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ABSTRACT

Processed pseudogenes are DNA sequences generated through reverse transcription (RT) and
retrotransposition of mature mRNAs. These sequences are usually considered junk DNA,
since in most cases they lack a suitable promoter and are no longer transcribed. Nonetheless,
due to their origin, they represent a valuable source of information on the transcriptome,
which becomes particularly interesting for organisms lacking large EST collections. Here, we
describe REtrotransposed Gene EXPlorer (REGEXP), a new method for the systematic
identification of retrotransposition events that, unlike existing approaches, does not rely on
a priori knowledge of mRNA sequences. Using our pipeline, we were able to identify 2288
processed pseudogenes in the human genome, showing a good overlap with the ENSEMBL,
VEGA, and pseudogene.org datasets. These pseudogenes could be traced back to 987 genes,
mostly corresponding to already known genes. In many cases, we recovered the signature of
additional exons, likely due to alternative splicing. Interestingly, some of our predictions did
not match previously known or predicted genes, and we were able to validate most of them by
RT–polymerase chain reaction (PCR). Similar results were obtained with the mouse genome.
Our data show that the REGEXP method is capable of identifying processed pseudogenes and
to predict most of the corresponding genes with high specificity. Therefore, it may represent a
valuable integration to the current genome annotation pipelines.
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1. INTRODUCTION

Pseudogenes are currently defined as nonfunctional copies of genes, originating either from seg-

mental genome duplications or from retrotransposition events. Nevertheless, it has been recently

recognized that pseudogenes may play a crucial role in various stages of gene regulation and in particular in

fine-tuning the expression of their parent genes (Watanabe et al., 2008; Tam et al., 2008; Korneev et al., 1999;

Weil et al., 1997; Zhou et al., 1992; Hirotsune et al., 2003). Developing precise knowledge of the content of

pseudogenes is thus required to fully understand the structure and functions of a genome (Zheng et al., 2007).

*These two authors contributed equally to the work.
1Theoretical Physics Department and 2Molecular Biotechnology Center, Universit di Torino, Torino, Italy.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 17, Number 5, 2010

# Mary Ann Liebert, Inc.

Pp. 755–765

DOI: 10.1089/cmb.2009.0027

755



The identification of pseudogenes is also very challenging from a computational point of view, and it is

perfectly suited for bioinfomatic methods. Several pseudogene databases exist in the literature (Torrents

et al., 2003; Suyama et al., 2006; Pavlicek et al., 2006; Yao et al., 2006; Shemesh et al., 2006; Karro et al.,

2007; Ortutay and Vihinen, 2008; Khelifi et al., 2005; Ohshima et al., 2003). Although these methods are

based on different computational pipelines, they all share the need for substantial information on the

transcriptome and=or proteome of the organism, in addition to the genomic sequence.

These tools perform rather well with genomes for which a large amount of ESTs and=or protein

information exist, but these tools must rely on phylogenetic conservation in other cases and are expected to

perform poorly on fast-evolving or non-canonical genes.

Among the different pseudogenes, a particularly interesting class is processed pseudogenes (PPGs),

where copies of cellular RNAs typically contain poly(A) and lack introns, which were reverse-transcribed

and inserted into the genome by L1=LINE1 retrotransposons (Esnault et al., 2000).

PPGs exist in most of the higher eukaryotes, although their number can vary by orders of magnitude.

Indeed, whereas thousands of PPGs are present in the mouse and human genomes, the Caenorhabditis

elegans genome contains only 208 processed pseudogenes (Harrison et al., 2001), the chicken genome

contains at most 51 PPGs (Hillier et al., 2004), and the Drosophila melanogaster genome contains at most

34 PPGs (Harrison et al., 2003).

While the rate of the emergence of PPGs in mammalians is about 1–2% per gene per million years, this

seems to have drastically decreased in the hominid lineage (Sakai et al., 2007). For comparison, the rate of

gene duplication in the human genome is about 0.9% per gene per million years.

Since they are derived from a mature mRNA product, PPGs lack the upstream promoters of normal

genes; thus, they are usually ‘‘dead on arrival,’’ becoming non-functional pseudogenes. Nevertheless,

according to a recent study (Sakai et al., 2007), about 1% of PPGs in human shows evidence of tran-

scriptional activity. Moreover, compared to their parent sequence, PPGs are often truncated at their 50 end,

probably as a result of the relatively nonprocessive mechanism that creates them (Pavlı́cek et al., 2002).

Since PPGs may derive from normal protein-coding mRNAs, alternatively spliced mRNAs (Karro et al.,

2007), non-protein-coding RNAs ( Jurka et al., 1988) and antisense transcripts (Ejima and Yang, 2003),

they may represent a rich sample of the transcriptome (Pavlicek et al., 2006), although they cannot be

expected to completely cover it.

In this article, we propose REtrotransposed Gene EXPlorer (REGEXP), a new approach for the iden-

tification of gene-PPG pairs based on the DNA sequence only, with no need for additional information on

EST or proteins. Using this approach, we have identified 2288 PPGs in human and 2063 in mouse,

corresponding to 987 human and 709 mouse parent genes. Interestingly, although most of the parent genes

were already known or supported by EST tracks, in a few cases they were completely new predictions, not

supported by any type of evidence in the UCSC or ENSEMBL databases. Importantly, we were able to

experimentally validate some of these predictions. We conclude that, even though our method is perfectly

suited for organisms for which only the sequence is known, it can lead to the identification of new genes

even in extensively annotated genomes.

2. METHODS

2.1. The alignment database

We start from the full set of local alignments found by comparing the repeat masked sequence of the

human genome (build 36) with itself; we compute these alignments with the Megablast software (Zhang

et al., 2000).

To avoid excessive memory occupation, we split the chromosome sequences into smaller fragments and

compare them all. We perform a sequence split when we find a repeat masked region longer than 1000 base

pairs (usually a LINE); thus, we don’t need to postprocess the alignments to merge overlapping fragments.

We are confident that no alignment containing a masked region of 1000 bps or more can exist since its

score would be under any reasonable statistical cutoff. The alignment database contains about 12 million

high scoring pairs (HSPs; pairs of regions sharing high sequence similarity) longer than 30 bps.

We label each HSP a using two aligned regions ra1 and ra2, which are identified by their starting and

ending points in absolute chromosomal coordinates. This induces a natural definition of distance between

HSPs a¼ (ra1, ra2) and b¼ (rb1, rb2) as the length of the smallest segment joining two endpoints, i.e.,
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d(a, b)¼ min(d(ra1, rb1), d(ra1, rb2), d(ra2, rb1), d(ra2, rb2)), where d(rai , rbj) is the euclidean distance be-

tween two points, and d(a, b)¼? if they are on different chromosomes.

2.2. Location clusters

Since a processed pseudogene is the union of the exons of the original gene, one would expect to find it

in the alignment database looking for clusters of nearby HSPs. On one side of the alignment (the

‘‘pseudogene side’’), we expect multiple HSPs very close to each other (ideally, if no insertion occurred

after the retrotransposition event they should be contiguous); on the other side (the ‘‘gene side’’), they will

be near, but separated by gaps corresponding to the introns that are missing from the pseudogene. Even if

we allow for the presence of mutations in one or both the sequences, the scenario remains similar. Some of

the original HSPs may now have a lower score, some may as well have disappeared, but the picture still

consists of a number of HSPs clumped one next to the other. To extract these HSP clusters (which we shall

denote in the following as ‘‘location clusters’’) from the alignment database, we developed the following

clustering procedure. Each HSP can be represented as a segment in the bidimensional plane spanned by the

two sequences (in a way that closely resembles dot-plots); we cluster together two consecutive align-

ments=segments if the distance between the two segments is lower then a certain threshold (we chose

22Kbps because only 5% of known human introns are longer than that) along both directions. If at least

three of these segments are concatenated together, we consider the resulting group a location cluster.

As a result of this definition, each location cluster can be considered as the bidimensional bounding box

of a set of at least three nearby segments, and any two location clusters are separated both horizontally and

vertically by more than 22Kbps.

These location clusters are the starting point of our analysis. The remaining part of the computational

pipeline is devoted to refine them and to filter out those that do not conform to certain requirements. We

consider each location cluster surviving the entire filtering process as a candidate gene-pseudogene pair.

2.3. Corruption gaps

In some cases, processed pseudogenes may have accumulated so many mutations that only a small

portion of the original duplicated region can be retrieved using a standard alignment algorithm. Typically,

this lack of homology with the original sequence shows up as a series of gaps in the alignment cluster: we

call them ‘‘corruption gaps.’’ Our goal is to separate these gaps from those due to intron splicing.

To identify corruption gaps, we use the HSPs as anchors (each HSP can have itself small gaps, as a

consequence of standard alignment algorithms, but we ignore them during this filtering phase).

As mentioned above, each alignment can be represented as a segment on the cartesian plane having as x

and y axes the two genomic regions. Similarly to what happens in dot-plot graphs, these segments lie on

lines with angular coefficent exactly�1 if there are no gaps in the HSP (the sign of the angular coefficient

depends on the strand of the alignment). Given that we use a scoring system penalizing gaps, the angular

coefficient of segments representing an HSP is always near�1.

We join two HSPs, represented by segments a and b, with a new segment c (that we define a ‘‘corruption

gap’’) if the distance d(a, b) is smaller than 3000 bps and if the angular coefficent of c is 45� 5 degrees.

We chose the values of these parameters considering some exemplar cases; the final results are only

slightly influenced by such values.

We call a set of high scoring pairs joined by corruption gaps a ‘‘diagonal’’: its projections on the two

axes define two regions that are a candidate exon or pseudoexon (homologous of an exon in a pseudogene).

2.4. Splicing gaps

We expect to find another class of gaps in the alignment clusters: those deriving from the splicing of

introns in the processed pseudogenes. These are of great importance for our identification process since

they allow us to distinguish the original gene from its retrotransposed copy.

Introns in the mRNA of a gene are expected to be spliced before the retrotransposition event, so we

expect to see candidate pseudoexons that are close together while the corresponding candidate exons are

separated by gaps that we call ‘‘splicing gaps.’’

A splicing gap is found by looking at the geometrical distribution of diagonals: if the segment joining

two diagonals has a projection on one of the two axes that is less than s bps in length, while on the other

axis the projection is larger than b bps, then we add this segment to the location cluster as a splicing gap.
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We set the threshold b looking at the intron length distribution and choosing a value such that only

the 5% of all introns are smaller than b bps; i.e., we expect to lose only 5% of true introns because of

this cutoff. In the human case, the threshold turns out to be b¼ 74. The parameter s accounts for

the fuzziness of diagonals that may not be precise at the extremes; for this parameter, we use a value

of 15.

We can project a splicing gap on both axes of the cartesian plane: we consider the longest projection as a

candidate intron.

Another reason for which the identification of the splicing gaps is of crucial importance is that it allows

us to separate the ‘‘true’’ processed pseudogenes from alignments (and possibly unprocessed pseudogenes)

deriving from segmental duplications of the genome. To this end, we discard all location clusters without

splicing gaps; to further reduce the number of false positives, we actually require the presence of at least

three splicing gaps in each location cluster to continue its processing along the pipeline (in fact, only 4% of

the human genes contain only one intron).

In some cases, it may happen that splicing gaps are found on both sides of a location cluster, for instance

due to large repeat insertions on the pseudogene side. To avoid misclassification, we eliminate these

location clusters from our dataset (669 out of 22123 location clusters with splicing gaps).

For all the remaining location clusters, we can unambiguously recognize which of the two axes holds a

candidate exon (we call that side b) or a candidate pseudoexon (side s). The segments associated to the

splicing gaps (which have projections only on the b side) denote our putative introns.

2.5. Trimming

Once we have identified the two sides (gene and pseudogene) of the location cluster, we can perform a

further refinement of our candidate. Indeed, it often happens that the central alignment core, the signal of a

retrotransposition event, is flanked by spurious alignments having no relation with the gene-pseudogene

pair. We may eliminate them, imposing the constraint that the pseudoexons on the pseudogene side should

be ‘‘close enough’’ to each other.

To implement this constraint, we evaluate the median m of the gaps gi between consecutive pseudoexons

and the median s of their square variance defined as

s¼mediani (l� gi)
2

� �

We then recursively remove alignments at the extremes of location clusters if the gap they open on the

pseudogene side is larger than lþ 2
ffiffi
s
p

.

2.6. Analysis of the repeat content of candidate introns

A possible source of misclassification in our analysis is the presence in a duplicated genomic region of

one or more transposons inserted after the duplication. These inserted sequences could be erroneously

interpreted as spliced introns by the pipeline described above, thus leading to a wrong classification of the

location cluster.

To avoid this problem, we look at the transposon content of all the candidate introns and discard those

sequence composed for more than 90% by transposons. We then discard all the location clusters with less

than two surviving introns.

Out of the initial 1588810 location clusters, only 2288 survived all the steps of the above pipeline; they

represent our predictions.

2.7. Retrieval of external datasets

We obtained the lists of previously annotated genes from ENSEMBL (ENS, 2007) release 40 (August

2006), VEGA (Ashurst et al., 2005) release 40 (August 2006), and UCSC releases hg18 and mm8

(downloaded in September 2006). We obtained the lists of VEGA PPGs filtering the full VEGA gene

dataset for the biotype ‘‘processed pseudogene.’’ We also downloaded the full pseudogene set provided as

the pseudogene.org pipeline output (Karro et al., 2007) in October 2007, and we later extracted all the

processed pseudogenes linked to a valid ENSEMBL gene ID.
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2.8. Identification of pseudogene families

A relevant number of location clusters overlap with some other location clusters. This happens in two

cases: either when a single gene produced many pseudogenes, or when a single processed pseudogene shares

high sequence similarity with more than one gene belonging to the same family. In the first case, we can

define pseudogene families and associate them with a single original gene; in this way, we classify 2288 total

pseudogenes in 987 families (see Supplementary File 7 in online Supplementary Material at www.

liebertonline.com). In the second case, we report all the putative genes associated with the pseudogene and

do not perform any further analysis. One or more of the candidate genes associated with a single PPG could

be unprocessed pseudogenes; in principle, one could distinguish them from the gene which originated the

retrotransposition event looking in detail at the alignments. Suppose that a single gene gives rise to both a

processed and an unprocessed pseudogene: if the pseudogenes are free from selective pressure and therefore

mutate randomly, the mutation events are independent and one could expect to find a better sequence

homology between the PPG and the gene than between the PPG and the unprocessed pseudogene.

2.9. Experimental validation of the new candidate genes

The amplification primers were designed on two consecutive exons on the gene side of our predictions. To

ensure their specificity, all the sequences differed from the corresponding pseudogene sequences at least on

their 30 end nucleotide. The sequences of primers are reported in Supplementary File 1 (see online Supple-

mentary Material at www.liebertonline.com). Human testis cDNA was commercially obtained (Clontech).

The amplification was performed in 50ml of 1�Go Taq Flexi Buffer (Promega), containing 0.2mM of each

primer, 0.2mM of each dNTP, 1.5mM MgCl2, 1.25m GoTaq DNA Polymerase (Promega), 10% DMSO, and

5ng human testis cDNA (Clontech). Samples were amplified by 25 cycles of 958C 1 min, 508C 1 min, 728C
1 min, followed by a final extension step of 728C for 5 min. B-Actin primers were used as positive control.

3. RESULTS

3.1. Construction of the pseudogene database

We based our work on the idea that a gene-PPG pair can be recognized, in a set of pairwise paralogous

alignments, as a cluster of HSPs that are nearby on one side of the alignment (the exons of the retro-

transposed gene), but are separated by unaligned sequences on the other side (the introns of the retro-

transposed gene; Fig. 1).

As mentioned above, the major interest of this strategy with respect to the existing ones (Torrents et al.,

2003; Suyama et al., 2006; Pavlicek et al., 2006; Yao et al., 2006; Shemesh et al., 2006; Karro et al., 2007;

Ortutay and Vihinen, 2008; Khelifi et al., 2005; Ohshima et al., 2003) is that it does not rely on known

protein sequences, thus allowing us to identify previously unknown genes. The main problem of our

approach is to discriminate the events due to retrotransposition from those caused by other causes and

especially from sequence duplications followed by insertions. Therefore, we devised a pipeline capable of

identifying the gaps most likely due to splicing events and to predict the structure of the original gene on

the basis of this information. Moreover, since a single gene can give rise to many processed pseudogenes,

we included a step to recognize these cases and to associate them to the unique original gene. To reduce the

false positive rate and to increase the proportion of complete predictions, we require at least three splicing

gaps to accept a candidate. It is well known that PPGs are synthetized from the 30 end of the original mRNA

and that very often the resulting cDNA is truncated before it reaches the 50 end. However, it was recently

observed that the length distribution of retrotransposed LINEs has a bimodal behavior, with a portion of

complete LINEs 20 times larger than expected on the basis of a simple random truncation model (Pavlı́cek

et al., 2002). By requiring at least three introns, we expected to reduce the risk of an incomplete annotation

of the original gene. Using this parameter, we found 2288 gene-PPG pairs in the human genome, corre-

sponding to 987 parent genes. Out of these, 965 genes had at least one exon annotated in ENSEMBL (both

coding [948] and noncoding [17] genes are considered), and 943 had at least one overlapping UCSC known

gene or RefSeq; in seven cases, we found neither. Among the sequences overlapping with ENSEMBL

genes, there are only nine pairs (A, B) in which the predicted genes A and B are both associated to the same

ENSEMBL gene; we did not observe any triplets with this behavior.
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Interestingly, virtually all the PPGs originated from parent genes annotated in ENSEMBL as coding

genes retained a portion of their original coding sequence (Fig. 2). More precisely, nearly 30% have a

complete coding sequence, and about 7% retained also the 50 UTR end. To directly address the effect of the

three-introns threshold, we performed the same analysis on a less stringent version of our database, in

which we required only two splicing gaps to give a prediction. As expected, this database contains a

strongly increased number (1694) of parent genes, but a large fraction of the new predictions does not

overlap with known coding sequences (Fig. 2). Altogether, these observations confirm that, with the three-

introns threshold, we may obtain more reliable results.

3.2. Validation of the REGEXP pipeline

To obtain an independent validation of our approach, we compared our results with the pseudogene.org

dataset (Karro et al., 2007) and with processed pseudogenes reported in the human section of the Vertebrate

Genome Annotation (VEGA) database, a central repository of high-quality, manually curated annotations

(Ashurst et al., 2005). In both databases, the starting point of the annotation pipeline is the list of known

proteins, which allows them to keep the threshold on the alignment score lower than in our case.

Globally, more than 81% of our entries were confirmed by at least one of these two databases (Fig. 3A).

Comparison of our 2288 candidates with the 7816 processed pseudogenes reported in the pseudogene.org

dataset revealed an overlap of 1640 PPGs, which corresponds to around 72% of our database (Table 1).

In the case of VEGA, the global intersection is not very informative, because when we perfomed the

analysis the annotation of pseudogenes had been completed only for the chromosomes 1, 9, 10, 13, 20, 21,

and X (Havana-Helpdesk, 2007). However, when limiting the comparison only to those seven chromo-

somes, the number of predicted pseudogenes supported by VEGA is about 95%; we also observed that our

predictions overlap with VEGA remarkably better than with pseudogene.org (Fig. 3B).

FIG. 1. Graphical representation of one entry of our dataset, corresponding to a gene-PPG pair in the human genome.

The graph is similar to a dot-plot. On the horizontal axis, we put the region where we identified the gene and its

annotation from the UCSC genome browser; on the vertical axis, the region corresponding to the pseudogene. Each

alignment between the two regions is represented as a red segment in the central panel, while blue segments are the

splicing signatures recovered by our pipeline. Finally, the background is colored in vertical stripes mirroring the exons.
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To address whether relaxing the very stringent three-introns threshold could improve the sensitivity of

the method without compromising its specificity, we made the same comparison using the version of our

database requiring only two splicing gaps. Interestingly, we found 1288 candidates PPGs supported by

overlapping entries in the VEGA dataset, 2593 in pseudogene.org, and 916 in both (Table 1). However, at

the same time, the overall overlap with VEGA for the annotated chromosomes was much worse than with

the previous database (Fig. 3B,C). Due to this reduced specificity, we reported the list of these retro-

transposed genes in Supplementary File 2, (see online Supplementary Material at www.liebertonline.com)

but we did not use them in the following steps of our analysis.

Altogether, these results indicate that, although our method is not very sensitive, it is remarkably specific

and therefore could be used to reliably predict pseudogenes in non-annotated genomes.

3.3. Functional characterization of the parent genes

It is interesting to look at the functional characterization of the parent genes that originated the PPGs

contained in our database. To address this point, we studied the GO annotation of the genes in our database

and weighted them with the size of the corresponding pseudogene families. We found that most of the

entries in our database correspond to protein coding genes (Table 2). Moreover, we observed a clear

overrepresentation of sequences derived from ribosomal protein genes and, apparently, no other particular

bias in the GO annotations (see Supplementary File 4 in online Supplementary Material at www.

liebertonline.com) in good agreement with what already observed by Yao et al. (2006). As already noted in

Yao et al. (2006), this strong preference denotes a special affinity of the retrotransposition machinery for

genes involved in the ribosome complex.

FIG. 2. Estimate of the fraction of truncated predictions in our database. On the horizontal axis, we report the fraction

of gene coding regions (according to the ENSEMBL annotation) covered by our gene predictions; on the vertical axis,

the percentage of gene predictions. Green bars refer to predictions with at least two introns, red ones to predictions with

at least three introns.

Table 1. Comparison with VEGA and Pseudogene.org Datasets

3 introns 2 introns

all chrs vega chrs all chrs vega chrs

regexp 2288 686 4254 1329

vega 4012 3195 4012 3195

pseudogene.org 7816 2362 7816 2362

regexp and vega 850 653 1288 998

regexp and pseudogene.org 1640 484 2593 792

vega and pseudogene.org 2275 1749 2275 1749

regexp and vega and pseudogene.org 630 476 916 694
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3.4. Identification of new putative alternative splicing events

In several cases, we find instances of previously unknown, alternatively spliced transcripts. However,

due to the peculiar features of our pipeline, out of the splicing variants that we observe, we can only be

confident of those associated to additional exons. In particular, among the 965 transcripts that we could

associate to ENSEMBL entries, we find 57 instances of additional exons.

It is interesting to compare this result with the analogous one reported in Shemesh et al. (2006), in which

a similar analysis was perfomed starting from the entries of the pseudogene.org database. In Shemesh et al.

(2006), the authors found 30 cases of additional exons, out of which 22 can be associated to transcripts

contained in the ENSEMBL database. Interestingly, only three of these 22 alternative exons were in

common with our predictions. Among the 19 alternative transcripts found by Shemesh et al. (2006) but

missed by our algorithm, 13 were not present in our database from the very beginning, while the remaining

six were discarded in the pipeline due to our filters on the transposon content, and the minimum and

maximum length of the putative introns. This comparison may give an idea of the number of false negatives

that we have, due to the very stringent constraints that we imposed in our analysis. On the other hand, it is

FIG. 3. Venn diagrams showing the intersections among our dataset (red), ENSEMBL VEGA (green), and pseu-

dogene.org pipeline dataset (blue). Regexp predictions with at least three introns on all chromosomes (A) and only on

those chromosomes completely annotated by VEGA (B). Regexp predictions with at least two introns on all chro-

mosomes (C) and only on those chromosomes completely annotated by VEGA (D). For the associated numerical

values, see Table 1.

Table 2. Summary of Results of Our Analysis

Human Mouse

Total number of genes 987 709

Supported by UCSC known genes 928 649

Supported by RefSeq 922 655

Supported by ENSEMBL or VEGA genes 965 668

Supported by ENSEMBL or VEGA coding genes 948 661

New predictions 7 29
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interesting to note that 54 out of 57 instances of additional exons that we find were missed in Shemesh et al.

(2006). In 34 cases, this was due to the fact that the genes were absent in the pseudogene.org database from

the very beginning, while the remaining 20 cases were effectively missed by the pipeline of Shemesh et al.

(2006). Finally, out of the additional exons that we found, about 50% were supported by EST tracks, while

the others are completely new. These results further illustrate that our approach is able to efficiently

complement the existing genome annotation pipelines.

3.5. Identification and validation of putative new genes

One of the most interesting aspects of our method is that, in principle, it should be able to reveal the

existence of functional genes independently from homology with previously identified cDNAs, even when

they correspond to completely species-specific sequences. Among our predictions, 22 human sequences

(2%) did not correspond to known genes in the ENSEMBL database. Nevertheless, for most of them, we

could find EST tracks covering the majority of the predicted exons. However, seven putative genes identified

by our method did not correspond to available ESTs and were not predicted by other gene-finding programs.

In order to test these predictions, we performed a direct experimental validation. We reasoned that, if these

sequences were produced by functional genes that are still active in the modern genomes, the corresponding

mRNAs should be expressed at least in the germ line. To obtain direct support for this hypothesis, we

designed specific PCR primers matching the nucleotides of two different exons of the gene side sequence

and used them to perform reverse transcription–polymerase chain reaction (RT-PCR) on human testis

cDNA. Remarkably, in four cases, we recovered amplification products of the expected molecular weight

(Fig. 4), which were further confirmed by direct sequencing. Interestingly, all the predictions that were not

confirmed by RT-PCR corresponded to putative genes located within introns of annotated genes (Table 3).

Blastx analysis of the validated candidates revealed that most of them show significant homology with

other protein-coding genes. In particular, candidate 836759 may encode a protein very similar to a portion of

the membrane protein LRRC37B (ENSG00000185158), a member of the ‘‘SLIT-like’’ family of genes.

Moreover, candidates 1043493 and 338893 may encode for proteins similar to the putative proteins encoded

by LOC255649 (which display strong similarity to rodents’ Oocyte secreted protein 1) and LOC686205,

respectively. The only new validated candidate gene that did not show any significant homology was

931840. Interestingly, the mRNA sequence that we reconstructed for this gene does not contain a significant

open reading frame, thus suggesting that it may correspond to a new human-specific non-coding gene.

FIG. 4. Experimental validation of the predictions corresponding to novel genes. Reverse transcription–polymerase

chain reaction (RT-PCR) amplification of human testis cDNA, with primers specific for predictions 316640 (1), 338893

(2), 836759 (3), 931840 (4), 961127 (5), 1043493 (6), 128365 (7), and 268231 (8). The major band in lanes 2, 3, 4, 6,

and 7 shows an amplification product corresponding to the expected molecular weight. Candidate 338893, considered

as a new prediction in the first release of the program, has shown a positive matching with EST sequences in the present

version. We included it in the experiment as a further positive control. b-Actin, beta-actin positive control; Neg, no

cDNA negative control amplified with primers of candidate 338893; MW, molecular weight standard.
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4. CONCLUSION

The complete annotation of genomes requires not only the identification of genes, but also of pseudo-

genes. Although pseudogenes are commonly referred to as nonfunctional copies of working genes, it has

been recently recognized that they may play important functions in gene regulation and, in particular, in

fine-tuning the expression of the genes from which they are derived. A particularly interesting class of

pseudogenes is given by processed pseudogenes (PPGs), copies of cellular RNAs typically containing

poly(A) and lacking introns, which were reverse-transcribed and inserted into the genome. All the methods

so far developed to identify PPGs are based on the use of known mRNAs and protein sequences as input

data for suitable alignment programs. Therefore, they could be expected to have a lower sensitivity on

genomes lacking extensive transcriptome annotation or on PPGs derived from non-canonical genes. In this

article, we have proposed REGEXP, a new approach for the identification of gene-PPG pairs based only on

the analysis of the genomic sequence, which does not require a priori knowledge of the transcriptome. We

showed that specificity of REGEXP is comparable to that reached in the VEGA annotation database by

manual curation of PPGs. Finally, using REGEXP, we were able to identify and to experimentally validate

a few previously unknown genes, even in the highly annotated human genome. Therefore, we conclude that

REGEXP could represent a significant addition to the current genome annotation pipelines.
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