Semiconductor lasers at Turin Technology Center of Avago Technologies

R. Paoletti, R&D operating manager

TTC- Avago Technologies Italy, Via Schiaparelli 12, 10148 Torino, ITALY

Outline

• Company overview

• Laser sources for pluggable transceiver world

• TTC: R&D and LVM of III-V photonic devices

Company Overview

• Leading global manufacturer of analog, mixed signal and optoelectronics components

Field/Order Fulfillment
 R&D Facilities
 Manufacturing

R&D and Manufacturing

- Headquarters: San Jose, California and Singapore
- 2005 revenue of \$1.8B
- 6,500 employees service over 40,000 customers worldwide
- Over 1,000 analog designers with 2,000 patents and patent applications
- Global presence in North America, Europe and Asia

Recent story from HP to Agilent..+ TTC acquisition

Company's History

- Avago Technologies dates back to the earliest days of Hewlett-Packard, the component group in HP that developed technically differentiated components needed by HP's systems
- In 1999, the group spun off from HP as the second largest business group of Agilent Technologies – named Semiconductor Products Group (SPG)
- In 2005, was acquired by Kohlberg Kravis Roberts & Co. (KKR) and Silver Lake Partners to become the world's largest private owned semiconductor company
- Avago Technologies has a rich heritage in RF, mixed signal and optoelectronics innovation, and is the leader in many of its serviced markets

Serviced Markets

Mobile

Wireless handsets Wireless infrastructure Wireless networking

Consumer Printers and imaging Laser and optical mice Digital TVs: -LCD TVs

-Plasma TV's

Storage, Computing & Networking

Data storage

Servers

Storage arrays

Switches and

routers

Service provider networking

Navigation Lighting

Industrial

Factory automation Motor controls Power generation

Product Leadership in Targeted Markets

		2005 TAM	Market Position	
Optoelectronics and RF	 Optical Navigation 	• \$0.8B	 #1 in optical mouse sensors 	
	 Isolation 	• \$1.0B	 #1 in photo-IC optocouplers 	
	 Motion Control 	• \$0.8B	 #1 in office automation encoders 	
	•Infrared	• \$0.9B	 #1 in infrared transceivers 	
	•LEDs and Displays	• \$3.1B	• #3 in LEDs	
	•Wireless	• \$9.8B	 #1 in semiconductor-based filters 	
nterprise Solutions				
	•Fiber Optics	• \$2.7B	 #2 in Fiber Optic Components 	
	•Imaging	• \$3.3B	 #2 in printer ASICs 	
	•Enterprise ASICs	• \$11.8B	 Leading supplier to Cisco and HP 	

Sources: WSTS, RHK, iSuppli and Avago Technologies' internal estimates

Solid Performance with Well-diversified End Markets

FY2005 Revenue By End-Markets

Note: The organization divested its camera module business in Q1 05

Solutions for Mobile Handsets

CMOS Image Sensors Improved picture quality

Position Sensors Lens focus control

Front-End Modules Size advantage and higher integration

E-pHEMT Power Modules Extend battery life

> FBAR Filters Size & performance advantage

Color Chip LEDs Improved aesthetics **LED Flash** Higher quality pictures

IrDA + Remote Control, IRFM Size advantage plus increased functionality

Proximity Sensor Automates speaker phone

Ambient Light Photo Sensors Extend battery life

Navigation Improved user interface

Solutions for Storage, Computing and Networking

Solutions for Consumer, Industrial and Automotive

Electronic Signs and Signals

Consumer Appliances

Leading in Technology Innovation

- 40-years heritage of innovation and technology leadership
- Over 2,000 patent and patent applications
- Over 1,000 analog design engineers

Laser Sources for Plug and Play Transceivers for Datacom and Telecom Applications

Outline

- Introduction
 - Market downturn and recovering
 - Pluggable solutions
- 10 Gb platforms and segmentation within the network
- 10 Gb devices and technologies for pluggable transceivers
 - Key design elements for high performances laser sources
 - Direct modulation of uncooled laser sources
 - Advanced laser sources for pluggable transceivers

Size of the optical component market for datacom and telecom

DATACOM and TELECOM trend: from discrete components to subsystems

Market is driving pluggable module solution

Traditional components

•One bulky, pigtailed, module per equipment circuit card

•Hand soldered assembly

•Multiple compact modules per circuit card

•Pluggability: pay as you go

DATACOM and TELECOM trend: from discrete components to subsystems *Butterfly Laser Module*

DATACOM and TELECOM trend: from discrete components to subsystems

Market is driving pluggable module solution

LAMBDAPACK -2.5 DWDM Pluggable Transceiver

- Integrated heatsink
- Up to 8 modules side by side

Outline

- Introduction
 - Market downturn and recovering
 - Pluggable solutions
- 10 Gb platforms and segmentation within the network
- 10 Gb devices and technologies for pluggable transceivers
 - Key design elements for high performances laser sources

- Direct modulation of uncooled laser sources

10G Segmentation Within the Network

Equipment room	Enterprise	Access	Metro	Long Haul			
~50m	~300m	2-15km	15-80km	10-1000's km			
	IP for LANs Fiber Channel for SANs	ADSL POTS ATM FRAME RELAY IP SONET					
850nm VCSEL Copper	Serial FP +EDC Parallel LX4	1310nm DFB	1550nm EA\DFB	cooled DWDM Tech			
10GBASE-SR Proprietary	10GBASE-LRM 10GBASE-LX4	10GBASE-LR SONET SR-1 SONET IR-1	10GBASE-ER SONET IR-2/LR-2 DWDM	Proprietary			
Xenpak, X2, XFP	Xenpak, X2, XFP	Xenpak, X2, XFP 300 PIN	Xenpak, X2, XFP 300 PIN	300 PIN Discretes			
Protection damage P-DBR r-DBR GaAs substrate							
0 GD VCSEL 10 GD FF 10 GD FF 10 GD FF 10 GD FF @ 850nm @ 1300 nm @ 1300 nmGO @ 1550 nm							

10Gb platforms

evolution

XFP is the next generation platform with a 10Gbit/s serial: data agnostic -*MSA date: April 2003* -*dimension: 78x18 mm* -*DATACOM/TELECOM*

X2 is the next evolution to a smaller XAUIbased

10G Ethernet solution

- MSA date: March 2003

- dimension:

XENPAK is the first 10G Ethernet transceiver -MSA date: March 2002 -dimension: 121x53 mm -DATACOM

Outline

- Introduction
 - Market downturn and recovering
 - Pluggable solutions
- 10 Gb platforms and segmentation within the network
- 10 Gb devices and technologies for pluggable transceivers
 - Key design elements for high performances laser sources

- Direct modulation of uncooled laser sources

Page 24

Semiconductor Lasers

Material systems for semiconductor lasers

Semiconductor Laser is:

Electrical confinement

Optical confinement

Fabry-Perot resonator

DFB Laser

Grating

•Phase shifted grating allows to get 100% single mode yield, for ideal AR/AR coatings on <u>both facets</u>

Key design elements: ridge structure

Fig. 1. Transverse profile of the ridge waveguide structure.

Ridge structure

- •No lateral blocking layers
- •Very simple technological process (one-step epi-growth)
- •Suitable for AI-based lasers and low cost devices

...but....

- •Low optical confinement, high threshold
- •Trade-off between carriers confinement and mono modal behavior
- •Difficult control of series resistance

Key design element: PBH buried structure

Buried structure

•Good optical confinement

•High carriers confinement with possibility to choose different solutions (multijunction or semi-insulating layers)

•Low threshold devices

...but....

•Multi step epi-growth, multi step technological process

- •Not suitable for low cost devices
- •Not mature technology for AI-based lasers

Key design element: MQW active material

MQW active material optimization

TREND: is QD active layer the nexttechnological step?

Fig. 4 Eye diagrams at 20°C and 70°C without filters under 10 Gb/s direct modulation without current adjustment. (upper row) the QD laser. (lower row) the QW laser.

Fig. 5 Deviation of averaged output power from the averaged output power at 20°C under 10 Gb/s modulation against operating temperature.

Roberto Paoletti 24 November, 2006

Outline

- Introduction
 - Market downturn and recovering
 - Pluggable solutions
- 10 Gb platforms and segmentation within the network
- 10 Gb devices and technologies for pluggable transceivers
 - Key design elements for high performances laser sources
 - Direct modulation of uncooled laser sources
 - Advanced laser sources for pluggable transceivers

Modulation of lasers sources

Transmit information:

⇒ Frequency Modulation of laser source		8
\Rightarrow Intensity modulation of laser source		
 Intensity modulation by: 		
- External modulator:	\Rightarrow expensive	88
	(long haul only)	
- Direct modulation:	\Rightarrow cheap/simple	00
\Rightarrow short haul		
(<200 km @ 2.5 Gb, 30 km @ 10Gb)		
\Rightarrow need high frequency devices		\bigotimes

So we want uncooled, low cost laser ... and fast!!!

Intensity modulation of laser sources

• Laser chip equivalent circuit

Intensity modulation of laser sources: chip parasitics

Intensity modulation of laser sources: active material transfer function

MQW active layer: SPICE modeling

Key features for direct modulation

- Wide bandwidth •
- High modulation efficiency •
- Low Noise (RIN) •
- High temperature range (uncooled) •
- Low back reflection sensitivity •
- Low chirp •

0 Level

minimum 5.55 dB

< 0 Level

308

Page 44

mask hits margin hits total hits

Mask

10GB NIRVANA total wfms failed smpls

Eye

Measure

Ext. ratio(E) 5.57 dB

Recalls of digital communications

A bit stream like this

can be heavily distorted passing through a non ideal channel; bit shape can be broadened and spread out of its time slot, overlapping on its neighbours : this is called "InterSymbol Interference (ISI)"

Recalls of digital communications (2)

To better evaluate signal distortion an "Eye Diagram" is built The eye diagram is obtained by slicing the bit sequence in one (or more) b time slots and overlapping them.

Main parameters of an eye diagram

Jitter :

DJ deterministic or pattern dependent jitter RJ random jitter

Eye amplitude

experimental

Agilent uncooled InGaAIAs ridge FP laser for 10GBASE-LRM product (300 m MMF)

Device design:

- <u>Active layer: Al based material</u> Designed to enhance T₀
 - 9 InGaAlAs 55Å wells; strain +0.8%
 - 8 InGaAlAs100Å barriers; strain –0.4%
 - 2xSCH₁: InGaAlAs 350Å
 - 2xSCH₂: InAlAs 500Å
- <u>Device technology:</u> High yield/low cost/Al compatible
 - Reversed mesa ridge
 - Auto-aligned mesa

• Optical cavity:

Very fast chip at high T operation

- Narrow cavity volume
- Hr coating optimised versus both Temperature and speed

200 μm long x250 μm wide device

Post Deadline Paper at OFC 2005

Roberto Paoletti 24 November, 2006

Measured on chip on carrier

Device results - *dynamic* (eye diagrams)

Measured probing directly the chip by 40 GHz 50 Ohm-series matched RF probe

Modal dispersion in MM fibers

Roberto Paoletti 24 November, 2006

Technologies for LRM application: EDC (Electronic Dispersion Compensation)

enabling new applications.

Agilent uncooled InGaAsP BH 10 Gb DFB for 10GBASE-LR product:

Device results: tuning maps

Emitted wavelength and SMSR versus grating current

> 10 nm tuning> 40 dB SMSR @ I active > 40 mA

Agilent tunable laser: Key features

- Small (0.67 mm², 1670um x 400um) chip size
- 40 nm tuning range
 - 4 x 10 nm tuning (each DBR)
 - easy tuning control
- + 13 dBm output power ex facet
 - at only 50 mA DBR active, various grating curr., 100 mA SOA
- Low (<250 mW) power consumption
- Blanking (>40dB) and VOA (>10dB) features
- Bent SOA with "relaxed specs" Anti Reflection • Coating (10⁻³)

R. Paoletti et al, ECOC 2003

InP based chip

Roberto Paoletti 24 November, 2006 Page 57

Device results: emitted spectrum

Paoletti et al. ECOC 2003

Roberto Paoletti 24 November, 2006

The Turin Technology Centre (TTC)

Via Reiss Romoli, 274 10148 Torino Italy

Acquisition by Agilent Technologies 19 April 2000

Activity: R&D (Semiconductor Product Group)

- Short term Development projects (transceivers @ 2.5 Gbit/s and @10 Gbit/s)
- Medium-long term Research projects for active and passive devices

People: 70 (Mainly R&D Engineers), III-V and Product teams

Expertise: optoelectronic and photonic technologies

- New devices and components conception and design
- Semiconductors
- Device design, prototyping and characterisation
- Components packaging and characterisation

Roberto Paoletti 24 November, 2006

R&D of III-V photonic devices

Sept 16th 1962 GEC

TTC, Turin

TECHNOLOGIES

http://www.torinoscienza.it/lab-vr/agilent/index.htr

© Copyright 2001 Agilent Technologies, Inc.

Epitaxial growth

Processing

Wafer cleaved in bars

From 2" wafer: up to 20.000 lasers

Scribing: from wafer to chip

(2) From design to planar structures

Roberto Paoletti 24 November, 2006

Page 66

\Rightarrow Material characterization \Rightarrow

X-Ray diffraction: crystal quality +composition

Scanning Electron Microscope (SEM)

Photoluminescence: alloy composition

C-V profilers: doping profile

(3) Analysis of planar structures: back to design(BTD)/forward to

Electron Beam Lithography

(4) From planar structures to wafer fabrication (clean room)

ΤΕ C Η Ν Ο L Ο G Ι Ε S

24 November, 2006

Page 68

\Rightarrow Dicing/Mounting \Rightarrow

(5) From wafers to chips

Roberto Paoletti 24 November, 2006 Page 69

\Rightarrow Testing/screening \Rightarrow

Statistics of main parameters

Roberto Paoletti 24 November, 2006

(6) Automatic selection of chips...

\Rightarrow Reliability \Rightarrow

Time[h]

Delta I Drive (%) after Stitching updated on 15/11/2004

Monitoring of chip parameters in accelerated tests (high T)

Roberto Paoletti 24 November, 2006

\Rightarrow Characterization \Rightarrow

(8) Measurements of static and dynamic characteristics...

⇒ Release to Manufacturing

Singapore Avago Manufacturing Site

- Volume
- Cost
- Return Of Invested
 Capital
- Link with R&D

Page 73

Roberto Paoletti 24 November, 2006

The end!

Books

- G. Guekos, Photonic Devices, Springer, 1999, ISBN 3-540-64318-4
- L. A. Coldren, S. W. Corzine, "Diode lasers and photonic integrated circuits", John Wiley and sons, inc.,
- P. Vasil'ev, "Ultrafast diode laser", Artec House Boston-London
- K. Petermann, "Laser Diode Modulation" and Noise, Dordrecht, The Netherlands: Kluwer Academic Publishers
- Related published paper
 - F. Delpiano, R. Paoletti, P. Audagnotto and R. Puleo, "High Frequency Modelling and Characterisation of High Performance DFB Laser Modules", *IEEE Transaction on Components, Hybrids, and Manufacturing Technology,* Part B, Vol. 17, No 3, pp. 412-417, august 1994.
 - R. Paoletti, D. Bertone, A. Bricconi, R. Fang, L. Greborio, G. Magnetti, M. Meliga, "Comparison of Optical and Electrical Modulation Bandwidths in three different 1.55 μm InGaAsP Buried Laser Structures", *SPIE'S International Symposia - Photonics West '96*, pp. 296-305, 30 Jan. - 1 Febr. 1996, S. Josè, CA, USA.
 - R. Paoletti, M. Meliga, I. Montrosset, "Optical Modulation Technique for Carrier Lifetime Measurement in Semiconductor Lasers", *IEEE Photonics Technology Letters*, Vol. 8, No. 11, pp. 1447-1449, November 1996.
 - R. Paoletti, M. Meliga, G. Oliveti, M. Puleo, G. Rossi, L. Senepa, "10 Gbit/S Ultra-Low Chirp 1.55μM Directly Modulated Hybrid Fiber Grating - Semiconductor Laser Source", 23rd European Conference on Optical Communication ECOC '97, Mo 3B. 22-25 September 1997, Edimburgh (UK).
 - R. Y. Fang, D. Bertone, M. Meliga, Montrosset*, S. Murgia, G. Morello, G. Magnetti, G. Oliveti, R. Paoletti, "A simple structure 1.55 μm InGaAsP/InP Spot Size Converted (SSC) laser", *IEEE Photonics Technology Letters*, Vol. 10, No. 6, pp. 775-777, June 1998.
 - G. Rossi, R. Paoletti, M. Meliga, "SPICE simulation for analysis and design of fast 1.55 μm MQW laser diodes", *IEEE Journal of Lightwave Technology*, Vol. 16, No. 7, July 1998.
 - R. Paoletti, M. Agresti, G. Burns, G. Berry, D. Bertone. P. Charles, P. Crump, A. Davies, R.Y. Fang, R. Ghin, P. Gotta, M. Holm, C. Kompocholis, G. Magnetti, J. Massa, G. Meneghini, G. Rossi, P. Ryder, A. Taylor, P. Valenti and M. Meliga, "100 °C, 10 Gb/s directly modulated InGaAsP DFB lasers for uncooled Ethernet applications", post-deadline at *European Conference on Optical Communication ECOC '2001*, October 2001, Amstedam (NL).
 - R. Paoletti, M. Meliga, "Uncooled, high speed DFB lasers for Gigabit Ethernet applications", invited paper at SPIE'S International Symposia Photonics West Optoelectronics 20021, 19 25 Jan. 2002, S. Josè, CA, USA.
 - R. Paoletti, C. Coriasso, M. Agresti, P. Gotta, G. Magnetti, A. Moro, D. Sarocchi, D. Soderstrom, C. Cacciatore, L. Fratta, M. Vallone, A. Stano, E. Liotti, P. Valenti, G. Roggero, G. Fornuto, G. Burns, R.Harrell, P. Charles, D. Clark, G. Berry and M. Meliga, "Small chip size, low power consumption, fully electronic controlled tunable laser source with 40 nm tuning range and 20 mW output power for WDM applications", ECOC 2003, 21 25 Sept. 2003, Rimini, Italy
 - R. Paoletti, M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C.Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morello, C. Rigo, E. Riva, D. Soderstrom, S. Stano, P. Valenti, M. Vallone, M. Meliga" Highly reliable and high yield 1300 nm InGaAIAs directly modulated ridge Fabry-Perot lasers, operating at 10 Gb/s, up to 110 °C, with constant current swing ", Post deadline at Optical Fiber Conference OFC 2005, Anaheim (CA)

