Semiconductor lasers for optical communication

Roberto Paoletti R&D, Testing and Reliability Manager Avago Technologies Italy

- Laser sources for "pluggable transceiver world"
 - Design for performances
 - Fast lasers
- Transceiver for next generation networks
- Torino Technology Center Avago Technologies Italy

R. Paoletti, 11/2011

Pluggability: a keyword...

From transceiver cards to hot-pluggable transceiver modules

Evolution (since 2000) PLUGGABILITY: PAY AS YOU GO

- Strong limits in space available and power budget
- Wide temperature operation $(0 \div 85^{\circ}C)$
- \Rightarrow Requirement on lasers:
 - High temperature operation (preferably uncooled)
 - Low cost, high manufacturing yield, high reliability
 - no compromise on High performance (high bit rate, high optical power, high spectral purity, ...)

Lasers for Optical Networks

Active material: long path of performance improvement

Modulation schemes for datacom/transport NW

Transmit information:

٠

- \Rightarrow Frequency/Phase Modulation of laser source: transport NW.
- \Rightarrow Intensity modulation of laser source $\textcircled{\odot}$ Intensity modulation by:
 - External modulator: \Rightarrow expensive (long haul only)• Direct modulation: \Rightarrow cheap/simple $\bigcirc \bigcirc$ \Rightarrow short haul \bigcirc

(1.55um <200 km @ 2.5 Gb, 30 km @ 10Gb; <25 km 1300nm)

 \Rightarrow need high speed devices

So we want uncooled, low cost laser ... and fast!!!

 (\mathbf{R})

Direct Modulation of Laser Module Butterfly Laser Module, (1990 – 2000)

Intensity modulation of laser sources

• Laser chip equivalent circuit

Direct Modulation of Laser Module

Electro-optical measurement and simulation (1994) for bandwidth optimization E/O S₂₁

F. Delpiano, R. Paoletti, P. Audagnotto and M. Puleo; High Frequency Modeling and Characterization of High Performance DFB Laser Modules; IEEE TRANS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY, VOL. 17, NO. 3, AUGUST 1994

Laser chip optimization

On-chip static and dynamic characterizations, on dedicated optical benches.

R. Paoletti, 11/2011

III-V Devices Torino

Direct RF Probing of laser chip:

Chip parasitics analysis on SI-BH (1995)

• Parasitics analysis by S₁₁ measurement: a long story ...

Laser chip RF optimization: direct RF probing of laser chip

Chip parasitics on Ridge Structure, ADS model, S₁₁ measurements

R. Paoletti, 11/2011

Intensity modulation of laser source: MQW active layer ADS model

Fig. 8. Carrier injection nonuniformity in a four-QW laser at different bias points.

Fig. 11. Static characteristic for a 400- $\!\mu$ m long device at 20 $^{\circ}$ C (Process A). Asterisks stands for data and continuous line for simulation.

ADS model: simulation (red) vs. measurements (blue)

Direct Modulation of TOSA

Electro-optical measurement and simulation

Fig. 10. Equivalent circuit model of the TOSA.

Intensity modulation of laser sources: Package parasitics (Module + TOSA)

XFP Transceiver, 2005

Large Signal modulation

Recalls of digital communications

A bit stream like this

can be heavily distorted passing through a non ideal channel; bit shape can be broadened and spread out of its time slot, overlapping

on its neighbours : this is called "InterSymbol Interference (ISI)"

Recalls of digital communications (2)

A picture like this gives little information on signal distortion

To better evaluate signal distortion an "Eye Diagram" is built The eye diagram is obtained by slicing the bit sequence in one (or more) bit time slots and overlapping them.

Main parameters of an eye diagram

simulated

Jitter :

DJ deterministic or pattern dependent jitter RJ random jitter

Eye amplitude

experimental

R. Paoletti, 11/2011

Agilent uncooled InGaAsP BH 10Gb DFB/PIN for 10GBASE-LR product

- Torino R&D team for Ipswich MFG. First product release: first 10G DFB and first 10G PIN for Xenpak first 10G uncooled hot pluggable transceiver in the market
- DFB uncooled PNiP buried lasers, InGaAsP based

Your Imagination, Our Innovation

10 Gb/s uncooled InGaAIAs ridge FP laser

R. Paoletti, 11/2011

OC48 (4CG4), 10GbE (4CG5), 10Gb Sonet (4CG3) Uncooled DFB Laser for XFP, SFP and SFP+ platform (2005 – 2006)

Semiconductor lasers for optical communication

- Laser sources for "pluggable transceiver world"
 - Design for performances
 - Fast lasers
- Transceiver for next generation networks
- Torino Technology Center Avago Technologies Italy

Ο.

What next? 40 and 100 Gb/s Ethernet, 16-32Gb FC standards

- for 40Gb/s
 - 40GBASE SR4, 850nm, 4 x 10GbE; 40GBASE LR4, 1300nm, 4 x 10GbE CWDM
- for 100 Gb/s
 - 100GBASE SR10, 850 nm, 10 x 10GbE; 100GBASE – LR4, 1300 nm, 4 x 25GbE, LAN WDM 4.5 nm spaced or PSM4 (4 single mode fiber for short reach driven by datacenter)
- 16G FC 32G FC standard for Fiber channel
- Standard and MSA have focused the technology development:
- 16G FC transceiver SFP+ commercially available
- First 40Gb/s and 100Gb/s CFP MSA ... but form factor is the key development

Opnext's 16G Fiber Channel SFP+ module.

OFC 2009-2010

Area and Power Dissipation: the competition on optical modules

Next Gen 100G SMF Optical Module

Power Dissipation: data center driving force toward low power dissipation

Sources for 100Gb:

 4×25 -Gbit/s, 1.3-um, Monolithically Integrated Light source

Takeshi Fujisawa (NTT Corporation, Japan)

- Application: 100GbaseLR4 and ER4 (10 and 40 km) 1300nm
- Now CFP with 4 TOSAs, WDM filter
- To move from CFP to smaller size (CFP2/?):
 - integration
 - Low power consumption
- Then NTT approach
 - Monolithic integration of EADFB and MUX (MMI)
 - 2 × 2.6 mm2
 - Quarter wavelength shift DFB
 - Ridge, buried in BCB
 - Shallow ridge EADFB, deep ridge MUX
 - InGaAlAs
 - Double " butt join" (one also fro the low doping cladding in the MMI...)

Complicated/high cost/high power dissipation

R. Paoletti, 11/2011

Sources for 100Gb:

DFB technology: best as cost and power dissipation....

OFC 2007 session: Uncooled and semicooled DFB laser sources at 25 and 40 Gb/s

Avago: best eye quality up to 70C, 25Gb/s

Five-stacked QD

layers with p-doping

III-V Devices Torino

Next steps: revolution on active material?

Is Quantum Dot ready to go?

OFC2009, OWJ1, "High-Speed and Temperature-Insensitive Operation in 1.3-µm InAs/GaAs High-Density Quantum Dot Lasers", Fujitsu

Fig. 3 Light-current characteristics of the fabricated laser

p+-GaAs

p-Al, Ga, As

Fig. 4 10.3-Gb/s filtered-eye-diagrams in the fixed driving condition at 15, 50, 85, and 100 °C. The mask margin of more than 48 % was maintained at all temperatures.

R. Paoletti, 11/2011

200 um long 1.3um ridge FP laser, with amazing performances... on GaAs . Announced to be *"ready for production"....*

... Or real revolution will be Silicon Photonics?

UCSB Silicon light emission – How?

- Bulk silicon
- Low dimension Silicon
 - Silicon nanocrystal (Pavesi, ...)
 - Periodic nanopatterned crystalline silicon (Jimmy Xu)
- Er dopants (Dal Negro,...)
- Avoid direct interband transition
 - Raman laser (UCLA/Intel)
- Another material for gain (hybrid approach)
 - Epitaxial
 - Ge
 - Quantum Dot
 - Pillars
 - Bonding
 - Dice level
 - Wafer level (BCB or Molecular)

ECOC 2010, John Bowers, Dept of Electrical and Computer Engineering, UCSB

Silicon Photonics EPI: Ge on Silicon

State-of-the-art performances by Ge on Silicon on detectors, improving on modulators

ECOC 2010, Lionel C. Kimerling, MIT

Silicon Photonics; Hybrid approach: die level

III-V material for gain (hybrid approach), Si for waveguides and modulators

- Bonding: Die level
 - Flip-chip (Luxtera)

Taking the best from III-V and Si world... Smart guys! Promising solution for advanced modulation format and parallel approach (PSM4)

ECOC 2010 - 2012

And electronics can boost optics to higher datarates!

- Using pre-emphasys: 25 Gb VCSEL, 44 Gb using FFE at driver and good electrical matching... (ISLC 2012)
- Using Multilevel coding (IEEE 802 committee)

Opto-ele	ectronic Sche	matic
----------	---------------	-------

	Ethernet rate
PAM-2	100.39 Gs/s
PAM-4	50.20 Gs/s
PAM-8	33.46 Gs/s
PAM-16	25.10 Gs/s
PAM-32	20.08 Gs/s

- Or using FEC
 - limiting to 10⁻⁵ BER and allowing low cost optics: power budget, reflection sensitivity, etc...

Avago Technologies Italy

Acquisition by Agilent Technologies 19 April 2000

Former technology dept. of CSELT; Today XX Eng YY OPer.

Activity: R&D and Production (III-V Team)

- Short term Development projects (transceivers @ 10 Gbit/s and higher)
- Medium term Research projects for active and passive devices
- Development and Production of 10G FP/DFB/EML laser source

Activity: Transceiver R&D (Product Team)

- Design of next generation single mode transceiver Facilities (III-V team)
- 1350 m² of clean room: class 10-10000 (plus R&D Lab, officies).
- EPI (2 MOCVD), material characterization, processing (including EBL), die fab (singulation, coating, testing, assembly and reliability tests)

Expertise: optoelectronic and photonic technologies

- New transceiver, devices and components conception and design
- Semiconductors
- Device design, prototyping and characterisation

Technology platform for high yield manufacturing established from 2003 on

.

Superior high T performances

Aluminum based MQW material

- Ridge waveguide
- High yield; compatible with AI MQW material

R. Paoletti, 11/2011

- Quarter wavelength grating
- 100% SMSR yield •

Proven reliability, with > 50 M devices x hours in 3 years production

- high yield easy to
- manufacture
- high performance

Your Imagination, Our Innovation

How we did it.....The III-V Technology in Turin

.. advanced lasers? A teamwork ...

...advanced technologies!

TECHNOLOGIES

How we did it.....

(1) Design/Modeling

1. Material properties (Q.M.)

MQW band profile and levels

Optical properties: n+ik (I, F, T)

Beam Propagation Method

R. Paoletti, 11/2011

R. Paoletti, 11/2011

\Rightarrow How we did it.....

(3) Material characterization

X-Ray diffraction: crystal quality +composition

Photoluminescence: alloy composition

Scanning Electron Microscope (SEM)

R. Paoletti, 11/2011

TECHNOLOGIES

How we did it..... (4) Processing

Photolithography

UV

1) photolithography

2) Chemical etch

Electron Beam Lithography

✓ 70 nm line in 75 nm thick resist✓ 200 nm pitch lines

How we did it.....

(5) Scribing: from wafer to chip

How we did it..... (6) Automatic testing

What are LDIs?

Laser Device Inspectors are automatic systems for 100% device testing and screenings.

System capabilities and scope:

- •Test: pulsed measurements on chip @ R.T.:
- •F/B LIV, spectrum, rev. leakage, chip size and tilt

MOV001

•10G FP, 10G DFB, EML

Statistics of main parameters

R. Paoletti, 11/2011

How we did it.....

(7) R&D lab characterizations (new products dev.)

- Dedicated area (130m²), large set of characterization techniques
- Measurement benches for:
 - FP and DFB lasers; Multi-electrodes (EML, Tunable) lasers
- Static measurements on tile (10 100 C) and Headers
 - F/B LIV, spectrum, low current, rev. leakage, Far Field, ...
- Dynamic characterization: "directly on chip" probing (10 100 C)
 - Small signal S₂₁, S₁₁, parasitics and active dynamics up to 20 GHz
 - Large signal dynamic characterization:
 - Pattern generators at 1-12 Gb/s and 4-60 Gb/s (SHF); up to 32GFC complete eye diagram measurement set-up (including optical receiver)
 - Up to 12 Gb/s BERT test (200 km fiber)
- ...plus standard production testing / validation line
 - LDI for screening, statistic and process debug purposes
 - Stress tests (BI/ESD/ALT) for reliability assessment and qualification

Key points:

RF Probes; Accurate calibration

From R&D to production

Developing a reliable technology....

- Reliability has always been the key strength in a III-V world
- Customer reliability expectation is almost compared to the 'telecom" field, *but for low cost consumer products*
- \Rightarrow Reliability is the key investment in the III-V area

TECHNOLOGIES

From R&D to production

Testing a production volume....

- Testing is one of the most expensive part in the III-V production, which require 100% testing of laser chip!
- Only key team have testing capability suitable for mass-production (not for start up..)
- \Rightarrow R&D design for Testing

R&D Avago DFB Tester: 20 sec/die

R&D Avago

VCSEL

Tester: 1

sec/die

R. Paoletti, 11/2011

The end!

Books

- Ramo Winnery Van Duzer, "Fields and waves in communication electronics", John Wiley.,
- G. Guekos, Photonic Devices, Springer, 1999, ISBN 3-540-64318-4
- L. A. Coldren, S. W. Corzine, "Diode lasers and photonic integrated circuits", John Wiley and sons, inc., .
- P. Vasil'ev, "Ultrafast diode laser", Artec House Boston-London
- K. Petermann, "Laser Diode Modulation" and Noise, Dordrecht, The Netherlands: Kluwer Academic Publishers

Application Notes

- Application Note 1550-6, HP
- Application Note 1287-1
- Network Analyzer Basics
- The Art of Measuring 40G Eye Patterns .

Related published paper

• F. Delpiano, R. Paoletti, P. Audagnotto and R. Puleo, "High Frequency Modelling and Characterisation of High Performance DFB Laser Modules", IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Part B, Vol. 17, No 3, pp. 412-417, august 1994.

• R. Paoletti, D. Bertone, A. Bricconi, R. Fang, L. Greborio, G. Magnetti, M. Meliga, "Comparison of Optical and Electrical Modulation Bandwidths in three different 1.55 μm InGaAsP Buried Laser Structures", SPIE'S International Symposia - Photonics West '96, pp. 296-305, 30 Jan. - 1 Febr. 1996, S. Jose, CA, USA.

R. Paoletti, M. Meliga, I. Montrosset, "Optical Modulation Technique for Carrier Lifetime Measurement in Semiconductor Lasers", IEEE Photonics Technology Letters, Vol. 8, No. 11, pp. 1447-1449, November 1996.

• R. Paoletti, M. Meliga, G. Oliveti, M. Puleo, G. Rossi, L. Senepa, "10 Gbit/S Ultra-Low Chirp 1.55 µM Directly Modulated Hybrid Fiber Grating - Semiconductor Laser Source", 23rd European Conference on Optical Communication ECOC '97, Mo 3B. 22-25 September 1997, Edimburgh (UK).

G. Rossi, R. Paoletti, M. Meliga, "SPICE simulation for analysis and design of fast 1.55 µm MQW laser diodes", IEEE Journal of Lightwave Technology, Vol. 16, No. 7, July 1998.

• R. Paoletti, M. Agresti, G. Burns, G. Berry, D. Bertone. P. Charles, P. Crump, A. Davies, R.Y. Fang, R. Ghin, P. Gotta, M. Holm, C. Kompocholis, G. Magnetti, J. Massa, G. Meneghini, G. Rossi, P. Ryder, A. Taylor, P. Valenti and M. Meliga, "100 °C, 10 Gb/s directly modulated InGaAsP DFB lasers for uncooled Ethernet applications", post-deadline at European Conference on Optical Communication ECOC '2001, October 2001,Amstedam (NL).

R. Paoletti, M. Meliga, "Uncooled, high speed DFB lasers for Gigabit Ethernet applications", invited paper at SPIE'S International Symposia - Photonics West Optoelectronics 20021, 19 - 25 Jan. 2002, S. Josè, CA, USA.

R. Paoletti, M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C.Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morello, C. Rigo, E. Riva, D. Soderstrom, S. Stano, P. Valenti, M. Vallone, M. Meliga" Highly reliable and high yield 1300 nm InGaAIAs directly modulated ridge Fabry-Perot lasers, operating at 10 Gb/s, up to 110 °C, with constant current swing ", Post deadline at Optical Fiber Conference OFC 2005, Anaheim (CA)

• R. Paoletti, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C. Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G. Meneghini, C. Rigo, E. Riva, G.Roggero, A. Stano, M. Meliga, 'Uncooled 20 Gb/s Direct Modulation of High Yield, Highly Reliable 1300 nm InGaAlAs Ridge DFB Lasers'', Optical Fiber Conference OFC 2009

TECHNOLOGIES