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ABSTRACT 

Given the important role of microRNAs (miRNAs) in genome-wide regulation of gene expression, 

increasing interest is devoted to mixed transcriptional and post-transcriptional regulatory 

networks analyzing the combinatorial effect of transcription factors (TFs) and miRNAs on target 

genes. In particular, miRNAs are known to be involved in feed-forward loops (FFLs) where a TF 

regulates a miRNA and they both regulate a target gene. Different algorithms have been proposed 

to identify miRNA targets, based on pairing between the 5’ region of the miRNA and the 3’UTR of 

the target gene and correlation between miRNA host genes and target mRNA expression data. 

Here we propose a quantitative approach integrating an existing method for mixed FFL 

identification based on sequence analysis with differential equation modeling approach that 

permits to select active FFLs based on their dynamics. Different models are assessed based on 

their ability to properly reproduce miRNA and mRNA expression data in terms of identification 

criteria, namely: goodness of fit, precision of the estimates and comparison with submodels. In 

comparison with standard approach based on correlation, our method improves in specificity. 

As a case study, we applied our method to adipogenic differentiation gene expression data 

providing potential novel players in this regulatory network.  
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INTRODUCTION 

MicroRNAs (miRNAs) are small (~ 22 nt) non-coding RNAs that post-transcriptionally regulate gene 

expression. They are transcribed as pri-miRNAs, then processed and exported from the nucleus to 

the cytoplasm in the form of pre-miRNA hairpins where they are cleaved by Dicer enzyme and 

incorporated in the RNA-induced silencing complex (RISC) to allow the interaction with target 

mRNAs via base pairing: binding to mRNA 3’ UTR causes the decrease of the frequency of 

translation and the increase of mRNA degradation rate (Du and Zamore, 2005; Bartel, 2004; Baek, 

et al., 2008; Selbach, et al., 2008). MiRNAs are known to be involved in different biological 

processes, e.g. cell cycle control, cellular growth, differentiation, apoptosis and embryogenesis, 

and to play critical roles in human diseases (Jiang, et al., 2009). Their important regulatory role has 

come into focus in the last few years and main attention has been paid to miRNAs and their target 

genes identification (Lagos-Quintana, et al., 2003; Bentwich, et al., 2005; Jung, et al., 2010; Lagos-

Quintana, et al., 2001). Different algorithms have been developed at this purpose, based on 

sequence data, looking for evolutionarily conserved Watson-Crick pairing between the 5’ region of 

the miRNA and the 3’UTR of the target gene (Griffiths-Jones, et al., 2006; Bartel, 2009; Friedman, 

et al., 2009; Lewis, et al., 2003; Lewis, et al., 2005). There is also increasing interest in the dynamic 

description and the quantification of the regulation of gene expression by miRNAs and several 

scientific studies have characterized miRNA mediated degradation rates using models based on 

ordinary differential equation (Khanin and Vinciotti, 2008; Shimoni, et al., 2007; Levine, et al., 

2007a; Levine, et al., 2007b; Vohradsky, et al., 2010). 

Given the important role of miRNAs in genome-wide regulation of gene expression, increasing 

interest is devoted to mixed transcriptional and post-transcriptional regulatory networks analyzing 

the combinatorial effect of transcription factors (TFs) and miRNAs on target genes. In particular, 

miRNAs are known to be involved in feed-forward loops (FFLs) where a TF regulates a miRNA and 
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they both regulate a target gene (Shimoni, et al., 2007; Shalgi, et al., 2007; Tsang, et al., 2007; Re, 

et al., 2009). The dynamic of FFL has been extensively studied in transcriptional networks (Mangan 

and Alon, 2003; Kalir, et al., 2005; Kaplan, et al., 2008; Macia, et al., 2009; Alon, 2007) since this 

regulatory pattern is overrepresented in biological networks with respect to random networks 

(Milo, et al., 2002; Shen-Orr, et al., 2002) and thus represents a basic building block, favored by 

evolution and playing important functional roles. For example, FFLs involving miRNAs permit to 

accomplish target gene fine tuning and noise buffering (Li, et al., 2009; Wu, et al., 2009). In Tsang, 

et al. (2007) Correlation between miRNA host genes and target mRNA has been assessed together 

with conserved 3’UTR motifs to define putative regulatory relationships between a miRNA and a 

set of target genes sharing the same TF. A quantitative description of the regulatory interactions, 

e.g. based on differential equation models, could be helpful to characterize putative miRNA 

mediated FFLs. A similar approach has been adopted in (Vu and Vohradsky, 2007; Chen, et al., 

2005; Chen, et al., 2004), where differential equations were fitted to expression data for 

transcriptional networks not involving miRNAs. As regards small RNA mediated FFL, a differential 

equation based model has been used in (Shimoni, et al., 2007) only to simulate the dynamic of a 

generic circuit using plausible parameter values derived from literature. 

In this work we propose a general analytical framework based on the use of differential equations 

to extensively characterize a list of putative miRNA mediated FFLs. Our approach, when applied to 

a list of putative FFLs, provides some criteria to select active FFLs based on their ability to 

reproduce dynamic expression data. In this context, we do not use the data to validate the 

models, but, on the opposite, three models are used to fit the data and select active FFLs based on 

the goodness of fit. The first model M1 is borrowed from previous literature (Khanin and Vinciotti, 

2008; Shimoni, et al., 2007; Levine, et al., 2007a; Levine, et al., 2007b). Models M2 and M3 are 
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linear simplifications of model M1 since, as shown in the following, the choice of the most 

appropriate model strictly depends on the available dataset.  

We estimate the significance of our method in comparison with random FFLs obtained by 

randomly selecting links between miRNAs, TFs and target mRNA and in comparison with a more 

standard approach, based on correlation between TF, miRNA and target mRNA. 
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MODELS 

In the miRNA mediated FFL circuit (Figure 1 A) a transcription factor TF (X1) regulates a miRNA (X2) 

and they both regulate a target mRNA (X3). Three models based on ordinary differential equations 

(ODEs) are examined to describe the miRNA and target mRNA expression kinetics. All models 

consider 1X  as forcing function and describe the rate of change of 2X  and 3X  as the balance 

between their synthesis/transcription ( iS ) and degradation ( iD ) with the basal expression level 

( ibX ) as initial condition, the correspondent compartmental model is shown in Figure 1 B. Thus, 

for i=2,3, the differential equation describing the variables is 

                             0i i i i ibX t S t D t X X    (1) 

The synthesis is expressed as the sum of a basal term ( ibS ) plus a positive (activation) or negative 

(repression) term ( iS ) encoding the effect of the specific TF on the transcription of miRNA and 

target mRNA. As regards degradation ( iD ), for miRNA it is assumed to be a function only of its 

expression while for the target mRNA the effect of the miRNA level is also modeled.  

      2 2 2 1 2 2  bX t S S X t D X t           

        3 3 3 1 3 2 3, bX t S S X t D X t X t           (2) 

The three models adopt the same description for miRNA degradation, i.e. a first order process 

with constant rate 2d , while they differ in the functional description assumed for 2S , 3S  and 

3D . 

Model M1 describes the TF regulation on the miRNA ( 2S ) and the target mRNA ( 3S ) by a 

saturative Michaelis-Menten function, and the miRNA mediated degradation of the target mRNA 

( 3D ) as the sum of a first order process, with constant rate, with respect to 3X  and a nonlinear 
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term that depends also on 2X  as in (Khanin and Vinciotti, 2008; Shimoni, et al., 2007; Levine, et 

al., 2007a; Levine, et al., 2007b). 

Model M2 assumes TF regulation ( 2S , 3S ) to be linearly dependent on its level, while the 

functional description of target mRNA degradation ( 3D ) has nonlinear dynamics as in M1. 

Model M3 is derived from M2 linearizing the miRNA mediated degradation model ( 3D ), thus the 

kinetics of the whole model is linear. 

Since in log scale spot array data are expressed as differences with respect to a basal pre-

differentiation state, it is convenient to consider as state variables i i ibx X X   for i=1,2,3 where 

ibX  is the reference, collected at day -3. Considering that at the basal state   0iX t   for i=2,3 it is 

possible to express the basal transcriptions iS  as function of the regulation parameters and the 

basal expression levels. After some passages, models M1, M2 and M3 turn out to be: 

Model M1 

      2 1
2 2 2 2

2 1

( )
                                             0 0

( )

x t
x t d x t x

x t




  


  

            3 1
3 3 2 2 3 3

3 1

( )
           0 0

( )

x t
x t px t qx t rx t x t x

x t




    


 (3) 

Model M2 

        2 2 1 2 2 2                                              0 0x t a x t d x t x     

              3 3 1 3 2 2 3 3            0 0x t a x t px t qx t rx t x t x      (4) 

Model M3 

        2 2 1 2 2 2                                                   0 0x t a x t d x t x     

          3 3 1 3 3 2 3                                       0 0x t a x t d x t sx t x     (5) 
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The mathematical derivation of Equations 3, 4 and 5 and the meaning of each parameter in terms 

of synthesis and degradation rate are detailed in the Supplementary Material. 

 

Model identification 

A priori identifiability analysis of M1, M2 and M3 (Equations 3, 4 and 5) tested using the software 

DAISY (Bellu, et al., 2007), indicates that all three models are a priori globally identifiable, i.e. it is 

theoretically possible to estimate the set of unknown parameters θ  from the data, at least under 

ideal conditions (noise-free data, continuous time observations and error-free model structure). 

θ̂  can be estimated by Weighted Least Square, i.e. minimizing the Weighted Residual Sum of 

Squares (WRSS)  

      
2

2,3 1

,
iN

i j i j i j

i j

WRSS t z t x t
 

  
  θ   (6) 

where  i jz t  is the observed datum at time j,  ,i jx t θ  is the predicted datum at time j computed 

using the model (Equations 3, 4 and 5),  i jt  is the weight assigned to datum j (inverse of the 

variance of the measurement error) and iN  is the number of time points. The external summation 

takes into account that residuals for both miRNA and target mRNA are simultaneously minimized, 

thus miRNA e mRNA time series collected under the same experimental conditions are required 

for model identification. 

The measurement error is assumed to be Gaussian with zero mean and a known variance. The 

variance can be experimentally determined by analyzing replicates of each measure. A general 

model for the error variance is 

    i j i jv t z t


    
 

 (7) 
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where  ,   and   are parameters to be estimated from replicates, e.g. by plotting the mean of 

each replicate against its variance and fitting on these data the unknown parameters of the error 

model  (Equation 7), as described in (Cobelli, et al., 2000). 

Since data are affected by a measurement error, also θ̂  is affected by an error and the a posteriori 

identifiability of the models assesses the precision with which the parameters are estimated in 

terms of percentage coefficient of variation (CV) 

  
 ˆ

ˆ 100
ˆ

SD
CV  

θ
θ

θ
 (8) 

where  ˆSD θ  is the standard deviation of the estimate.  

 

FFLs selection 

For each model, selection of active FFLs from a large set of putative ones exploits identification 

results in terms of consistency with the three following criteria:  

1. Goodness of fit. A valid model should provide an adequate fit to the data. The goodness of 

fit can be evaluated on residuals, based both on their whiteness, i.e. residuals should be 

uncorrelated, and on their amplitude, i.e. deviation between predicted and observed 

values should be comparable to the measurement error. To evaluate the whiteness of the 

residuals, the number of runs, i.e. subsequences of residuals having the same sign, are 

analyzed for both miRNA and mRNA residual patterns. For the amplitude property, a global 

measure is provided by WRSS divided by the degree of freedom, i.e. difference between 

the number of data and the number of parameters: since weighted residuals should be 

independent with unit variance, WRSS should be the outcome of a random variable with 

Chi-Square distribution. 
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2. Precision of the estimates. FFLs having all parameters estimates with CV<100 are 

considered reliable. 

3. Comparison with submodels. In order to verify that the FFL model (Figure 1 B) is the 

optimal description of the circuit, its performance is compared with that of two submodels 

(Figure 2) with missing regulatory links: in Submodel 1 the regulatory link between the TF 

and the target mRNA is missing, while in Submodel 2 the effect of miRNA on target mRNA 

degradation rate is not considered. Once the two submodels are identified, their 

performance is assessed versus the original one based on the Akaike Information Criterion 

(AIC) that implements the principle of parsimony, i.e. selects the model best able to fit the 

data with the minimum number of parameters: 

 2AIC WRSS L    (9) 

The FFL model is selected if its AIC is the lowest compared with submodels. 

Summing up, if criteria 1 and 2 are satisfied for a dataset of putative FFL data, i.e. the model 

satisfactorily reproduces the data with all parameters precisely estimated from them, criteria 3 is 

applied and the FFL topology is finally selected as active provided that the complete model results 

to be the optimal model according to the AIC. 
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A CASE STUDY ON ADIPOGENESIS 

To discuss a practical application of the proposed method, we applied it to miRNA and mRNA 

expression time series of human multipotent adipose-derived stem cells (hMADS) upon adipogenic 

differentiation. The initial panel of putative FFLs was selected based on sequence analysis; 

therefore it includes also false positive matches and/or FFLs non active during adipogenesis. 

 

Data 

Two independent cell culture experiments were performed as biological replicates during 

adipogenic differentiation of human mesenchymal stem cells as previously described in 

(Scheideler, et al., 2008; Karbiener, et al., 2009). Cells were harvested at the pre-confluent stage as 

reference (day -3) and at seven subsequent time points during human adipogenic differentiation: 

day -2 and 0 before, and 1, 2, 5, 10, 15 days after induction of differentiation. All hybridizations 

were repeated with reversed dye assignment (dye-swap). Background subtraction as well as global 

mean and dye swap normalization were applied. The resulting ratios were log2 transformed and 

the independent experiments were averaged. Complete miRNA and mRNA time-series expression 

data used for this study conform to the MIAME guidelines and are available in GEO database 

(GSE29186). 

A list of mixed TF / miRNA FFLs was generated by means of a bioinformatic pipeline mainly based 

on an ab-initio sequence analysis of human and mouse regulatory regions as described in (Re, et 

al., 2009) using CircuitsDB (Friard, et al., 2010). Briefly, in CircuitsDB a catalogue of non-redundant 

promoter regions for protein-coding and miRNA genes in the human and mouse genomes were 

first constructed (see Supplementary Material for additional details). In parallel to that, a 

catalogue of non-redundant human and mouse 3'-UTR regions for protein-coding genes was 

defined. A transcriptional regulatory network and, separately, a list of post-transcriptionally 
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regulated genes was then generated for human by looking for conserved overrepresented motifs 

in the human and mouse promoters and 3’-UTRs previously assembled. The two networks were 

subsequently combined looking for mixed feed-forward regulatory loops, i.e. all the possible 

instances in which a master transcription factor regulates a miRNA and together with it a set of 

joint target coding genes.  

Associating the list of 474 miRNA-mediated FFLs obtained using CircuitsDB with the available 

miRNA and mRNA time series data, the final dataset consisted of 329 putative FFLs 

(Supplementary Table S1) including 33 TFs, 35 miRNAs and 184 target mRNAs.  

 

Measurement error 

The measurement error models for miRNA and mRNA expression data were derived from the 

replicates, shown in Figure 3 A and B, respectively, as mean of the intensities versus their variance. 

To better define the dependence of the variance on the intensity, the positive x-axis was divided in 

intervals and, for each interval, the variance mean values were averaged as shown in Figure 3 C 

and D. By fitting Equation (7) on these data, the resulting models are 

   2 0.0484jv t    

    
2

0.033 0.031        1,3i j i jv t z t i      (10) 

where 2v  and iv  in Equation (10) are referred to the miRNA and to the mRNA (valid for both TFs, 

and target mRNAs) datasets, respectively.  

 

Implementation 

To assess criterion 1, i.e. whiteness and amplitude of the residuals, statistical tests could not be 

applied due to the low number (seven) of samples. Thus, conservative empirical thresholds were 
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set to satisfy criterion 1: both miRNA and target mRNA residuals time series must have at least 3 

runs and WRSS divided by the degree of freedom lower than 2. All computations were performed 

in the Matlab environment (Matlab R2010a), further details are supplied in the Supplementary 

Material. 

 

Results 

When the three criteria were applied to M1, no FFLs were selected as active, essentially because 

criterion 2 failed, indicating that the functional descriptions built in the model were too complex 

to be resolved from the available data. Conversely, 3 FFLs were selected with M2 and 23 with M3 

as summarized in Table 1 and Table 2 respectively, where estimated parameters and their 

precision are reported. Two out of the three FFLs selected using M2 were identified also with M3, 

thus the total number of active FFLs is 24. It is interesting to notice that most of selected FFLs (21 

out of 24) are incoherent. This type of FFL is known to play a significant role in biological 

regulation conferring precision and stability to gene expression regulation (Mangan and Alon, 

2003; Wu, et al., 2009; Hornstein and Shomron, 2006; Osella, et al., 2011). As discussed in (Macia, 

et al., 2009), the target gene of incoherent FFLs generally shows a pulser response characterized 

by a rapid increase/decrease of its concentration followed by the return to a new basal level, while 

the target gene of coherent FFLs tends to exhibit a grader response characterized by a transient 

increase/decrease from the initial to the final state. These behaviors were confirmed by our data, 

as evident from Figure 4, where expression profiles of two incoherent (A) and two coherent (B) 

FFLs are shown along with the mean target gene expression levels (considering absolute values) 

between selected incoherent (C) and coherent (D) FFLs. 

Analyzing the active FFLs from a biological point of view, it was found that out of the 24 selected 

FFLs, 9 FFLs involve TFs and 6 involve miRNAs (marked with an x in Table 1 and Table 2) that are 
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already known from the literature to be regulators of adipogenesis and adipocyte-related 

functions. A discussion of the results in comparison with the biological literature is available as 

Supplementary Material. 

To estimate the significance of the proposed method, ten sets of 329 random FFLs were generated 

choosing one random miRNA and 2 random mRNA to play the role of the TF and the target gene 

respectively. Applying the previously described selection procedure, 0 FFLs were selected using 

M2 and an average of 15.6 FFLs, with a standard deviation of 1.5, were selected using M3. Instead, 

using a simple correlation analysis to choose FFLs having a correlation coefficient above 0.75 in 

absolute values for all three links, 12 FFLs were selected on the list of putative FFLs, and 18.64.6 

were selected on the randomized datasets.  
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DISCUSSION 

FFL selection procedure 

In this work we propose a method to select active FFLs from a large set of putative ones based on 

miRNA and mRNA expression time series, using differential equation based models and 

identification criteria. A list of putative mixed transcriptional and post-trancriptional FFLs is 

generated on the basis of conserved overrepresented motifs in human and mouse promoters and 

3’ UTR. Identification of three alternative dynamic models, able to describe the miRNA and target 

mRNA dynamic data based on ordinary differential equations (ODEs) using the TF profile as forcing 

function, provides the basis for the selection of active FFLs. A putative FFL is selected as active if 

the feed-forward topology (Figure 1 A), associated with a plausible dynamic description, is 

necessary and sufficient to reproduce the available gene expression profiles, i.e. the model is able 

to reproduce data (criterion 1), outperforming with respect to submodels in terms of principle of 

parsimony (criterion 3) and its parameters can be estimated with acceptable precision from 

available data (criterion 2).   

 

Comparison of dynamic models 

Instead of postulating a univocal description for miRNA and mRNA expression kinetics, three 

models of increasing complexity are proposed. Model M1 assumes Michaelis-Menten kinetics for 

miRNA and target mRNA regulation accomplished by the TF and models miRNA mediated 

degradation of the target mRNA as a first order process with constant rate plus a nonlinear term 

dependent on miRNA and target mRNA expression. In model M2 linearity is assumed for TF 

regulation on miRNA and target mRNA, whereas nonlinearity is maintained for miRNA mediated 

degradation of the target mRNA. In M3 also the miRNA mediated degradation of the target mRNA 

is linearized, thus the whole model is described by a linear kinetics. The increasing complexity of 



17 
 

the models adapts to different type of gene expression data. The choice of the most appropriate 

model depends on the range and on the number of time points of the available time series and 

can be made using the same criteria described for the selection of active FFLs: goodness of fit, 

precision of the estimates and principle of parsimony. In particular, to estimate the Michaelis-

Menten parameters of model M1 the whole Michaelis-Menten curve should be observable 

requiring expression data in an adequate range and sufficiently detailed. If these criteria are not 

satisfied by the available data, the linearization of the model still provide an adequate fit, allowing 

also a more precise estimation of the parameters. That does not mean that the more complex 

model is invalid, but only that the linearized one is more suitable for the available dataset.   

 

Case study 

In our case study, we used the three models on gene expression time series to select active FFLs 

during human adipogenesis. Since they showed a comparable ability to reproduce the data, the 

simplest model M3 was selected based on the principle of parsimony in 251 out of the 329 

analyzed FFLs. Moreover, parameter estimates of model M1 were affected by very high CVs in all 

FFLs  and those of M2 in all FFLs but 3, indicating that nonlinear models M1 and M2 were not a 

posteriori identifiable. Figure 5 shows the effect of the linearization of the synthesis mediated by 

the TF ( 2S ), i.e. of using model M2 instead of M1 (panel A), and of the subsequent linearization 

of the degradation of the target mRNA ( 3D ), i.e. of using model M3 instead of M2 (panel B). In 

particular, using the analyzed dataset, the Michaelis-Menten curve is in the linear range (Figure 5 

A left panel) and model M1 is not a posteriori identifiable ( 2  and 2  show high CVs). In this case, 

1X  is much lower than the half saturation constant 2 , then parameters 2  and 2  cannot be 

separately resolved but only the ratio between the two can be essentially estimated. Conversely, 

using M2 the parameter related to the synthesis mediated by the TF ( 2S ) is a posteriori 
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identifiable (Figure 5 A right panel). Similarly, for the nonlinear description of the miRNA mediated 

degradation rate (Figure 5 B left panel) parameter r  shows high CV and thus model M2 is not a 

posteriori identifiable. However, since 3rx  is much lower than q , the miRNA mediated degradation 

rate can be reasonably linearized as in M3 (Figure 5 B right panel) providing a simplification of the 

model with a reduced number of parameters and fit comparable to M2. 

Analyzing the active FFLs from a biological point of view, it was found that out of the 24 selected 

FFLs, 9 FFLs involve TFs and 6 involve miRNAs (marked with an x in Table 1 and Table 2) that are 

already known from the literature to be regulators of adipogenesis and adipocyte-related 

functions. A discussion of the results in comparison with the biological literature is available as 

Supplementary Material; however, few information is available in the literature regarding miRNA 

mediated FFLs involved in adipogenesis and most datasets such the ones presented in (El Baroudi, 

et al., 2011) contain mainly information related to cancer. The limited available knowledge about 

human transcription networks and miRNA-mediated regulations in adipogenesis makes biological 

validation of regulatory links difficult and, at the same time, highlights the importance of the 

development of algorithms, like the one presented in this work, to predict testable regulation 

processes.  

The significance of our method was estimated in comparison with random FFLs obtained by 

randomly selecting links between miRNAs, TFs and target mRNA. 329 random FFLs (equal to the 

number of putative FFLs estimated by pairing between the 5’ region of the miRNA and the 3’UTR 

of the target gene) were generated ten times choosing one random miRNA and two random 

mRNAs to play the role of the TF and the target gene respectively. The previously described 

selection procedure was then applied to the randomized set of FFLs obtaining an average of 15.6 

selected FFLs, with a standard deviation of 1.5. This can represent a rough estimation of the 

number of False Positive FFLs among the 24 selected by our method. Let’s note that, if instead of 
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using differential equation based modeling, we select FFLs based on correlation between TF, 

miRNA and target mRNA, we select 12 FFLs on the original dataset and 18.64.6 on the 

randomized datasets, thus showing the increased specificity achieved by our approach.  

The presented method selects triplets that can be explained by a simple FFL, whose effect can be 

isolated from the rest of the network, and described by one of the three proposed models. Thus, 

the presence of possible additional regulatory links is not excluded by our analysis, but we can say 

that, for the selected FFLs, this scheme provides a minimal plausible description of the regulatory 

interactions. The approach presented here does not allow identifying topologies incorporating 

more than one TF and/or miRNA. More complex topologies will be studied in future work by 

extending the approach here developed; moreover, we plan to analyze dynamic descriptions that 

will require a tighter sampling schedule. 
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Table 1. Summary of selected FFLs and their estimated parameters using Model M2. 

Model M2 

 
TF miRNA 

target 
mRNA 2a  (CV) 3a  (CV) 2d  (CV) p  (CV) q  (CV) r  (CV) C/I 

1 hif1a x hsa-miR-24  h41 1.22 (74) 2.83 (44) 0.96 (79) 1.10 (67) 2.17 (52) 0.87 (78) I 

2 srf  hsa-miR-100  impdh1 1.40 (41) 0.68 (59) 0.57 (54) 0.91 (27) 0.34 (63) 0.84 (30) I 

3 tcf4  hsa-miR-23a  ndufa7 0.47 (62) 0.77 (44) 0.30 (83) 1.04 (21) 0.66 (42) 1.29 (69) I 

mean (absolute values) 1.03 (59) 1.43 (49) 0.61 (72) 1.02 (38) 1.06 (52) 0.85 (54)  

SE (absolute values) 0.49 (17) 1.22 (9) 0.33 (16) 0.10 (25) 0.98 (11) 0.25 (26)  

TF, miRNA and target mRNA names of selected FFLs using model M2 are reported along with the estimated 
parameters, their precision in terms of CV and a flag to distinguish between coherent (C) and incoherent (I) 
FFLs. TF and miRNA already known to be key regulators of adipogenesis and adipocyte-related functions 
are marked with an x.  



 

 

Table 2. Summary of selected FFLs and their estimated parameters using Model M3. 

Model M3 

 
TF miRNA 

target 
mRNA 2a  (CV) 3a  (CV) 2d  (CV) 3d  (CV) s  (CV) C/I 

1 runx1  hsa-miR-148b  tnfrsf6b -0.07 (17) -1.73 (50)  - 8.28 (25) 4.49 (43) I 

2 runx1  hsa-miR-148b  loc51026 -0.07 (17) 2.70 (9)  - 2.85 (1) 2.70 (76) C 

3 runx1  hsa-miR-148b  tmod -0.07 (17) -1.79 (37)  - 3.70 (13) 1.44 (76) I 

4 esr1  x hsa-miR-148b  map1b 0.14 (18) 1.69 (60)  - 2.49 (6) 4.49 (29) I 

5 esr1  x hsa-miR-148b  tparl 0.15 (18) -2.00 (48)  - 2.89 (2) 2.78 (42) C 

6 esr1  x hsa-miR-148b  apt6m8-9 0.15 (18) 5.37 (33)  - 2.04 (19) 2.41 (41) I 

7 esr1 x hsa-miR-152  apt6m8-9 0.42 (39) 3.94 (19) 0.16 (67) 1.12 (7) 1.55 (35) I 

8 esr1  x hsa-miR-30c x emp1 0.65 (21) -4.58 (28) 0.09 (46) 2.16 (5) 1.76 (40) C 

9 ets1  hsa-miR-199a*  hke2 -0.22 (17) -1.60 (80) 0.90 (17) 0.35 (99) 7.52 (73) I 

10 hif1a x hsa-miR-199b  crtl1 -2.32 (59) -4.99 (24) 1.26 (63) 0.97 (96) 2.47 (27) I 

11 hif1a x hsa-miR-24  h41 1.21 (34) 6.02 (35) 0.93 (35) 1.87 (16) 4.21 (46) I 

12 hif1a x hsa-miR-199a x crtl1 -2.17 (30) -3.05 (45) 1.19 (25) 1.27 (19) 1.25 (63) I 

13 foxm1  hsa-let-7a  nap1l1 -0.02 (3) -0.89 (29) 0.14 (58) 1.70 (3) 14.10 (52) I 

14 irf1  hsa-miR-29a x timm8b -0.40 (7) -5.00 (34) - 2.23 (34) 0.60 (37) I 

15 irf7  hsa-miR-129  hs6st -0.04 (82) 2.53 (37) - 2.38 (6) 13.93 (89) C 

16 irf2  hsa-miR-125b  bcl2 -0.33 (16) 6.07 (23) - 3.27 (3) 1.55 (45) C 

17 myc x hsa-miR-202  tnfrsf4 0.08 (42) 0.34 (92) - 1.20 (95) 4.44 (87) I 

18 myod1  hsa-miR-34a x kcnq1 -0.30 (22) -2.03 (27) 0.14 (35) 1.49 (24) 2.04 (29) I 

19 myod1  hsa-miR-34a x scn2b -0.28 (21) -2.00 (27) 0.12 (37) 4.61 (5) 0.58 (88) I 

20 ncx  hsa-let-7e x nap1l1 0.13 (67) 8.38 (14) 0.08 (87) 3.17 (3) 10.61 (76) I 

21 nfya  hsa-miR-148b  p3 -0.17 (18) -1.66 (88)  - 4.05 (6) 4.73 (29) I 

22 tcf4  hsa-miR-23a  ndufa7  0.50 (66) 0.84 (54) 0.33 (89) 1.05 (28) 0.60 (75) I 

23 tel2  hsa-miR-199a*  hke2 0.65 (37) 6.91 (22) 0.34 (41) 1.34 (5) 4.41 (30) I 

mean (absolute values) 0.46 (30) 3.31 (40) 0.47 (50) 2.46 (23) 4.12 (53)  

SE (absolute values) 0.63 (21) 2.19 (22) 0.46 (23) 1.66 (31) 3.91 (22)  

TF, miRNA and target mRNA names of selected FFLs using model M3 are reported along with the estimated 
parameters, their precision in terms of CV and a flag to distinguish between coherent (C) and incoherent (I) 
FFLs. TF and miRNA already known to be key regulators of adipogenesis and adipocyte-related functions 
are marked with an x. When the estimated degradation parameter (d2) was small and with low precision, 
i.e. the process was too slow to be determined in the time horizon of the experiment, it was set to 0 and 
model identification was repeated. 

 



 

 

 

FIG. 1 MiRNA mediated FFL. (A) Topologial model of the FFL where a TF regulates a miRNA and 

they both regulate the target mRNA: TF regulations can be positive or negative while miRNA 

regulation of the target gene is negative; (B) compartmental model of the FFL where S and D 

represents synthesis and degradation, respectively and dotted arrows are the regulation processes 

affecting S and D. 

  



 

 

 

FIG. 2 Submodels with missing regulatory links with respect to the FFL. (A) No effect of TF 

regulation on target gene; (B) no effect of miRNA on mRNA degradation rate. 

  



 

 

 

FIG. 3 Measurement error variance against expression estimated from the replicates for (A) miRNA 

and (B) mRNA datasets. In (C) and (D) these data are binned and, for each interval, the mean ± 

standard deviation is represented; the red line shows the fitted measurement error models, 

Equations 10. 

  



 

 

 

FIG. 4 Expression profiles of selected FFLs. TF (green), miRNA (blue) and target mRNA (red) for (A) 

2 incoherent and (B) 2 coherent FFLs: spots represent experimental data while lines represent the 

predicted/reconstructed profiles. In (C) and (D) the average absolute value of predicted target 

mRNA expression for incoherent and coherent FFLs. 

  



 

 

 

FIG. 5. Comparison between the candidate models. (A) upper panels: similarity between models 

M1 and M2 predictions for miRNA (blue) profile indicates that the Michaelis-Menten function is 

not necessary; lower panels: confirmation that the model prediction of the link between TF and 

miRNA, postulated as linear for M2, is operating in the linear range for M1; (B) upper panels: 

similarity between M2 and M3 predictions for target mRNA (red) profile suggests that a linear 

description of target mRNA degradation is sufficient; lower panel: confirmation that the miRNA 

mediated degradation rate, postulated as linear for M3, is operating in the linear range for M2. 

 



 

S1 
 

Supplementary Material 

 

 

Differential equations 

Passages for the derivation of differential equations of Models M1, M2 and M3 (Equations (3), (4) 

and (5)) from the general functional description of Equation (2) are described in the follow. The 

three models adopt the same description for                   while they adopt different 

functional descriptions for     i=2,3 and   . 

Model M1 

           
        

         
             

                                 

Thus, the system of differential equations is 

  
         

        

         
                                                                  

  
         

        

         
                                                     

Considering that at the basal state   
       for i=2,3 it is possible to express the basal 

transcriptions    as: 

     
      

       
        

     
      

       
              

and substituting    in the differential equations we obtain: 
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Considering as state variables           for i=1,2,3 differential equations turn out to be 

       
       

        
                                                                     

       
       

        
                                            

where for i=2,3    
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Model M2 

                               

                                 

Thus, the system of differential equations is 

  
                                                                                  

  
                                                                     

Considering that at the basal state   
       for i=2,3 it is possible to express the basal 

transcriptions    as: 
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Substituting    and considering as state variables           for i=1,2,3 differential equations 

turn out to be: 

                                                                                     

                                                           

where          ,        are the same reparametrizations used in Model M1. 

Model M3 

                               

                               

Thus, the system of differential equations is 

  
                                                                                  

  
                                                                       

Considering that at the basal state   
       for i=2,3 it is possible to express the basal 

transcriptions    as: 

                  

                      

Substituting    and considering as state variables           for i=1,2,3 differential equations 

turn out to be: 
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Implementation details 

Parameters of both FFLs and measurement error models, as well as their precision, are estimated 

using the standard trust-region-reflective algorithm implemented by the lsqnonlin function of 

Matlab to solve the least square problem, while differential equations are solved numerically using 

Runge-Kutta (4,5) procedure implemented by the ode45 function of Matlab. The TF expression 

profile is used as forcing function and a smoothing approach, taking into account the 

measurement error, is applied to numerically approximate its time continuous dynamic. The 

Weighted Least Square optimization procedure is repeated for different initial conditions and the 

set of parameters which gave the best prediction of miRNA and target mRNA expression time 

series is selected to minimize the possibility of incurring in a local minimum. All computations are 

performed in the Matlab environment (Matlab R2010a). 

 

Selected FFLs 

None of the identified feed forward loop is known in the literature and further biological 

validation, beyond the scope of this work, should be done to confirm these hypothesis. However, 

our FFLs selection contains a considerable number of genes with known adipogenesis- or 

adipocyte-related function, which supports the validity of the proposed method.  

The transcription factor estrogen receptor 1, ESR1, (FFLs 4-9, Table 2) is a critical regulator in white 

adipose tissue (WAT), as its absence results in marked increases in WAT as well as in insulin 

resistance and impaired glucose tolerance (Heine, et al., 2000). Interestingly, we found miR-30c 

and ESR1 involved in the same FFL. In the context of estrogen receptor positive breast cancer, 

these two genes have been identified to be positively correlated (Rodriguez-Gonzalez, et al., 

2010). Moreover, miR-30c has recently been shown to directly bind and repress plasminogen 

activator inhibitor 1 (PAI-1) (Patel, et al., 2010), an adipose derived cytokine (Morange, et al., 

1999) and predictor for the risk of developing type 2 diabetes (Festa, et al., 2002) elevated in 
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serum of obese humans (Estelles, et al., 2001). The transcription factor hypoxia-inducible factor 1 

alpha, HIF1A, (FFLs 10-12, Table 2), inhibits the adipogenic key regulator peroxisome proliferator-

activated receptor gamma 2 (PPARG2) (Yun, et al., 2002). Moreover, hypoxia-induced insulin 

resistance in adipocytes is dependent upon HIF1A expression (Regazzetti, et al., 2009). miR-29a 

(FFL 14, Table 2) has been found to be highly up-regulated in adipose tissue of diabetic rats, and 

positively correlated to insulin resistance and impaired insulin-stimulated glucose uptake in 3T3 L1 

adipocytes (He, et al., 2007). The transcription factor and oncogene MYC (FFL 17, Table 2) has 

been previously found to inhibit the expression of genes that promote adipogenesis, in particular 

of CCAAT/enhancer-binding protein alpha (CEBPA), a transcription factor that promotes 

adipogenesis (Freytag and Geddes, 1992). miR-34a (FFLs 18-19, Table 2) is associated with obesity 

as it has been shown to target hepatic SIRT1 and to suppress insulin secretion in pancreatic -cells 

(Lee, et al., 2010; Lovis, et al., 2008). let-7a (FFL 20, Table 2) regulates the transition from clonal 

expansion to terminal differentiation (Sun, et al., 2009).  

Finally, miR-24 (FFL 1, Table 1), although not yet associated to adipogenesis, is known to be 

induced by hypoxia and HIF1A (Kulshreshtha, et al., 2007) and is located in a cluster together with 

miR-27b which we already have identified as repressor of the adipogenic key regulator PPAR in 

human (Karbiener, et al., 2009). 

 

Putative FFLs 

Table 1. Putative FFLs 

 
TF miRNA target gene 

1 AML1 hsa-miR-202 ENSG00000056345 ITGB3 

2 AML1 hsa-miR-202 ENSG00000164654 NP_061878.3 

3 AML1 hsa-miR-202 ENSG00000186827 TNFRSF4 

4 AML1 hsa-miR-148b ENSG00000026036 TNFRSF6B 

5 AML1 hsa-miR-148b ENSG00000111711 GOLT1B 

6 AML1 hsa-miR-148b ENSG00000130052 STARD8 
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7 AML1 hsa-miR-148b ENSG00000135374 ELF5 

8 AML1 hsa-miR-148b ENSG00000136842 TMOD1 

9 AML1 hsa-miR-148b ENSG00000137073 UBAP2 

10 AML1 hsa-miR-31 ENSG00000013588 GPRC5A 

11 AML1 hsa-miR-31 ENSG00000073969 NSF 

12 AML1 hsa-miR-31 ENSG00000100612 DHRS7 

13 AML1 hsa-miR-10a ENSG00000147082 CCNB3 

14 AP-1 hsa-miR-199a ENSG00000170430 MGMT 

15 ATF-1 hsa-miR-199b ENSG00000108515 ENO3 

16 ATF-1 hsa-miR-199a* ENSG00000100109 TFIP11 

17 ATF-1 hsa-miR-199a ENSG00000108515 ENO3 

18 ATF6 hsa-miR-214 ENSG00000167468 GPX4 

19 DBP hsa-miR-29a ENSG00000185650 ZFP36L1 

20 EGR hsa-miR-193a ENSG00000012779 ALOX5 

21 EGR hsa-miR-193a ENSG00000084090 STARD7 

22 EGR hsa-miR-193a ENSG00000137478 FCHSD2 

23 ER hsa-miR-148b ENSG00000034063 UHRF1 

24 ER hsa-miR-148b ENSG00000070985 TRPM5 

25 ER hsa-miR-148b ENSG00000105366 SIGLEC8 

26 ER hsa-miR-148b ENSG00000113048 MRPS27 

27 ER hsa-miR-148b ENSG00000131711 MAP1B 

28 ER hsa-miR-148b ENSG00000134851 TMEM165 

29 ER hsa-miR-148b ENSG00000137073 UBAP2 

30 ER hsa-miR-148b ENSG00000156642 NPTN 

31 ER hsa-miR-148b ENSG00000156642 NPTN 

32 ER hsa-miR-148b ENSG00000182220 ATP6AP2 

33 ER hsa-miR-129 ENSG00000105058 FAM32A 

34 ER hsa-miR-129 ENSG00000119772 DNMT3A 

35 ER hsa-miR-129 ENSG00000136720 HS6ST1 

36 ER hsa-miR-129 ENSG00000145416 MARCH1 

37 ER hsa-miR-152 ENSG00000034063 UHRF1 

38 ER hsa-miR-152 ENSG00000070985 TRPM5 

39 ER hsa-miR-152 ENSG00000105366 SIGLEC8 

40 ER hsa-miR-152 ENSG00000113048 MRPS27 

41 ER hsa-miR-152 ENSG00000131711 MAP1B 

42 ER hsa-miR-152 ENSG00000134851 TMEM165 

43 ER hsa-miR-152 ENSG00000137073 UBAP2 

44 ER hsa-miR-152 ENSG00000156642 NPTN 

45 ER hsa-miR-152 ENSG00000156642 NPTN 

46 ER hsa-miR-152 ENSG00000182220 ATP6AP2 

47 ER hsa-miR-30c ENSG00000033867 SLC4A7 

48 ER hsa-miR-30c ENSG00000079739 PGM1 
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49 ER hsa-miR-30c ENSG00000134531 EMP1 

50 ER hsa-miR-30c ENSG00000138069 RAB1A 

51 ER hsa-miR-130a ENSG00000070985 TRPM5 

52 ER hsa-miR-130a ENSG00000077312 SNRPA 

53 ER hsa-miR-130a ENSG00000086015 MAST2 

54 ER hsa-miR-130a ENSG00000103723 AP3B2 

55 ER hsa-miR-130a ENSG00000113048 MRPS27 

56 ER hsa-miR-130a ENSG00000120509 PDZD11 

57 ER hsa-miR-130a ENSG00000123395 C12orf44 

58 ER hsa-miR-130a ENSG00000137073 UBAP2 

59 ER hsa-miR-130a ENSG00000138641 HERC3 

60 ER hsa-miR-130a ENSG00000147642 SYBU_HUMAN 

61 ER hsa-miR-130a ENSG00000156642 NPTN 

62 ER hsa-miR-130a ENSG00000156642 NPTN 

63 ER hsa-miR-130a ENSG00000157077 ZFYVE9 

64 ER hsa-miR-130a ENSG00000182220 ATP6AP2 

65 ETS hsa-miR-199a* ENSG00000116141 MARK1 

66 ETS hsa-miR-199a* ENSG00000204220 PFDN6 

67 ETS hsa-miR-24 ENSG00000114019 AMOTL2 

68 GABP hsa-miR-148b ENSG00000111711 GOLT1B 

69 GABP hsa-miR-148b ENSG00000115310 RTN4 

70 GABP hsa-miR-148b ENSG00000131711 MAP1B 

71 GABP hsa-miR-148b ENSG00000136842 TMOD1 

72 GABP hsa-miR-148b ENSG00000151694 ADAM17 

73 GABP hsa-miR-130a ENSG00000111711 GOLT1B 

74 GABP hsa-miR-130a ENSG00000115310 RTN4 

75 GABP hsa-miR-130a ENSG00000152291 TGOLN2 

76 GABP hsa-miR-130a ENSG00000164896 FASTK 

77 HIF-1 hsa-miR-199b ENSG00000108515 ENO3 

78 HIF-1 hsa-miR-199b ENSG00000145681 HAPLN1 

79 HIF-1 hsa-miR-199b ENSG00000176986 SEC24C 

80 HIF-1 hsa-miR-24 ENSG00000091527 CDV3 

81 HIF-1 hsa-miR-24 ENSG00000124702 KLHDC3 

82 HIF-1 hsa-miR-24 ENSG00000135924 DNAJB2 

83 HIF-1 hsa-miR-24 ENSG00000142188 TMEM50B 

84 HIF-1 hsa-miR-214 ENSG00000116649 SRM 

85 HIF-1 hsa-miR-214 ENSG00000167468 GPX4 

86 HIF-1 hsa-miR-214 ENSG00000171551 ECEL1 

87 HIF-1 hsa-miR-199a ENSG00000108515 ENO3 

88 HIF-1 hsa-miR-199a* ENSG00000136928 GABBR2 

89 HIF-1 hsa-miR-199a ENSG00000145681 HAPLN1 

90 HIF-1 hsa-miR-199a ENSG00000176986 SEC24C 



 

S8 
 

91 HNF-1 hsa-miR-494 ENSG00000149575 SCN2B 

92 HNF-1 hsa-miR-494 ENSG00000149575 SCN2B 

93 HNF-1 hsa-miR-381 ENSG00000102158 IAG2_HUMAN 

94 HNF-1 hsa-miR-381 ENSG00000116833 NR5A2 

95 HNF-1 hsa-miR-381 ENSG00000141720 PIP5K2B 

96 HNF-1 hsa-miR-381 ENSG00000145495 MARCH6 

97 HNF-1 hsa-miR-381 ENSG00000204304 PBX2 

98 HNF-1 hsa-miR-299-5p ENSG00000049130 KITLG 

99 HNF-1 hsa-miR-299-5p ENSG00000049130 KITLG 

100 HNF-1 hsa-miR-299-5p ENSG00000067798 NAV3 

101 HNF-1 hsa-miR-299-5p ENSG00000140263 SORD 

102 HNF-1 hsa-miR-487b ENSG00000104341 LAPTM4B 

103 HNF-1 hsa-miR-487b ENSG00000104341 LAPTM4B 

104 HNF-3 hsa-let-7f ENSG00000118971 CCND2 

105 HNF-3 hsa-let-7f ENSG00000164654 NP_061878.3 

106 HNF-3 hsa-let-7f ENSG00000172053 QARS 

107 HNF-3 hsa-let-7f ENSG00000187109 NAP1L1 

108 HNF-3 hsa-miR-129 ENSG00000120533 ENY2 

109 HNF-3 hsa-miR-129 ENSG00000145416 MARCH1 

110 HNF-3 hsa-let-7d ENSG00000149313 AASDHPPT 

111 HNF-3 hsa-let-7d ENSG00000172053 QARS 

112 HNF-3 hsa-let-7a ENSG00000118971 CCND2 

113 HNF-3 hsa-let-7a ENSG00000164654 NP_061878.3 

114 HNF-3 hsa-let-7a ENSG00000172053 QARS 

115 HNF-3 hsa-let-7a ENSG00000187109 NAP1L1 

116 HNF-3 hsa-miR-31 ENSG00000156711 MAPK13 

117 HOXA4 hsa-miR-129 ENSG00000105058 FAM32A 

118 HOXA4 hsa-miR-148b ENSG00000182220 ATP6AP2 

119 HOXA4 hsa-miR-125b ENSG00000065361 ERBB3 

120 HOXA4 hsa-miR-125b ENSG00000106993 CDC37L1 

121 HOXA4 hsa-miR-125b ENSG00000110274 CEP164 

122 HOXA4 hsa-miR-125b ENSG00000172531 PPP1CA 

123 HOXA4 hsa-miR-296 ENSG00000138823 MTTP 

124 IRF1 hsa-miR-29a ENSG00000147065 MSN 

125 IRF1 hsa-miR-29a ENSG00000150779 TIMM8B 

126 IRF-7 hsa-miR-129 ENSG00000136720 HS6ST1 

127 IRF-7 hsa-miR-129 ENSG00000158435 C2orf29 

128 IRF-7 hsa-miR-129 ENSG00000170310 STX8 

129 IRF hsa-let-7d ENSG00000110583 NAT11 

130 IRF hsa-let-7d ENSG00000110583 NAT11 

131 IRF hsa-let-7d ENSG00000110583 NAT11 

132 IRF hsa-let-7d ENSG00000110583 NAT11 
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133 IRF hsa-miR-125b ENSG00000171791 BCL2 

134 IRF hsa-miR-125b ENSG00000171791 BCL2 

135 IRF hsa-miR-125b ENSG00000171791 BCL2 

136 IRF hsa-miR-125b ENSG00000171791 BCL2 

137 IRF hsa-miR-100 ENSG00000118689 FOXO3A 

138 IRF hsa-miR-100 ENSG00000118689 FOXO3A 

139 IRF hsa-miR-100 ENSG00000118689 FOXO3A 

140 IRF hsa-miR-100 ENSG00000118689 FOXO3A 

141 IRF hsa-miR-100 ENSG00000162437 RAVER2 

142 IRF hsa-miR-100 ENSG00000162437 RAVER2 

143 IRF hsa-miR-100 ENSG00000162437 RAVER2 

144 IRF hsa-miR-100 ENSG00000162437 RAVER2 

145 MAZ hsa-let-7a ENSG00000023902 PLEKHO1 

146 MAZ hsa-let-7a ENSG00000106367 AP1S1 

147 MAZ hsa-miR-34a ENSG00000142319 SLC6A3 

148 MAZ hsa-let-7b ENSG00000023902 PLEKHO1 

149 MAZ hsa-let-7b ENSG00000106367 AP1S1 

150 MEIS1 hsa-let-7e ENSG00000023902 PLEKHO1 

151 MEIS1 hsa-let-7e ENSG00000085491 SLC25A24 

152 MEIS1 hsa-let-7e ENSG00000105697 HAMP 

153 MEIS1 hsa-let-7e ENSG00000118503 TNFAIP3 

154 MEIS1 hsa-let-7e ENSG00000119906 C10orf6 

155 MEIS1 hsa-let-7e ENSG00000143851 PTPN7 

156 MEIS1 hsa-let-7e ENSG00000187109 NAP1L1 

157 MEIS1 hsa-let-7a ENSG00000023902 PLEKHO1 

158 MEIS1 hsa-let-7a ENSG00000119906 C10orf6 

159 MEIS1 hsa-let-7a ENSG00000143851 PTPN7 

160 MEIS1 hsa-let-7a ENSG00000187109 NAP1L1 

161 MEIS1 hsa-let-7a ENSG00000023902 PLEKHO1 

162 MEIS1 hsa-let-7a ENSG00000119906 C10orf6 

163 MEIS1 hsa-let-7a ENSG00000143851 PTPN7 

164 MEIS1 hsa-let-7a ENSG00000187109 NAP1L1 

165 MEIS1 hsa-miR-30c ENSG00000079739 PGM1 

166 MEIS1 hsa-miR-30c ENSG00000145725 HISPPD1 

167 MEIS1 hsa-miR-30c ENSG00000154274 C4orf19 

168 MEIS1 hsa-miR-30c ENSG00000170365 SMAD1 

169 MEIS1 hsa-miR-99b ENSG00000116017 ARID3A 

170 MEIS1 hsa-miR-99b ENSG00000162437 RAVER2 

171 MEIS1 hsa-miR-30a-5p ENSG00000079739 PGM1 

172 MEIS1 hsa-miR-30a-5p ENSG00000145725 HISPPD1 

173 MEIS1 hsa-miR-30a-5p ENSG00000154274 C4orf19 

174 MEIS1 hsa-miR-30a-5p ENSG00000170365 SMAD1 
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175 MEIS1 hsa-miR-125b ENSG00000087916 SLC6A14 

176 MEIS1 hsa-miR-125b ENSG00000110274 CEP164 

177 MEIS1 hsa-miR-125b ENSG00000120656 TAF12 

178 MEIS1 hsa-miR-125b ENSG00000123064 DDX54 

179 MEIS1 hsa-miR-125b ENSG00000133561 GIMAP6 

180 MEIS1 hsa-miR-125b ENSG00000196616 ADH1C 

181 MEIS1 hsa-let-7b ENSG00000023902 PLEKHO1 

182 MEIS1 hsa-let-7b ENSG00000119906 C10orf6 

183 MEIS1 hsa-let-7b ENSG00000143851 PTPN7 

184 MEIS1 hsa-let-7b ENSG00000187109 NAP1L1 

185 MEIS1 hsa-miR-214 ENSG00000058668 ATP2B4 

186 MEIS1 hsa-miR-214 ENSG00000082556 OPRK1 

187 MEIS1 hsa-miR-214 ENSG00000110851 PRDM4 

188 MEIS1 hsa-miR-214 ENSG00000147892 ADAMTSL1 

189 MEIS1 hsa-miR-214 ENSG00000167468 GPX4 

190 MEIS1 hsa-miR-214 ENSG00000171303 KCNK3 

191 MEIS1 hsa-miR-214 ENSG00000173020 ADRBK1 

192 MEIS1 hsa-miR-296 ENSG00000090097 PCBP4 

193 MEIS1 hsa-miR-296 ENSG00000101246 ARFRP1 

194 MEIS1 hsa-miR-296 ENSG00000167680 SEMA6B 

195 MEIS1 hsa-miR-125b ENSG00000087916 SLC6A14 

196 MEIS1 hsa-miR-125b ENSG00000110274 CEP164 

197 MEIS1 hsa-miR-125b ENSG00000120656 TAF12 

198 MEIS1 hsa-miR-125b ENSG00000123064 DDX54 

199 MEIS1 hsa-miR-125b ENSG00000133561 GIMAP6 

200 MEIS1 hsa-miR-125b ENSG00000196616 ADH1C 

201 MEIS1 hsa-miR-100 ENSG00000116017 ARID3A 

202 MEIS1 hsa-miR-100 ENSG00000162437 RAVER2 

203 MEIS1 hsa-miR-199a* ENSG00000005884 ITGA3 

204 MEIS1 hsa-miR-199a* ENSG00000072401 UBE2D1 

205 MEIS1 hsa-miR-199a* ENSG00000085511 MAP3K4 

206 MEIS1 hsa-miR-199a* ENSG00000104067 TJP1 

207 MEIS1 hsa-miR-199a* ENSG00000105329 TGFB1 

208 MEIS1 hsa-miR-199a ENSG00000129116 PALLD 

209 MEIS1 hsa-miR-199a* ENSG00000132963 POMP 

210 MEIS1 hsa-miR-199a* ENSG00000140598 EFTUD1 

211 MEIS1 hsa-miR-199a* ENSG00000146021 KLHL3 

212 MEIS1 hsa-miR-199a* ENSG00000165156 ZHX1 

213 MEIS1 hsa-miR-199a ENSG00000170430 MGMT 

214 MYC hsa-miR-202 ENSG00000104660 LEPROTL1 

215 MYC hsa-miR-202 ENSG00000110583 NAT11 

216 MYC hsa-miR-202 ENSG00000119048 UBE2B 
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217 MYC hsa-miR-202 ENSG00000143727 ACP1 

218 MYC hsa-miR-202 ENSG00000186827 TNFRSF4 

219 MYC hsa-miR-193a ENSG00000054392 HHAT 

220 MYC hsa-miR-193a ENSG00000078070 MCCC1 

221 MYC hsa-miR-193a ENSG00000137478 FCHSD2 

222 MYC hsa-miR-193a ENSG00000139641 FAM62A 

223 MYC hsa-miR-193a ENSG00000185875 THNSL1 

224 MYC hsa-miR-193a ENSG00000196084 UBIQ_HUMAN 

225 MYC hsa-miR-296 ENSG00000123933 MXD4 

226 MYC hsa-miR-296 ENSG00000167680 SEMA6B 

227 MYOD hsa-miR-542-3p ENSG00000126214 KLC1 

228 MYOD hsa-miR-34a ENSG00000053918 KCNQ1 

229 MYOD hsa-miR-34a ENSG00000149575 SCN2B 

230 MYOD hsa-miR-34a ENSG00000175592 FOSL1 

231 MYOD hsa-miR-34a ENSG00000204619 PPP1R11 

232 NCX hsa-let-7e ENSG00000125741 OPA3 

233 NCX hsa-let-7e ENSG00000187109 NAP1L1 

234 NCX hsa-miR-99b ENSG00000112299 VNN1 

235 NCX hsa-miR-542-3p ENSG00000113580 NR3C1 

236 NCX hsa-miR-542-3p ENSG00000142208 AKT1 

237 NCX hsa-miR-125b ENSG00000089639 GMIP 

238 NCX hsa-miR-125b ENSG00000106993 CDC37L1 

239 NCX hsa-miR-125b ENSG00000153885 KCTD15 

240 NF-Y hsa-miR-148b ENSG00000015592 STMN4 

241 NF-Y hsa-miR-148b ENSG00000015592 STMN4 

242 NF-Y hsa-miR-148b ENSG00000015592 STMN4 

243 NF-Y hsa-miR-148b ENSG00000085433 WDR47 

244 NF-Y hsa-miR-148b ENSG00000085433 WDR47 

245 NF-Y hsa-miR-148b ENSG00000085433 WDR47 

246 NF-Y hsa-miR-148b ENSG00000126903 SLC10A3 

247 NF-Y hsa-miR-148b ENSG00000126903 SLC10A3 

248 NF-Y hsa-miR-148b ENSG00000126903 SLC10A3 

249 NF-Y hsa-miR-148b ENSG00000134851 TMEM165 

250 NF-Y hsa-miR-148b ENSG00000134851 TMEM165 

251 NF-Y hsa-miR-148b ENSG00000134851 TMEM165 

252 NF-Y hsa-miR-148b ENSG00000172053 QARS 

253 NF-Y hsa-miR-148b ENSG00000172053 QARS 

254 NF-Y hsa-miR-148b ENSG00000172053 QARS 

255 NF-Y hsa-miR-148b ENSG00000174851 YIF1A 

256 NF-Y hsa-miR-148b ENSG00000174851 YIF1A 

257 NF-Y hsa-miR-148b ENSG00000174851 YIF1A 

258 NF-Y hsa-miR-148b ENSG00000182512 GLRX5 
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259 NF-Y hsa-miR-148b ENSG00000182512 GLRX5 

260 NF-Y hsa-miR-148b ENSG00000182512 GLRX5 

261 NF-Y hsa-miR-148b ENSG00000189266 PNRC2 

262 NF-Y hsa-miR-148b ENSG00000189266 PNRC2 

263 NF-Y hsa-miR-148b ENSG00000189266 PNRC2 

264 NF-Y hsa-miR-138 ENSG00000086712 CXorf15 

265 NF-Y hsa-miR-138 ENSG00000086712 CXorf15 

266 NF-Y hsa-miR-138 ENSG00000086712 CXorf15 

267 NF-Y hsa-miR-125b ENSG00000110075 SAPS3 

268 NF-Y hsa-miR-125b ENSG00000110075 SAPS3 

269 NF-Y hsa-miR-125b ENSG00000110075 SAPS3 

270 NF-Y hsa-miR-125b ENSG00000110274 CEP164 

271 NF-Y hsa-miR-125b ENSG00000110274 CEP164 

272 NF-Y hsa-miR-125b ENSG00000110274 CEP164 

273 NF-Y hsa-miR-125b ENSG00000123064 DDX54 

274 NF-Y hsa-miR-125b ENSG00000123064 DDX54 

275 NF-Y hsa-miR-125b ENSG00000123064 DDX54 

276 NF-Y hsa-miR-125b ENSG00000130348 QRSL1 

277 NF-Y hsa-miR-125b ENSG00000130348 QRSL1 

278 NF-Y hsa-miR-125b ENSG00000130348 QRSL1 

279 NF-Y hsa-miR-125b ENSG00000138111 TMEM180 

280 NF-Y hsa-miR-125b ENSG00000138111 TMEM180 

281 NF-Y hsa-miR-125b ENSG00000138111 TMEM180 

282 NF-Y hsa-miR-125b ENSG00000143390 RFX5 

283 NF-Y hsa-miR-125b ENSG00000143390 RFX5 

284 NF-Y hsa-miR-125b ENSG00000143390 RFX5 

285 NF-Y hsa-miR-125b ENSG00000182858 ALG12 

286 NF-Y hsa-miR-125b ENSG00000182858 ALG12 

287 NF-Y hsa-miR-125b ENSG00000182858 ALG12 

288 RORALPHA2 hsa-miR-125b ENSG00000100599 RIN3 

289 RORALPHA2 hsa-miR-125b ENSG00000143390 RFX5 

290 RREB-1 hsa-miR-148b ENSG00000170989 EDG1 

291 SREBP-1 hsa-miR-296 ENSG00000172354 GNB2 

292 SRF hsa-let-7a ENSG00000135441 BLOC1S1 

293 SRF hsa-let-7a ENSG00000135535 CD164 

294 SRF hsa-miR-214 ENSG00000171303 KCNK3 

295 SRF hsa-miR-125b ENSG00000153885 KCTD15 

296 SRF hsa-miR-100 ENSG00000106348 IMPDH1 

297 SRF hsa-miR-100 ENSG00000138660 C4orf16 

298 SRF hsa-miR-100 ENSG00000153147 SMARCA5 

299 SRF hsa-miR-100 ENSG00000162437 RAVER2 

300 SRF hsa-miR-199a* ENSG00000072401 UBE2D1 
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301 SRF hsa-miR-199a* ENSG00000132963 POMP 

302 SRF hsa-miR-199a* ENSG00000182481 KPNA2 

303 STAT1 hsa-miR-130a ENSG00000152291 TGOLN2 

304 STAT1 hsa-miR-130a ENSG00000162998 FRZB 

305 STAT1 hsa-miR-130a ENSG00000164896 FASTK 

306 STAT1 hsa-miR-130a ENSG00000171703 TCEA2 

307 STAT1 hsa-miR-130a ENSG00000182512 GLRX5 

308 STAT1 hsa-miR-130a ENSG00000184371 CSF1 

309 TCF-1(P) hsa-miR-129 ENSG00000103326 SOLH 

310 TCF-1(P) hsa-miR-129 ENSG00000158435 C2orf29 

311 TCF-1(P) hsa-miR-129 ENSG00000169509 CRCT1 

312 TCF-1(P) hsa-miR-542-3p ENSG00000071127 WDR1 

313 TCF-1(P) hsa-miR-542-3p ENSG00000094916 CBX5 

314 TCF-1(P) hsa-miR-542-3p ENSG00000145781 COMMD10 

315 TCF-4 hsa-miR-10a ENSG00000143198 MGST3 

316 TCF-4 hsa-miR-10a ENSG00000144681 STAC 

317 TCF-4 hsa-miR-27a ENSG00000130479 MAP1S 

318 TCF-4 hsa-miR-23a ENSG00000167774 NDUFA7 

319 TEL-2 hsa-miR-199a* ENSG00000204220 PFDN6 

320 YY1 hsa-let-7a ENSG00000071894 CPSF1 

321 YY1 hsa-let-7a ENSG00000187109 NAP1L1 

322 YY1 hsa-miR-16 ENSG00000131381 ZFYVE20 

323 YY1 hsa-miR-125b ENSG00000007968 E2F2 

324 YY1 hsa-miR-125b ENSG00000110274 CEP164 

325 YY1 hsa-miR-125b ENSG00000119541 VPS4B 

326 YY1 hsa-miR-125b ENSG00000120656 TAF12 

327 YY1 hsa-miR-125b ENSG00000138111 TMEM180 

328 YY1 hsa-miR-100 ENSG00000106348 IMPDH1 

329 YY1 hsa-miR-100 ENSG00000118689 FOXO3A 
 

Complete list of the 329 putative FFLs derived from the association of the 474 miRNA-

mediated FFLs, obtained using CircuitsDB, with the available miRNA and mRNA time 

series data. 

 

 

Additional information about the bioinformatic pipeline for mixed TF / miRNA FFLs generation 

For protein-coding genes, we selected as promoter a region corresponding to (-900/+100) nts 

around the Transcription Start Site (TSS) of the longest transcript of each gene, being the TSS at 

position +1. For miRNA genes, we first grouped pre-miRNAs in the so called Transcriptional Units 

(TUs) (Landgraf, et al., 2007) and associated the promoter of the most 5'-upstream member of the 

TU to all the pre-miRNAs belonging to it. We then divided pre-miRNAs, according to their genomic 

annotations in inter- or intra-genic ones. Stemming from previous observations concerning miRNA 

regulation, see e.g. (Saini, et al., 2007; Fazi, et al., 2005; Laneve, et al., 2010), for inter-genic pre-
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miRNAs we defined as putative promoter a genomic region corresponding to (-900/+100) nts 

upstream of the first pre-miRNA in the TU. The same definition was applied to intra-genic pre-

miRNAs which showed opposite orientation with respect to the hosting protein-coding gene. 

Eventually, if the pre-miRNAs were intra-genic but sharing the same orientation of the hosting 

protein-coding gene, we associated to them as promoter region the same defined for the protein-

coding host gene. The complete bioinformatic pipeline is described in (Re, et al., 2009). 
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