw any firm conclusion on higher-order statistics of the
power p.

6.4. Reynolds Number Dependence of the Third Moment ofW. Fig. 2A
shows the third moment hW 3ðτÞi, normalized by the third power
of hEi, the average kinetic energy of particles in the flow, as a
function of τ=τK . The dependence on the Reynolds number of
the curves shown in Fig. 2A can be readily deduced from the
good collapse of hW 3i=½hEi2ð«τÞ�, shown in the Inset. This col-
lapse implies that

�
W 3�τK��∼ hEi2«τK ∼ hEi3�τK=T�∼ hEi3

Rλ
; [S9]

where we used the standard estimate for the energy dissipation
rate, «∼ hEi=T. The relation S9 therefore predicts that the
curves shown in the main part of Fig. 2A are deduced from
one another by a ratio proportional to Rλ. This relation explains
very well the dependence observed in Fig. 2A.
We note that in 2D, the dependence of hW 3ðτÞi on the Rey-

nolds number Rα does not seem to be as simple as in 3D. The
scaling deduced from the flight-crash argument allows us to
collapse the data only at small times, for τ � τf . This property
is in fact a direct consequence of the scaling hp3i=e3 ∝R2

α. The
dependence of hW 3ðτÞi=ðhEi2«τÞ on Rα, visible at times τ∼ τf ,
may point to systematic deviations with respect to our flight-
crash argument. The difference between 2D and 3D can be in-
terpreted as a manifestation of the deep differences between
turbulent flows in different spatial dimensions, which remains
to be explored further from the point of view of the analysis in
this article.

7. Effects of Forcing on the Instantaneous Power
7.1. Influence of Forcing on the Power Statistics. Turbulence gen-
erally depends on the nature of forcing.Ofmost fundamental interest
are the properties that are universal, i.e., independent of forcing.
In 3D, a large-scale force impacts strongly on the single-time

statistics in the inertial interval via intermittency and anomalous
scaling (17). On the other hand, the moments of the forcing
term, f ·V, behave as hðf ·VÞni∼ «n as a function of the order n of
the moment. The reason for this is that both V and f are quan-
tities that vary on a large scale. In particular, the fluctuations of f
are small compared to the fluctuations of the dissipation term
(viscous or viscous plus friction) and ∇P. As a consequence, the
contribution of hðf ·VÞ3i to the third moment of power hðV · aÞ3i
is small: The statistics of power are unaffected by the details of
the forcing.
In 2D, the properties of the forcing may affect significantly the

statistics of V · a. The reason is that due to the inverse cascade,
the forcing f varies on small scales, contrary to the velocity field
V that is varying on large scales. The scalar product f ·V then
rapidly varies along a particle trajectory. Thus, the averaged
quantity hf ·Vi involves many cancellations. In particular, one
could conceivably have «= hðf ·VÞi � hðf ·VÞ2i1=2, and similarly,
hðf ·VÞ3i � «3, implying that the details of the forcing may be
important while studying the third moment of V · a.
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In the results from 2D numerical simulations in which white
noise forcing is implemented, the sign of the third moment of V · a
is negative. On the other hand, in turbulent flows induced by
surface waves, the forcing is well correlated in time due to the
coherency of the monochromatic Faraday waves at the frequency
of fF = f0=2. This leads to a positive sign of hðV · aÞ3i. Due to this
nature of turbulence forcing in these experiments, fluid particles
are accelerated quickly by the waves at the time scale of TF = f−1F ,
and then slowly lose energy via turbulence interactions. This
property is a manifestation of the nonuniversal nature of forcing in
2D. However, since the time scales over which turbulent dynamics
develop are much larger than TF , averaging V · a in time along the
trajectories over several periods of Faraday waves, i.e., defining
pðtÞ= ð1=smÞ R sm

0 Vðt+ t′Þ · aðt+ t′Þdt′, where sm is the time period
of averaging, eliminates the contribution of forcing on the V · a
statistics, and reveals negative hp3i in the inertial interval. Simi-
larly, we filter the energy increments along the trajectories as
W ðτÞ= ð1=smÞ R sm

0 ð1=2Þ½V2ðt+ τ+ t′Þ−V2ðt+ t′Þ�dt′.
The contribution of forcing can be seen in the Lagrangian

spectra of V2 and V · a computed along the tracer trajectories in
the surface wave driven 2D turbulence. As shown in Fig. S5 A
and B, the spectra exhibit strong peaks at a frequency close to fF ,
corresponding to the Doppler-shifted Faraday wave frequency.
Another peak seen at lower frequencies ðf ≤ 6 HzÞ corresponds
to the turbulent motion, including the inertial range. Low-pass
filtering V2, more precisely, averaging V2 over sm= 2TF along
the trajectories as defined above, eliminates the forcing peak in
the spectra of V2 (Fig. S5A). The data shown in Fig. 2B are
obtained after applying this filtering with sm= 2TF . On the other
hand, the peaks at ≈ fF are much more prominent in the spectra
of V · a and contribute to a strong signal, which is responsible for
the measured positive skewness of hðV · aÞ3i. Although smooth-
ing V · a along the Lagrangian trajectories over 2TF reduces
significantly the relative contribution of the peak at ≈ fF (Fig.
S5B), the filtered signal still exhibits a positive skewness. In Fig.
S5C, we show the skewness of the averaged power p as a function
of sm, the time of averaging. As the filtering period is in-
creased, the third moment hp3i decreases and reaches an es-
sentially constant negative value when the smoothing time is
larger than ∼ 5TF (Fig. S5C). A similar behavior is observed
for all values of the vertical accelerations. The same values of
the smoothing parameters are used for p andW by filtering V2 and
V · a separately. To improve the statistical convergence in the
determination of W, we systematically shifted the initial position
along trajectories. In Fig. 3 D and F the second and the third
moments of p from experimental data are computed by smoothing
p over 7TF .

7.2. Implication for 3D Experimental Data. Note that in the 3D
experiments, there is no stochastic body forcing, i.e., f = 0. The
turbulent flows are set into motion at the boundary. As explained
at the end of section 2.1, this leads to a weak inhomogeneity in
the volume of the experiment, and therefore to a small deviation
from the idealistic stationary and homogeneous case considered
in the main text.
In our measurement volume far away from the boundary, the

averaged form of Eq. S5 gives (4) hpi= hV · ai≈ hνu ·∇2ui=−«.
This difference, compared with the situation analyzed in the
main text and in the previous section, leads only to minor quan-
titative differences, as we now explain.
The existence of a nonzero mean of the instantaneous power,

hpi≈−«, results in small changes in the moments of p. However,
as can be inferred from Fig. 3 C and E, the mean is only a very
small fraction of the fluctuation for p: hpi=hp2i1=2 ≈−«=hp2i1=2 ≈
10−2. Also, the ratio hp2i«=hp3i is smaller than ∼ 1=20 in all the
experiments presented here.
To check quantitatively the effect of the nonzero value of hpi,

we introduce the fluctuation, p′= p− hpi. The moments of p′ are

�
p′2

�
«2

=

�
p2
�

«2
−
�
p2
�

«2
≈
�
p2
�

«2
− 1≈

�
p2
�

«2
; [S10]

and similarly
�
p′3

�
«3

≈
�
p3
�

«3
+ 3

�
p2
�

«2
− 2≈

�
p3
�

«3
: [S11]

The most sensitive quantity is probably the irreversibility Ir, which
changes to

Ir′=
�
p′3

�
hp′2i3=2

≈ Ir

"
1− 3

hpi�p2�
hp3i

#
≈ Ir

"
1+ 3

�
p2
��

«2

hp3i=«3
#
: [S12]

Using data from Fig. 3, we conclude that the relative change in Ir
is smaller than about 10% for Rλ ∼ 103, which is within the un-
certainty of the measurements.

8. Definitions of Reynolds Numbers for 2D and 3D
Turbulence
In this work, we used for 3D turbulent flows the Reynolds number
based on the Taylor microscale Rλ. We defined a friction-based
Reynolds number Rα for 2D flows. While the use of Rλ for 3D
turbulence is standard, the introduction of Rα is less common,
and may look arbitrary at first sight. Here we discuss briefly the
similarities between these two Reynolds numbers, which are also
the reason why we chose them.
Both Rλ and Rα are related to the scale separation lF=lD. More

specifically, Rλ ∼ ðlF=ηÞ2=3, where the Kolmogorov scale η is de-
termined by the balance between viscous dissipation and the
energy flux, η= ðν3=«Þ1=4, and Rα ∼ ðlα=lFÞ2=3, where lα ∼ ð«=α3Þ1=2
is determined by the balance between frictional dissipation and
the (inverse) energy flux. In both cases, the forcing scales lF may
be regarded as “bulk quantities,” since they are set by the design of
the apparatuses (propeller size, magnet spacing, etc.). On the
other hand, the scales η and lα, corresponding to dissipation, are
set by quantities which are the result of turbulent fluctuations,
controlled by the (fluctuating) energy flux. These scales are thus
completely independent of the size of the apparatus. In 3D, the
scale η explicitly depends on the viscosity, and could be modified
by using a different fluid. Similarly, the scale lα can be adjusted by
changing the friction coefficient α, as in 2D numerical simu-
lations, or by increasing the energy flux in 2D experiments (see the
description of 2D experiments in section 4).
The nature of the fluctuations determining the dissipative length

scales, lD and η, however, depends strongly on the spatial di-
mension. The fluctuations in lD in 2D should be smaller than those
of η in 3D because they are coming from large scales and there-
fore, involve an averaging process.
Themain feature that needs to be kept inmind is that bothRλ and

Rα measure scale ratios, which reflect the number of degrees of
freedom in a large system undergoing turbulent dynamics, irre-
spective of the spatial dimension. What we showed in this paper is
that the two Reynolds numbers are related to the third moment of
the power statistics, which means that the number of degrees of
freedom and the measure of the time irreversibility in fact grow
together. The fact that similar laws are observed in two systems
whose dynamics are significantly different may point to more gen-
eral principles, yet to be discovered.
A journal club lecture on this work byMs. Anna Frishman from

the Weizmann Institute is available from the Kavli Institute for
Theoretical Physics at the University of California, Santa Barbara:
http://online.kitp.ucsb.edu/online/waveflows14/frishman/.
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Fig. S1. Kinetic energy spectra from 2D simulations at stationary states. Curves with different line styles correspond to the different runs listed in Table S1.
Run A, red solid; run B, blue dashed; run C, blue solid; run D, black dashed; run E, black solid. The black straight line represents Kolmogorov scaling k−5=3.

Fig. S2. Experimental setup for the electromagnetically driven turbulence.
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Fig. S3. PDFs of the velocity difference at several values of τ (τ=τK = 0:3, 1.2, 2.4, 4.8, and 9.6) from the 3D DNS at Rλ = 115. The PDFs have been shifted upwards
for clarity by a factor of 10 with respect to the previous ones. The curves corresponding to negative values ofW have been reflected with respect to the vertical
axis, and are shown with dashed lines.

Fig. S4. PDFs of the instantaneous power p=V · a weighted with p3 for energy-gaining events, p> 0 (solid lines), and for energy-losing events, p< 0 (dashed
lines). (A) Data from 3D experiments and DNS and (B) from 2D simulation runs A, C, and E, with Reynolds numbers Rα = 25:9, 51.4, and 102.3, respectively.
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Fig. S5. Spectral signature of the forcing and the effect of filtering. Panels (A) and (B) show the Lagrangian spectra of the kinetic energy V2 and the in-
stantaneous power V ·a, respectively. The curves in red are the raw spectra (without filtering), which exhibit a peak at f ≈ f0=2, corresponding to the forcing, in
addition to the peaks at low frequency ðf ≈ 2 HzÞ corresponding to the turbulent degrees of freedom. Low-pass filtering the signals, with a cutoff corre-
sponding to twice the period of the forcing sm= 2TF , considerably reduces the peak at f0=2, as shown by the blue curves, although the peak is still visible in the
spectrum of filtered V ·a. (C) Convergence of hp3i, the third moment of the filtered power, as a function of the smoothing parameter sm. The dashed orange
curve corresponds to a forcing acceleration of a = 1.2 g, and the full, blue curve to a forcing acceleration of a = 1.8 g.

Table S1. Parameters of the 2D simulations

Run A B C D E

N 4,096 4,096 4,096 4,096 8,192
ν× 106 2.3 2.3 2.3 2.3 1.0
α 0.08 0.06 0.04 0.02 0.02
Rα 25.9 34.5 51.4 102.0 102.3
«α=«I 0.72 0.71 0.70 0.69 0.83
ην=ηI 0.85 0.87 0.92 0.96 0.95

α, friction coefficient; «α, the rate of energy dissipation by friction; «I ,
energy injection rate; ηI , enstrophy injection rate; ην, the rate of enstrophy
dissipation by viscosity; N, spatial resolution; Rα, friction-based Reynolds
number; ν, viscosity.
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